中国高速铁路桥梁建设关键技术-23页文档资料

合集下载

最新中国高速铁路桥梁建设关键技术

最新中国高速铁路桥梁建设关键技术

中国高速铁路桥梁建设关键技术中国高速铁路桥梁建设关键技术在高速铁路建设中,桥梁设计与建造已成为关键技术之一。

进入21世纪以来,随着中国高速铁路规模的迅速发展,通过广泛借鉴世界高速铁路桥梁先进技术和成功建设经验,在我国高速铁路桥梁建设实践过程中,逐步形成了具有中国特色的高速铁路桥梁建设关键技术。

1高速铁路桥梁建设1. 1世界高速铁路桥梁建设桥梁作为轨道的下部结构,为确保高速运行条件下的安全性、平稳性和乘车舒适性要求,必须具有高平顺性、高稳定性和高可靠性等特点。

目前世界上已建成高速铁路7 939 km,主要分布在日本、法国、德国、意大利、西班牙、比利时、英国、韩国、中国台湾等国家和地区。

最高运营速度达320 km /h,各线桥梁比例从1. 3 %到74. 5 %不等。

各国根据其施工水平、施工周期、桥梁工点的地质地形等不同特点,在高速铁路桥梁建设上也表现出自己的一些特征。

桥梁结构形式多样化,有预应力混凝土连续箱梁、简支箱梁、混凝土刚架、多片式T梁、上承式钢板连续结合梁、下承式钢桁梁、鱼腹式上承钢桁连续结合梁、大跨度系杆钢拱等多种结构形式(见表1) 。

表1世界高速铁路桥梁常用跨度法国高速铁路运营里程1 576 km,地中海线高速铁路最高行车速度为320 km /h,各线桥梁比例为1.3 % ~32. 2 %。

在东南线和大西洋线上,桥梁常用跨度为40 m,采用双线箱形等高预应力混凝土连续梁,梁体现场现浇,用顶推法施工。

北方线由于桥梁需横跨高速公路和宽阔河流、施工期相对较短等因素,建造了跨度50 m左右的结合梁,以及一孔跨度93. 3 m的下承式钢桁结合梁。

据统计,北方线与巴黎地区联络线、东南延伸线的高架桥长约12 km,钢混结合桥比例达到50 %。

德国新建高速铁路总长1 265 km,最高运行速度为300 km /h,桥梁比例2. 7 % ~12. 5 % ,干线桥梁的标准跨度是25 m, 44 m和58 m。

