人教A版数学必修一《函数的概念》教案
函数的概念(第1课时) 高一上学期数学人教A版(2019)必修第一册

问题3 图1是北京市2016年11月23日的空气质量 指数(简称AQI)变化图.如何根据该图确定这一天 内任一时刻h的空气质量指数(AQI)的I值?你认 为这里的I是t的函数吗?
A3 t 0 t 24
B3 I 0 I 150
概念形成
设在一个变化过程中,有两个变量x与y, 对于x的每一个值,都有唯一确定的y与它对应, 那么就说y是x的函数.
概念形成
设在一个变化过程中,有两个变量x与y, 对于x的每一个值,都有唯一确定的y与它对应, 那么就说y是x的函数.
对于 数集A4中的任意一个数y ,
按照 表格 ,
在 数集B4中 ,都有唯一确定的r与它对应,
那么就说r是y的函数.
概念形成
1.函数的概念 一般地,设 A, B 是非空的实数集,如果对于集合 A 中
天,至多不超过6天.如果工资确定的工资标准是
每人每天350元,而且每周付一次工资,那么一
个工人每周的工资W和他每周工作的天数d就是
函数关系:
W=350d
d的变化范围是什么? A2={1,2,3,4,5,6}
W的变化范围是什么? B2={350,700,1050,1400,1750,2100}
A2中的任意一个d和B2的工资W之间有什么关系?
这个关系是怎样建立起来的?
解析式:W=350d
概念形成
设在一个变化过程中,有两个变量x与y, 对于x的每一个值,都有唯一确定的y与它对应, 那么就说y是x的函数.
对于 数集A2中的任意一个数d ,
按照 W=350d , 在 数集B2中 ,都有唯一确定的W与它对应,
那么就说W是d的函数.
概念形成
思考: 1、问题1与问题2中的函数有相同的对应关 系,它们是同一个函数吗?
高一数学 1.2.1函数的概念教案-人教版高一全册数学教案

1.2.1函数的概念一、关于教学内容的思考教学任务:帮助学生认识函数的构成要素;明确函数的定义;理解定义域、对应关系、值域的含义;掌握判断两个函数是否相等的方法;正确使用区间表示定义域、值域; 教学目的:引导学生树立函数思想研究变量之间的关系。
教学意义:培养学生通过观察事物的表象,分析事物变化的本质,揭示变量之间内在相互联系、相互制约的关系。
二、教学过程1.在背景材料下,引出函数的定义:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f ,使对于集合A中的任意一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A到集合B的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A叫做函数的定义域;与x 的值对应的y 值叫做函数值;函数值的集合{()|}f x x A ∈叫做函数的值域,值域是集合B的子集。
注意:两个非空数集;一对一或多对一;集合A中的任意一个数已知R x ∈,在解析式x y x y x y 2,|||,|2===中,哪些可以成为函数的解析式? 2.一个函数的构成要素:定义域、对应关系和值域。
3.函数相等具备的条件:定义域、对应关系完全一致。
4.对应关系常见形式:①解析法②图象法③列表法5.理解和正确使用区间符号:),(],,(),,(),,[),,(),,[],,(],,[b b a a b a b a b a b a -∞-∞+∞+∞ 注意:对区间[,],(,],[,),(,)a b a b a b a b 来说,(前提条件b a <)6.求函数定义域:①由问题的实际背景确定;②能使解析式有意义的实数的集合。
注意:通过解析式求定义域,无需化简,应注意自变量取值的等价性。
7.掌握常数函数、一元一次函数、一元二次函数、反比例函数的值域情况。
三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子 1.已知函数15)(2+=x x x f ,若2)(=a f ,则=a 。
高一数学《函数概念》教案

高一数学《函数概念》教案高一数学《函数概念》教案范文一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。
托马斯说:“函数概念是近代数学思想之花”。
生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。
同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。
函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。
二、学生学习情况分析函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。
1.有利条件现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。
也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.1.知识与能力目标:⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;⑵理解函数的三要素的`含义及其相互关系;⑶会求简单函数的定义域和值域2.过程与方法目标:⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.情感、态度与价值观目标:感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案

