普朗克黑体辐射公式推导
普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g ,则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。
黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。
则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。
普朗克黑体公式

普朗克黑体公式普朗克黑体公式一、什么是普朗克黑体公式?普朗克黑体公式是描述物体辐射能谱特性的公式,由德国物理学家马克斯·普朗克在1900年发现并提出。
它描述了黑体辐射发射的热能随着波长的变化而发生的变化,是理论上探讨电磁波辐射的一个基本理论。
二、普朗克黑体公式的推导普朗克在探讨黑体辐射问题时,通过对辐射器内发射的电磁波的频率与能量的关系进行研究,得出了他 berprzipslichen answer ,即离散的能量量子概念,这就是著名的基本性原理。
在此基础之上,普朗克成功地推导出了描述黑体辐射特性的公式,即普朗克黑体辐射公式。
根据公式,黑体辐射发射的能量谱与温度有关,其随波长λ变化的形状可以用以下公式表示:B(λ, T) = (2hc²/λ⁵) × 1/(ehc/λkT - 1)其中,B(λ, T)表示黑体在特定波长λ和温度T下辐射发射出的能量,h为普朗克常量,c为光速,k为玻尔兹曼常量,e为自然对数。
三、普朗克黑体公式的应用普朗克黑体公式在物理学、工程学、天文学等领域都有广泛的应用。
其中,最为关注的是黑体辐射的特性,因为这关系到很多光学设备的运用。
例如,在卫星辐射成像技术中,黑体的作用是模拟外部环境中的物理状态,通过测量其辐射能够精确计算卫星传感器输出的信号值。
同时,在光电探测、激光测距、夜视设备、光通讯和纳米技术领域等,都有普朗克黑体公式的应用。
四、结语普朗克黑体公式对于描述物体辐射能谱特性提供了重要的理论基础,其成功地解释了许多实验现象,同时也推动了原子物理学、固体物理学和光学等领域的发展。
在现代科技中,普朗克黑体公式的应用将会更加广泛,为科学技术的发展做出更加积极的贡献。
普朗克黑体辐射公式推导

普朗克黑体辐射公式推导
普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量。
它是由德国物理学家Max Planck在1900年提出的,他认为,物体发射的辐射量与温度有关,并且可以用一个公式来表示。
普朗克黑体辐射公式的表达式为:
E=σT^4
其中,E表示物体发射的辐射量,σ表示普朗克常数,T表示物体的温度。
普朗克黑体辐射公式的推导过程如下:
首先,Max Planck假设物体发射的辐射量与温度有关,并且可以用一个公式来表示。
其次,Max Planck假设物体发射的辐射量与温度的四次方成正比,即E=kT^4,其中k为
一个常数。
最后,Max Planck根据实验结果,求出了k的值,即普朗克常数σ,最终得到了普朗克黑
体辐射公式:E=σT^4。
普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量,是Max Planck在1900年提出的,它的推导过程是Max Planck假设物体发射的辐射量与
温度的四次方成正比,根据实验结果,求出了普朗克常数σ,最终得到了普朗克黑体辐射
公式:E=σT^4。
它为物理学的发展做出了重要贡献,并且在现代物理学中仍然具有重要
的意义。
普朗克辐射公式

普朗克辐射公式
普朗克辐射公式是由德国物理学家马克斯·普朗克在1900年提出的一种描述黑体辐射的理论公式。
该公式是描述黑体辐射频谱能量密度的函数关系。
普朗克辐射公式可以表达为:
B(λ, T) = (2hc²/λ⁵) / (exp(hc/λkT) - 1)
其中,B(λ, T)为波长为λ,温度为T的黑体辐射的单位面积和单位波长的能量密度;h为普朗克常数,c为光速,k为玻尔兹曼常数。
根据普朗克辐射公式,黑体辐射的频谱能量密度与波长和温度有关。
根据公式可以计算不同波长下、不同温度下的黑体辐射的能量分布情况。
该公式的应用范围广泛,可以用于研究光源的颜色、亮度、辐射功率等物理性质。
黑体辐射普朗克公式推导

黑体普朗克公式推导1. 空腔内的光波模式数在一个由边界限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。
这种驻波称为电磁波的模式或光波模式,以k 为标志。
设空腔为立方体,如下图x图1 立方体空腔沿三个坐标轴方向传播的波分别应满足的驻波条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=∆=∆222λλλq z n y m x (1)式中m 、n 、q 为正整数。
将xx k λπ2=代入(1)式中,有xm k x ∆=π则在x 方向上,相邻两个光波矢量的间隔为: xx m x m k x ∆=∆--∆=∆πππ)1( 同理,相邻两光波矢在三个方向的间隔为:⎪⎪⎪⎩⎪⎪⎪⎨⎧∆=∆∆=∆∆=∆z k y k x k zy x πππ (2)因此每个波矢在波矢空间所占的体积元为 Vzy x k k k z y x 33ππ=∆∆∆=∆∆∆ (3)xk y图2 波矢空间在波矢空间中,处于k 和k d 之间的波矢k 对应的点都在以原点为圆心、k 为半径、k d 为厚度的薄球壳内,这个球壳的体积为()k k k k k d 4d 3434233πππ=-- (4) 式中k =k 、k d d =k 。
根据(1)式的驻波条件,k 的三个分量只能取正值,因此k d 和k d 之间的、可以存在于V 中的光波模式在波矢空间所占的体积只是上述球壳的第一卦限,所以2d 8d 422kk k k V k ππ== (5) 由(3)式已知每个光波矢的体积元,则在该体积内的光波模式数为V kk V V M k 223d /2ππ== (6) 式中乘以2是因为每个光波矢量k 都有两个可能的偏振方向,因此光波模式数是光波矢量数的2倍。
由于λπ2=k ,λλπd 2d 2=k ,上式可以用波长形式表示,即在体积为V 的空腔内,波长λλd +间隔的光波模式数为:λλπd 84VM = (7)2. 黑体辐射公式黑体辐射是黑体温度T 和辐射场波长λ的函数。
黑体辐射公式