高速铁路工程中的桥梁设计与施工技术

高速铁路工程中的桥梁设计与施工技术

高速铁路工程中的桥梁设计与施工技术随着国家铁路建设的不断推进,高速铁路工程的兴起对桥梁设计与施工技术提出了更高的要求。

高速铁路桥梁的设计与施工需要考虑工程质量、安全性和经济性,以确保铁路运行的平稳和顺畅。

本文将重点探讨高速铁路工程中的桥梁设计与施工技术。

一、桥梁设计技术1. 高速铁路桥梁的种类高速铁路桥梁包括斜拉桥、悬索桥、钢桁梁桥、混合结构桥等多种类型。

每种桥梁类型都有其独特的特点和适用范围,在设计过程中需要综合考虑地质条件、交通组织、气候条件等因素,选择最合适的桥梁类型。

2. 桥梁荷载和结构计算高速铁路桥梁的设计需要充分考虑列车荷载、温度荷载、地震荷载等因素,并进行合理的荷载组合和结构计算。

桥梁的承载能力要满足设计要求,并保证结构的稳定性和安全性。

3. 桥梁抗倒桩设计高速铁路桥梁的抗倒桩设计是保证桥梁稳定性的关键因素。

通过对桥墩、桥台等部位的抗倒处理,可以降低地震和风荷载对桥梁的影响,提高桥梁的整体抗倒能力。

4. 桥梁施工图设计在桥梁设计阶段,需要编制详细的施工图纸,包括桥梁各构件的尺寸、材料、连接方式等信息。

施工图的准确性和完整性对于保证高速铁路桥梁的施工质量至关重要。

二、桥梁施工技术1. 桥梁基础施工桥梁基础施工是桥梁构造的基础,需要进行地基处理、基础防水、灌浆和桩基施工等工序。

施工人员需全面了解地基条件,采用合适的施工方法和工艺,确保桥梁基础的稳固和不受地质影响。

2. 桥梁上部结构施工桥梁上部结构施工包括梁体施工、墩身施工、桥台施工等工序。

在施工过程中,需要合理安排施工顺序,保证施工的连贯性和统一性。

同时,施工人员需掌握准确的测量和模板工艺,确保桥梁结构的准确度和稳定性。

3. 桥梁装修和防护高速铁路桥梁施工完成后,还需要进行桥面防水、路面铺装、护栏安装等工序,以增加桥梁的使用寿命和安全性。

在桥梁装修和防护工作中,施工人员需使用优质材料和先进技术,确保施工质量和桥梁的可靠性。

4. 桥梁验收和监测高速铁路桥梁施工结束后,还需要进行工程验收和桥梁监测。

高速铁路桥梁设计关键技术综述

高速铁路桥梁设计关键技术综述

高速铁路桥梁设计关键技术综述摘要:近年来,随着我国高速铁路的飞速发展,高速铁路的技术体系也在不断的完善,主要包括:工程建造技术、高速列车技术、列车控制技术、系统集成技术和运营维护技术。

其中,由于我国自身地理环境的复杂性和多变性,对高速铁路的工程建造中桥梁建设的发展提出了越来越严格的要求。

所以,本文对高速铁路桥梁设计关键技术进行探讨。

关键词:高速铁路;桥梁建设;设计特点;关键技术一、铁路桥梁的分类1、拱式桥拱式桥由拱上建筑、拱圈和墩台组成。

在竖直荷载作用下,作为承重结构的拱肋主要承受压力,拱桥的支座既要承受竖向力,又要承受水平力,因此拱式桥对基础与地基的要求比梁式桥要高。

拱式桥按桥面位置可分为上承式拱桥、中承式拱桥和下承式拱桥。

2、悬索桥悬索桥,是桥面支承在悬索(也称大缆)上的桥,又称吊桥。

它是以悬索跨过塔顶的鞍形支座锚固在两岸的锚锭中,作为主要承重结构。

在缆索上悬挂吊杆,桥面悬挂在吊杆上。

由于这种桥可充分利用悬索钢缆的高抗拉强度,具有用料省、自重轻的特点,是现在各种体系桥梁中能达到最大跨度的一种桥型。

3、斜拉桥斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。

它由梁、斜拉索和塔柱三部分组成。

斜拉桥是—种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。

按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。

4、刚构桥刚构桥是指桥跨结构与桥墩式桥台连为一体的桥。

刚构桥根据外形可分为门形刚构桥,斜腿刚构桥和箱形桥。

箱形桥的梁跨、腿部和底板联成整体,刚性好,适用于地基不良的情况和既有线下采用顶推法施工。

二、我国高速铁路桥梁建设的设计特点1、高架桥所占比例大高架长桥多桥梁在高速铁路中所占的比例较大,主要原因是在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。

京津城际铁路桥梁累计长度占全线正线总长的比例为86.6%,京沪高速铁路为80.5%,广珠城际铁路为94.0%,武广客运专线为48.5%,哈大客运专线为74.3%。