函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
《函数的概念》教学设计

《函数的概念》教学设计人教版《普通高中课程标准实验教科书数学Ⅰ必修本(A 版)》第一章概述:《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.如何上好一节概念课,概念不是由老师讲出,而是让学生去发现,并归纳概括出概念呢?从而让学生更好的理解概念,熟练的去应用概念解决问题.在本节课的教学中,我以学生作为活动的主体,创设恰当的问题情境,引导学生积极思考,大胆探索,从而去发现问题、提出问题和解决问题.注重培养他们的观察、分析和解决问题的能力,培养他们的逻辑思维能力及抽象概括能力.运用新课标的理念,我从以下几个方面加以说明:教材内容分析、教学目标分析、教法学法分析、教学过程分析、教学评价分析【教材内容分析】1.教材的地位及作用函数的概念是人教版数学必修①第一章第二节的内容,它不仅对前面研究的集合作了巩固和发展,而且是学好后继知识的基础和工具.本节的主要内容就是函数的概念和函数的三个要素,研究了本小节后,为以后研究其他类型的函数打下扎实的基础。
由于函数反映出的数学思想渗透到数学的各个领域并且它在物理﹑化学及生物等其他领域也有广泛的应用.因此,函数概念是中学数学最重要的基本概念之一。
2.学情分析在学生研究用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,且比较惯的用解析式表示函数,但这是对函数很不全面的认识。
由于函数的概念比较抽象,学生思维不成熟、不严密,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
【教学目标分析】根据上述教材内容分析,并结合学生的研究心理和认知结构,我将教学目标分成三部分进行说明:知识与技能:1、从集合与对应的观点动身,加深对函数观点的理解2、理解函数的三要素:定义域、值域和对应法则3、理解函数符号的含义。
过程与方法:在丰富的实例中,通过关键词的强调和引导,使学生发现、概括出它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
函数的概念(单元教学设计)高中数学人教A版2019必修第一册

《函数的概念及其表示》单元教学设计一、内容及其解析(一)内容1 函数的三个要素:定义域,值域,对应关系2 “对应说”的函数概念3 函数的表示法:解析法,图象法,表格法4 分段函数的概念及表示(二)内容解析1. 内容本质:两个数集之间建立对应关系(单射)是函数概念的本质,用集合语言和对应关系刻画函数概念是数学抽象素养得到提升的重要标志。
用解析式、图象与表格等不同方法表示函数,是进一步理解函数、认识函数对应关系f的重要过程,也是数学思维的重要特征。
2 蕴含的思想方法运用函数观察、研究事物的运动与变化及其规律是一种重要的思想,因此,函数思想自然是函数概念与表示教学中最重要的数学思想;在函数的表示中,函数不同表示法之间的转化渗透着数形结合的思想;同时,函数与方程、不等式之间的相互转化,蕴含着等价转化的思想。
3 知识知识的上下位关系:函数是数学的核心概念,是刻画客观世界中运动变化规律的重要数学模型。
在高中阶段,函数不仅贯穿数学学习的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它领域也有广泛的应用;在高等数学和实际应用中,函数是基本数学对象,是数学建模的重要模型。
4 育人价值:函数所蕴含的集合间的“对应”是一种重要的数学思想与方法,这种思想方法帮助人们在不同事物之间建立联系,并运用这种联系去研究、发现事物变化的规律,掌握事物本身的性质,这对于提高人们的思想认识,指导日常行为有着重要的意义与价值,函数的表示是数学表示的典范,除帮助人们提高抽象能力外,其本质也是建立具体函数到数学符号之间的对应,可以帮助学生进一步体会函数思想的本质,发展学生的数学抽象与直观想象素养.5 教学重点:实例归纳概括函数的基本特征,建立用集合与对应的语言刻画概念,选择适当的方法表示函数二、目标及其解析(一)单元目标1在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的概念-第2课时函数概念的应用