浅谈中国高速铁路大跨度桥设计特点与关键技术

浅谈中国高速铁路大跨度桥设计特点与关键技术
2 . 2 大 跨度桥 梁 的建造 技术 高速铁路 桥梁通 常宜采用小 跨。 但由于地域 的特殊 陛, 大跨 度桥不 可避免 ,
我国高速铁路大跨度桥上速度目标值与其他路段保持一致, 这不仅增加了大跨 度 桥梁 的设计 建造难 度 , 同时也催 生了许 多新 型的建 造技术 , 主要建 造技术 包 括: 采 用更 高强度 等级钢 材 、 应用 新型 空间结 构 、 研 制 大跨重 载桥 梁专用 装置 、 采用深 水基 础施 工新 工艺 等 。 2 . 3 无缝线 路大 跨度桥 设计 建造 技术
社科 论 坛
I ■
Hale Waihona Puke C h i n a s c i e n c e a n d T e c h n o l o g y R e v i e w
浅 谈 中 国高 速 铁 路 大 跨 度 桥 设 计特 点 与关 键 技 术
陈代 秀
( 西南 交通 大学 6 1 1 7 5 6 ) [ 摘 要] 中 国高速 铁路 正 处于 高速 发展 的黄 金 时期 。 桥 梁尤 其是 大跨 度桥 梁 正逐 渐发 挥着 越来 越 重要 的作 用 。 大跨 度 桥应尽 可 能采 用 刚度较 大 的结构 , 综 合考虑车辆、 轨道与桥梁之间的动力相互作用, 进而采取有效的控制策略, 减小桥梁的动力响应, 满足列车高速运营的需要。 本文介绍了中国高速铁路大跨度桥的 设计 特点 与 关键技 术 , 具有 一定 的参 考价值 。
【 关键词] 高速 铁 路 大跨 度 桥 设计 特 点 关键 技术 中 图分类 号 : TU3 l 1 . 4 文 献标识 码 : A
文 章编号 : 1 0 0 9 - 9 1 4 X ( 2 0 1 4 ) 0 4 — 0 4 9 2 一 O 1

中国高速铁路桥梁建设新进展

中国高速铁路桥梁建设新进展

新型桥梁材料的研发与应用
新材料研发
中国在高速铁路桥梁建设中积极 研发新型材料,如高强度钢材、 高性能混凝土等,以提高桥梁的
承载能力和耐久性。
材料性能优化
通过材料性能的优化和改进,降 低材料成本,同时满足桥梁建设 的各项性能要求。新型材料的应 用还提高了桥梁的轻巧性和美观
性。
材料国产化
推动新型材料的国产化进程,降 低对进口材料的依赖,促进国内
中国高速铁路桥梁建设新进展路桥梁建设概述 • 中国高速铁路桥梁建设的最新成
果 • 中国高速铁路桥梁建设的挑战与
对策 • 中国高速铁路桥梁建设的未来展

01
中国高速铁路桥梁建设概述
高速铁路桥梁建设的发展历程
起步阶段
20世纪90年代,中国开始探索高速铁路技术,桥梁建设作 为关键部分,开始起步。
等。
创新设计
中国的高速铁路桥梁设计理念先进,结构形式多样,包括斜拉桥、悬索桥等多种类型。同时,采 用新型材料和结构优化设计,提高了桥梁的承载能力和稳定性。
施工方法
在大跨度桥梁的施工中,中国采用了一系列先进的施工方法和技术,如预制拼装、智能张拉等, 大大缩短了施工周期,提高了施工效率。
高墩大跨桥梁的抗震设计
国际合作与交流的展望
国际合作
中国高速铁路桥梁建设将继续加强与 国际先进企业的合作与交流,引进国 际先进技术和管理经验,提高自身的 核心竞争力。
人才培养
为了满足高速铁路桥梁建设的需要, 中国将加强人才培养和引进,吸引更 多的国际优秀人才参与中国的高速铁 路桥梁建设。
THANKS
促进区域经济发展
01
优化交通结构
02
高速铁路桥梁建设连接了不同地区,缩短了时 空距离,促进了区域间的人员流动和经济合作,

高速铁路桥梁的施工技术

高速铁路桥梁的施工技术

浅析高速铁路桥梁的施工技术在高速铁路建设中,桥梁设计与建造已成为关键技术之一。

进入21世纪以来,随着中国高速铁路规模的迅速发展,通过广泛借鉴世界高速铁路桥梁先进技术和成功建设经验,在我国高速铁路桥梁建设实践过程中,逐步形成了具有中国特色的高速铁路桥梁建设关键技术。

1.高速铁路对桥梁工程的要求(1)桥梁结构动力性能的要求由于列车高速运行,桥梁结构承受的动力作用大增,冲击和振动强烈,有可能引发车桥共振,造成灾害。

因而,桥梁结构除满足一般的强度要求外,还必须具有足够的刚度,严格限制结构变形,保证可靠的稳定性和保持桥上轨道的高度平顺状态。

桥梁设计除进行一般的静力计算外,还要按动态计算方法,进行车桥相互作用的动力仿真分析,使桥梁结构具备良好的动力性能。

(2)轨道平顺性的要求为了保证桥上高速列车的安全性、平稳性和旅客乘坐的舒适性,轨道结构对预应力混凝土梁部结构的徐变上拱度和桥梁基础的工后沉降,提出了更加严格的要求。

(3)无碴轨道的要求由于铺设无碴轨道桥梁进行起、拨道作业时,在线路水平、高低方向上的调整量十分有限,梁缝两侧的钢轨支点由于支座横向的构造间隙、梁端竖向转角、支座弹性压缩变形以及坡道梁活动支座的水平移动等因素的影响,会产生横向和竖向相对位移,造成钢轨、扣件等局部受力。

尤其梁端竖向转角的影响,造成在梁缝处的轨道局部隆起,接缝两侧的钢轨支点分别产生钢轨上拨和下压现象,上拨力大于钢轨扣件的扣压力时将导致钢轨与其下垫板脱开,当垫板所受压应力大于材料疲劳允许应力时将导致垫板发生疲劳破坏。