[解析]由ቊ
得 > ,且 ≠ .故选C.
− ≠ ,
2.函数() =
1
(
2 +1
∈ )的值域是() B
A.(−∞, 1]B.(0,1]C.[0,1)D.[0,1]
[解析]因为
(, ].故选B.
+ ≥ ,所以 <
+
≤ ,故函数() =
为函数 = − 2 + 4 + 1的图象开口向下,对称轴方程为 = 2 ∈ [0, +∞),所以当 = 2时,
函数 = − 2 + 4 + 1取到最大值,max = 5,所以原函数的值域为(−∞, 5].
1.知识清单:(1)求函数的定义域.
(2)求简单函数的值域.
2.方法归纳:配方法、换元法、基本不等式法、数形结合、转化与化归.
=
=2+
,
−3
−3
−3
7
7
2 +1
∵
≠ 0,∴ 2 +
≠ 2,∴ =
的值域为(−∞, 2)
−3
−3
−3
∪ (2, +∞).
(4) = 2 − − 1.
1
4
解 令 − 1 = ,则 ≥ 0且 = 2 + 1,∴ = 2( 2 + 1) − = 2 2 − + 2 = 2( − )2 +
1
4
则当 = 时,min =
15
,∴
8
15
, +∞).
8
= 2 − − 1的值域为[
15
,
2017年全国数学优质课一等奖作品_函数的概念教学设计[王加平]
![2017年全国数学优质课一等奖作品_函数的概念教学设计[王加平]](https://img.taocdn.com/s3/m/88f0a9e576eeaeaad1f33046.png)
1.2.1 函数的概念 教学设计云南省玉溪第一中学 王加平一、教材分析:本节内容为《1.2.1函数的概念》 ,是人教A 版高中《数学》必修一《1.2函数及其表示》的第一课.函数是中学数学最重要的基本概念之一,在初中,学生已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.例如:对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出x 的物理意义是什么.但用集合、对应的观点来解释,就十分自然.函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础,它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法.二、学情分析:在学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,同时,虽然函数比较抽象,但是函数现象大量存在于学生的周围,教科书选用了运动、自然界、经济生活中的实际例子进行分析,从实例中抽象概括出用集合与对应的语言来定义函数概念,对学生的抽象、归纳能力要求比较高,能很好的锻炼学生的抽象思维能力以及加深对函数概念的理解.三、教学目标:(一)知识与技能理解函数的定义,能用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的三要素. (二)过程与方法通过三个实例共性的分析到函数概念的形成,再对三个实例进行拓展,让学生对函数概念进行辨析,体现从特殊到一般,再从一般到特殊的思想方法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学生的抽象概括能力,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(一)教学重点⎩⎨⎧=.01)(是无理数时,当是有理数时,,当x x x f体会函数是描述变量之间的依赖关系的重要数学模型,并能用集合与对应的语言来刻画函数. (二)教学难点函数概念的理解及符号“)(x f y ”的含义.五、教学策略:首先,通过魔术表演,体现函数在实际生活中的运用,激发学生进一步学习函数的积极性;其次,在学生习惯用解析式表示函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的方式,结合函数的数与形两个方面给学生充分的认识,为学生用集合与对应的语言刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f 、函数关系中多对一的情况、值域是集合B 的子集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进行拓展让学生抛开物理运动背景,用集合与对应的语言来分析函数并强调函数关系中对应关系的方向.六、教学基本流程:七、教学情景设计:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省光泽第一中学高中数学人教版必修一《函数的概念》教案【教材内容分析】