故铺设无碴轨道的桥梁比有碴轨道的桥梁有更高的要求。

(4)桥梁施工的要求铁路客运专线的桥梁标准高、体量大,桥梁结构型式不同于一般铁路干线的桥梁,从而对桥梁工程施工的制架技术、施工组织和施工工艺都提出了新的要求。

(5)养护维修的要求铁路客运专线行车密度大,检查、维修时间有限,任何中断行车都会造成很大的经济损失和社会影响。

为此,桥梁结构在构造上应十分注意改善结构的耐久性和使结构便于检查、养护及更换部件,尽可能达到少维修、容易维修。

高铁桥梁施工技术资料

高铁桥梁施工技术资料

高铁桥梁施工技术资料高铁桥梁是高速铁路的重要组成部分,其建设对于保障铁路交通的安全和舒适性具有重要意义。

高铁桥梁的施工技术是决定其质量和安全性的关键因素,因此需要有一定的技术资料来指导施工。

本文将介绍一些关于高铁桥梁施工技术的资料。

1. 高铁桥梁施工标准高铁桥梁的施工必须遵守国家和行业的标准。

其中,国家标准主要包括《高速铁路技术规程》、《高速铁路施工质量验收规范》等,行业标准则包括《高速铁路桥梁工程施工规范》、《高速铁路桥梁施工安全技术规程》等。

这些标准对于高铁桥梁施工的材料选用、强度要求、施工方法、验收标准等都做出了详细的规定。

施工单位必须遵守这些标准,以确保高铁桥梁的质量和安全。

2. 高铁桥梁施工工艺高铁桥梁的施工工艺主要包括预制构件的制作、现场拼装、混凝土浇筑、预应力张拉、修补加固、防腐处理等。

在施工过程中,还需要特别注意施工安全和环保问题。

关于高铁桥梁的施工工艺,国内外都有很多相关技术资料可供参考。

3. 高铁桥梁施工案例目前国内外已经建成了大量高铁桥梁,这些项目都是施工技术的成功应用,具有很好的借鉴意义。

通过学习和总结这些案例,可以更好地掌握高铁桥梁的施工技术,提高施工质量和效率。

在学习过程中,需要重点关注各个案例的施工工艺和经验教训。

4. 高铁桥梁施工技术培训为了提高高铁桥梁施工人员的技术水平,行业内部和一些培训机构都提供了相关的培训课程。

这些课程的内容包括高铁桥梁的设计、施工、验收等方面,可以提供全面、系统的培训。

这些培训课程的学习需要结合实际工作来开展,以达到更好的培训效果。

5. 高铁桥梁施工管理高铁桥梁的施工管理是整个施工过程中非常重要的一环。

在施工管理中需要注意的问题包括技术质量监督、安全监管、现场管理、卫生环保等。

同时,还需要有一个完整有效的管理体系,以使整个施工过程顺利进行。

有关高铁桥梁施工管理的资料可以提供更好地参考和指导。

6. 结语高铁桥梁的施工技术资料是保障铁路安全和舒适性的重要保障,需要各方面共同努力,对其进行充分的研究和总结。

高速铁路桥梁施工技术

高速铁路桥梁施工技术

目 录1 桥梁施工技术简介 (1)1.就地浇筑法 (1)2.预制架设法 (1)3.悬臂施工法 (1)4.转体施工法 (2)5.顶推施工法 (2)6.移动模架逐孔施工法 (2)2 预应力混凝土预制箱梁施工 (4)(一)预制梁场规划与设置 (4)1.预制梁场规划设置的原则 (4)2.预制梁场设置 (4)(二)模板支架工程 (6)1.模板构造 (6)2.模板拼装与拆除 (8)(三)钢筋加工及安装 (9)1.钢筋加工 (9)2.钢筋骨架制作 (10)(四)箱梁混凝土施工 (10)1.箱梁混凝土拌制 (10)2.箱梁混凝土浇筑 (11)3.箱梁混凝土养护 (12)(五)预应力工程 (13)1.预应力施工工艺流程 (13)2.预应力张拉 (13)(六)预制箱梁架设 (14)1.箱梁装车 (14)2.箱梁运输 (14)3.导梁式架桥机架设箱梁 (14)4.步履式架桥机架设箱梁 (15)3 预应力混凝土连续梁桥悬臂现浇施工 (17)(一)悬臂法施工概述 (17)(二)挂篮 (17)(三)混凝土的浇筑 (18)1.悬臂分段浇筑施工程序 (18)2.边跨支架现浇 (18)3.墩顶段混凝土浇筑 (18)4.悬臂段混凝土浇筑 (18)(四)合拢段施工及体系转换 (19)1.合拢段施工及体系转换 (19)2.边跨合拢工艺 (19)3.合拢锁定装置 (20)4.中跨合拢工艺 (21)5.合拢段施工要点 (21)第 1 页4 简支箱梁桥位膺架法现浇施工 (23)(一)桥位膺架法施工概述 (23)(二)满布膺架法支架体系与地基处理 (24)1.支架体系构造 (24)2.支架施工 (24)3.地基加固处理 (24)4.支架预压及静载试验 (25)(三)膺架法箱梁现浇施工 (25)(六)满布膺架法施工注意事项 (25)5 MZ32型移动模架造桥机施工 (26)(一)MZ32型移动模架造桥机 (26)(二)MZ32型移动模架造桥机整孔制造 (28)1.工艺流程 (28)2.造桥机组拼 (29)3.箱梁施工 (31)4.内模拆拼 (31)5.外模拆拼 (33)6.造桥机移位 (33)高速铁路桥梁施工1 桥梁施工技术简介高速铁路对桥梁上部结构竖向和横向刚度要求较高,并要求保证结构的整体性,因此在桥梁设计中除采用一部分特殊设计的桥梁外(如连续梁,拱桥等),标准梁一般采用箱型梁或横向采用预应力来并联的T型梁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国高速铁路桥梁建设关键技术在高速铁路建设中,桥梁设计与建造已成为关键技术之一。

进入21世纪以来,随着中国高速铁路规模的迅速发展,通过广泛借鉴世界高速铁路桥梁先进技术和成功建设经验,在我国高速铁路桥梁建设实践过程中,逐步形成了具有中国特色的高速铁路桥梁建设关键技术。

1 高速铁路桥梁建设1. 1 世界高速铁路桥梁建设桥梁作为轨道的下部结构,为确保高速运行条件下的安全性、平稳性和乘车舒适性要求,必须具有高平顺性、高稳定性和高可靠性等特点。

目前世界上已建成高速铁路7 939 km,主要分布在日本、法国、德国、意大利、西班牙、比利时、英国、韩国、中国台湾等国家和地区。

最高运营速度达320 km /h,各线桥梁比例从1. 3 %到74. 5 %不等。

各国根据其施工水平、施工周期、桥梁工点的地质地形等不同特点,在高速铁路桥梁建设上也表现出自己的一些特征。

桥梁结构形式多样化,有预应力混凝土连续箱梁、简支箱梁、混凝土刚架、多片式T 梁、上承式钢板连续结合梁、下承式钢桁梁、鱼腹式上承钢桁连续结合梁、大跨度系杆钢拱等多种结构形式(见表1) 。

表1 世界高速铁路桥梁常用跨度法国高速铁路运营里程1 576 km,地中海线高速铁路最高行车速度为320 km /h,各线桥梁比例为1. 3 % ~32. 2 %。

在东南线和大西洋线上,桥梁常用跨度为40 m,采用双线箱形等高预应力混凝土连续梁,梁体现场现浇,用顶推法施工。

北方线由于桥梁需横跨高速公路和宽阔河流、施工期相对较短等因素,建造了跨度50 m左右的结合梁,以及一孔跨度93. 3 m 的下承式钢桁结合梁。

据统计,北方线与巴黎地区联络线、东南延伸线的高架桥长约12 km,钢混结合桥比例达到50 %。

德国新建高速铁路总长1 265 km,最高运行速度为300 km /h,桥梁比例2. 7 % ~12. 5 % ,干线桥梁的标准跨度是25 m, 44 m和58 m。

25 m跨度主要用于高架桥, 44 m和58 m 跨度则主要用于山谷桥。

桥梁结构通常采用预应力混凝土简支箱梁,一般采用就地灌注、移动支架施工或简支梁连续顶推等方法在现场制梁。

除简支梁外,也常采用连续梁。

大跨度桥梁除连续梁外, 还采用V 形刚构( 135 m ) 和拱桥(162 m) ,钢桥则采用钢桁梁或钢箱梁混凝土桥面的结合梁。

德国科隆—莱茵/美因高速铁路,线路从北向南穿越3座中等大小的山脉,架设了18 座大型谷架桥。

其中最长的桥是哈勒巴赫塔耳谷架桥, 长992 m;最大跨度的桥是美因河桥,主跨为130 m。

意大利高速铁路总长533 km,按客货混运模式设计,目前高速列车运行速度300 km /h,货车运行速度160 km /h,桥梁比例12. 5 % ~19. 5 %。

罗马—佛罗伦萨线的高架梁结构基本上可分为2类:一类是工字梁由横梁联结,上面加盖板;另一类为箱形梁。

罗马—那不勒斯、佛罗伦萨—米兰等高速铁路桥梁类型为预应力混凝土及钢混结合简支梁,跨度一般为55 m, 43. 2 m, 33. 6 m, 24 m,一般由多个小箱梁组合而成,桥面总宽13. 6 m。

西班牙高速铁路总长993 km,最高运行速度300 km /h。

以马德里—塞维利亚高速铁路为例,全线修建高架桥共31 座, 总长15 km, 桥梁比例3. 2 %。

全线采用了两种类型高架桥,以钢筋混凝土预制简支梁为主,部分为连续箱形梁高架桥。

简支梁梁形采用T形梁,一般由5根到9根简支T形预应力梁组成,桥梁跨度采用26. 6 m和38 m,梁高分别为2. 05 m, 2. 1 m。

日本是世界上最早建设高速铁路也是高速线路最长的国家,运营里程达2 049 km,线路最高运行速度为300 km /h,桥梁比例相对较高,为33. 3 % ~61. 5 %。