通过学生的回顾,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。
通过对实例的探究,让学生感受、体验对应关系在刻画函数概念中的作用,使学生对数学的高度抽象性、严密的逻辑性和广泛的应用性有进一步认识,提高抽象概括、分析总结、数学表达交流等基本数学思维能力;培养学生分析问题、解决问题的能力。
【重点、难点】
重点是函数概念的理解,难点是对函数符号y=f(x)的理解。
教具准备:教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率
【课时安排】一课时
【教学方法】学案教学法,通过不同实例的探究,让学生积极参与教学活动
【教学过程和步骤】
教学环节教学内容师生活动设计意图
课题引入1、回顾、实例引入1)复习初中的常量、变量
与函数的概念在一个变化过程中,有两个变
量x和y ,如果给定了一个x值,相应地就确
定唯一的一个y值,那么我们称y是x的函
数,其中x是自变量,y是因变量。
2)请同
学们回顾一下我们在初中学习了哪些函数?
(板书)Y=kx;y=kx+b;y=k/x;Y=ax²+bx+c;
请同学们再次回顾在初中物理及日常生活中
见到哪些符合上述的实例?(对应板书)3)
问题1:在加油站为汽车加油,油价为每升
4.93元,启动加油机开关后表示加油量和金
额的两个窗口的数字不停地跳动直到加油量
为12升时停止,问金额y元与加油量x升之
间的关系式是什么?学生回答
学生回
答
学生回
答
学生
回答
通过学生的回
顾,再现初中变
量观点描述函数
的概念,为后面
用集合和对应
的观点来定义函
数奠定基础。
通过实例使
学生进一步认识
生活中充满变量
间的依赖关系;
激发学生学习数
学的兴趣,提高
发散思维能力
概念形成一、请同学们看课本第29页至30页(1)到
(4),回答下列问题:
1、你从上述4例了解到哪些信息?(对应、唯
一、数集等)
2、自变量与因变量之间有何关系?(法
则)T学生独
立思考
2~3分
钟,再讨
论、交
流、分
享。
教师
关注学生
通过实际问题引
出概念,激发学
生学习兴趣,
给学生思考、探
索的空间,让学
生体验数学发现
和创造的历程,
提高分析问题和
解决问题的能
力。
二、函数的概念
设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有唯一确定的数值y 与它对应,则这种对应关系叫做集合A上的一个函数,记作y=f(x),x∈A,
其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域。
如果自变量取值a,则由法则f确定的值y
称为函数在a处的函数值,记作y=f(a),所有函数值构成的集合{y∣y=f(x),x∈A}叫做这个函数的值域。
进一步理解函数概念定义域、对应法则、值域三者关系深刻理解
f(x)中的f与x的关系
3、怎样判断两个函数是否是同一个函数?
总结出
函数关系
实质
1、师生互动抓住
函数概念这一重
点,举出实例来
突破理解对应法
则f这一难点。
2、突出强调重
点,积极调动学
生
例题精析例1:判断下列函数是否是同一函数
1、y=x²,x∈R;s=t²,t∈R
2、y=x²,x∈R;s=2t²,t∈R
3、y=x²,x∈Z;s=t²,t∈R
4、f(x)= x²,x∈R;g(x-2)=(x-2)², x∈R;
例2:求下列函数定义域
1、f(x)=2x,
2、f(x)=
3、f(x)=
4、f(x)=(2x-3)
例3:求函数f(x)= ,x,在x=0、1、2处的函
数值和值域
例4:1)已知函数f(x)= x²,求f(x-1)
2)已知函数f(x-1)= x²,求f(x) 例1~例3
第一问均
让学生独
立进行
然后师生
交流分享
例3第2
问及例4
交流后教
师讲解板
书
培养学生解题能
力及学习方法和
习惯
请同学们把下面集合用数轴表示出来
设a、b∈R,a<b
1、{x︱a≤x≤b,x∈R}
2、{x︱a<x<b,x∈R
3、{x︱a≤x<b,x∈R
4、{x︱a<x≤b,x∈R
从而引出闭区间,开区间,半开半闭区间学生实物投影展示。