东海道新干线除高架桥外,近50 %的桥梁为钢桥和钢混结合梁桥,以后的几条新干线上钢桥的应用越来越少。

出于养护维修方面的考虑,山阳新干线冈山以西开始大量采用板式整体无砟轨道,高架桥和混凝土桥的比例也越来越大,东北新干线混凝土桥占线路总长度的70 %。

新干线高架桥多采用钢筋混凝土刚架式高架桥和预应力混凝土箱形梁式高架桥。

在地形平坦地段一般采用钢筋混凝土刚架式高架桥,地形起伏地段多采用预应力混凝土箱形梁式高架桥。

韩国首釜高速铁路总长412 km,最高运行速度为300 km /h,桥梁比例27. 1 %。

绝大部分桥梁采用预应力混凝土连续双线单箱梁,标准跨度为25 m和40 m两种。

主要结构形式为先简支后连续的预应力混凝土连续梁,预制梁均采用先张法预应力混凝土箱梁, 3 m ×25 m连续梁采用预制架设施工,2 m ×40 m连续梁采用桥位现浇施工。

中国台湾南北高速铁路总长345 km,最高运行速度为300 km /h,桥梁总长269 km,桥梁比例达81. 5%。

主要以30 m, 35 m跨度简支箱梁为主。

其中,有139 km的桥梁选择了预制架设施工方法,占全部桥梁的55. 3% ,曾经创下22个月架设1 946孔梁的成绩。

1. 2 中国高速铁路规划按照《综合交通网中长期发展规划》和《中长期铁路网规划调整方案》, 规划新建客运专线12 000 km,新建城际铁路6 000 km。

到2020年,形成以客运专线高速网为核心、快速线为基础、城际铁路为补充的快速客运网络, 规划达到50 000 km以上。

1. 2. 1 客运专线网“四纵”: 北京—上海、北京—武汉—广州—深圳、北京—沈阳—哈尔滨(大连) 、上海—杭州—宁波—福州—深圳。

“四横”:徐州—郑州—西安—兰州、上海—杭州—长沙—昆明、青岛—石家庄—太原、上海—武汉—重庆—成都(沪汉蓉) 。

1. 2. 2 城际铁路在完善京津冀、长江三角洲、珠江三角洲城际铁路网的基础上,在辽中南城镇群、山东半岛城镇群、中原(郑州)城镇群、关中(西安)城镇群、江汉平原(武汉)城镇群、湘东(长株潭)城镇群、成渝城镇群、海峡西岸城镇群以及哈尔滨—齐齐哈尔、长春—吉林、南宁—柳州、九江—南昌、海南东部、昆明等经济发达和人口稠密地区规划发展城际铁路,覆盖区域内主要城镇,以适应我国城市化进程进一步加快的需要。

其中:长三角以上海、南京、杭州为中心,形成连接沪宁杭周边重要城镇的城际客运网络。

珠三角以广深、广珠两条城际铁路为主轴,形成“A”字形线网,辐射广州、深圳、珠海等9个大中城市,构建包括港澳在内的城市l小时经济圈。

京津冀以北京、天津为中心,北京—天津为主轴进行建设,形成对外辐射通路。

1. 3 中国高速铁路桥梁建设截至2008 年3 月,京津、武广、郑西、石太、哈大、京沪等18 条客运专线和城际铁路相继开工建设, 并将从2008 年起陆续投入运营, 线路总长6 761 km,桥梁总长3 573 km, 平均桥梁比重为52. 8 % (见表2) 。

表2 中国在建高速铁路桥梁比重2 中国高速铁路桥梁建设理念2. 1 保证高速条件下的安全与舒适高速铁路桥梁与普通铁路桥梁的显著区别在于列车运行速度,确保设计速度目标值条件下的安全与舒适性,是高速铁路桥梁建设的关键之一,涉及动力响应、桥梁结构非弹性变形、稳定频率和路桥刚度过渡、大跨度桥梁低频振动、桥面构造以及高速铁路线型要求等方面。

动力响应问题是高速铁路桥梁设计的关键。

高速列车在桥梁上运行时,列车与桥梁之间的互动影响明显,在结构设计中除满足常规桥梁的静力强度、刚度要求外,对结构的动力特性必须高度重视。

梁跨结构必须具有足够的刚度和自振频率,宜采用箱形梁等刚度大、动力性能好的结构形式。

控制桥梁结构非弹性变形对轨道持续稳定和平顺性的影响。

高速铁路桥梁结构在与跨区间无缝轨道的相互作用以及在各种荷载工况下的变形,会直接导致桥上轨道结构的变形,影响高速列车运行的安全和乘坐的舒适。

必须对梁轨作用的位移差值、桥墩台的水平刚度、基础的沉降变形、梁体挠度、梁端转角、预应力混凝土梁体的弹性变形及后期收缩徐变变形进行控制,使线路轨道平顺性保持在允许的范围内。

保持良好的线路动力性能。

由于线路、水文、地质、立交等要求,高速铁路的长桥较多,有的长达数十千米,甚至上百千米,列车匀速行驶所引起的等跨简支长桥与列车达到某一稳定频率的问题需引起关注,并应避免对列车走行造成不利影响。

路基填土相对于桥梁结构具有可压缩性,提供的竖向刚度也比桥梁弱。

为了保证高速行车的安全和舒适,必须重视路桥刚度过渡问题,做好刚度过渡措施,减少路基、桥梁交变地段竖向刚度突变对高速行车的影响。

研究大跨度桥梁低频振动影响。

在大跨度桥梁设计中,除常规动力学问题外,还需对高速行车条件下的低频振动问题进行专题研究与分析,把握其对行车以及对结构自身的影响。

合理设计桥面构造系统。

高速铁路桥梁的桥面除布置轨道系统外,还设置电力、电气化、通信、信号、声屏障等相关设施。

桥面在施工期间有施工运载机具通过,在运营阶段不仅走行高速列车,还有机械化养护维修设施通过。

列车在高速行车时产生的风吸附作用,也将对桥面设施产生影响,进而影响高速行车安全。

要重视桥面构造系统研究,综合考虑各种因素,合理布置桥面形式。

优化高速列车的运行条件。

高速铁路的平面曲线半径大,不能按照传统桥渡的概念控制线路走向,除个别特大桥外,大多数桥梁的桥位受线形控制,需采用技术措施,以实现高速运行为前提。

对于技术复杂、具有控制性要求的个别特大桥的桥渡设计,要在充分研究水文、地质、河道、航道及道路设施的通行条件等因素的基础上进行综合比选,采用有利于缩短行车时分、技术经济条件好的方案,并结合施工条件,选择合理的桥式结构、桥跨布置、墩台基础形式。

2. 2 注重环境与景观的适应高速铁路桥梁建设,必须充分研究建设地区的环境因素,预判环境对桥梁的影响,解决不同自然环境条件下的基础设计、结构选型、环境相融性、构造措施等问题。

注重节约用地。

建造高架桥梁与修建路基相比,能够少占良田,节约土地资源。

中国高速铁路多位于东、中部地区,该地区人口稠密、道路纵横交错,采用高架桥能更好地适应城市的规划与发展,方便沿线两侧居民的出行。

减少噪声影响。

列车高速运行,轮轨碰撞、列车受电弓与接触网摩擦、列车与空气摩擦、结构物自身振动都会产生很大噪声,需采取有效措施,重视减隔振设计,尽量减少噪声影响。

目前桥梁支座普遍采用橡胶支座,轨道采用弹性橡胶垫,减振消振、减少噪声,减少对环境的影响。

穿越城镇或居民区的桥梁,在桥面外侧设置声屏障等措施。

在建设与运营各阶段,要严格控制对水体、土壤、大气的污染,减少对生态的破坏。

重视耐久性。

优先采用预应力混凝土结构,根据我国高速铁路成网运输、维修天窗时间短的国情,按照环境类别或环境作用等级,进行桥梁的耐久性设计、施工,建造少维护易维修的耐久性工程。

相关文档
最新文档