黑体辐射公式普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )λ—辐射波长(μm)T—黑体绝对温度(K、T=t+273k)C—光速(2.998×108 m·s-1 )h—普朗克常数,6.626×10-34 J·SK—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数由图2.2可以看出:①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien)λm T=2.898×103 (μm·K)λm —最大黑体谱辐射亮度处的波长(μm)T—黑体的绝对温度(K)根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。
这就是太阳辐射中大致的最大谱辐射亮度处。
当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。
②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处。
如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)B(T)=δT4 (W·m-2 )δ为Stefan-Boltzmann常数, 等于5.67×10-8 W·m-2 ·K-4但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长,定义发射率为该波长的一个微小波长间隔内,真实物体的辐射能量与同温下的黑体的辐射能量之比。
黑体辐射公式的推导

黑体辐射公式的推导黑体辐射公式是描述黑体辐射能谱的公式。
在19世纪末,许多科学家通过实验和理论推导,发现了黑体辐射的规律,并试图找到一个能够描述这种规律的公式。
其中最著名的是德国物理学家马克斯·波恩斯坦在1901年提出的黑体辐射公式,也称为普朗克公式。
下面我们将对黑体辐射公式进行详细的推导。
首先,我们假设黑体是一个能够完全吸收所有入射辐射的理想物体。
根据热力学的基本原理,我们知道一个处于热平衡的物体,其辐射能谱必须是连续的,即在一个特定的频率范围内的辐射能量密度是连续变化的。
为了推导黑体辐射公式,我们可以考虑在一个封闭的均匀立方体空腔内的辐射。
这个空腔内充满了电磁波,电磁波的频率和波长范围是非常广泛的。
我们设空腔内辐射能量的密度为u(ν),其中ν为频率。
由热力学的基本原理可知,黑体辐射能谱与温度有关。
我们设空腔的温度为T。
为了推导辐射能谱,波尔兹曼首先假设在频率范围ν到ν+Δν内,吸收或发射能量的电磁场模式数为g(ν)。
这里g(ν)即为单位频率范围内模式的数目。
根据经典电动力学理论,一个频率为ν的电磁波模式的能量为hν,其中h为普朗克常量。
因此,在一个频率范围ν到ν+Δν内,单位体积内的辐射能量为u(ν)g(ν)hν。
我们知道,电磁波的能量等于单位体积内辐射能量的密度乘以体积,即能量密度等于单位体积内辐射能量密度与单位体积的乘积。
因此,单位体积内的辐射能量可以写为u(ν)g(ν)hνV,其中V为空腔的体积。
下一步,我们考虑对g(ν)在ν到ν+Δν范围内进行积分,即对频率范围内的所有模式进行求和。
这样,我们可以得到单位体积内所有频率的辐射能量之和。
为了推导辐射能谱,我们将这个求和作为对频率的积分。
经过数学变换和近似处理,我们得到:U(ν) = u(ν)hν = \(\fra c{8πh}{c^3}\)\(\frac{ν^3}{e^{\(\frac{hν}{kT}\)} - 1}\)其中c为光速,k为玻尔兹曼常量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普朗克黑体辐射公式推
导
The document was finally revised on 2021
普朗克黑体辐射公式的推导
所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:
热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。
实验得到:
1. Wien 公式
从热力学出发加上一些特殊的假设,得到一个分布公式:
ννννρνd T C C d )/ex p(231-=
Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式
ννπνρνd kT C
d Jeans Rayleigh 2
38=
-公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且
∞→=⎰∞
v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是
4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律
1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:
(1)原子的性能和谐振子一样,以
给定的频率 v 振荡;
(2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10
626.634
-⨯
4,普朗克的推导过程:
把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为
).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α
αk C 2,1=
每一个简振模在力学上等价于一个自由度,记频率在(
)νννd +,内的自由度数为()ννd g ,
则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()νννν
d g G ⎰=0。
借助几何方法求出()3338νπνc V G =
,取微分得()ννπννd c V d g 2
3
8= 令E 代表体积为V 的空窖内热平衡辐射的总内能,()ννd T u ,代表单位体积,频率间隔在
()
νννd +,内的能量,于
是
()ννεννd g d T u V E
⎰⎰∞
∞==0
~0)(,,
的振子的平均能量代表频率为νε,()()ννπ
νννd c
g V d g 23~
81=≡
代表单位体积内频率间隔在(
)νννd +,内的振动自由度数。
应用经典统计的能量均分定理得到平均能量为KT =ε与振子的频率无关,代入
()()ννενd g d T v u ~
,=可以得到()ννπ
νd kT c
d T v u 238,=
,这就是瑞利-金斯公式,在低频区和实验符合,高频区严重偏离。
普朗克热辐射理论采用的也是波的观点,()()ννπ
νννd c
g V d g 23~
81=≡
依旧认为他正确,但是能量均分定理不适用,原因在于麦克斯韦——波尔滋蔓分布不对,问题出在振子能量
取连续值上。
Planck 假定:黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量,对于频率为v 的振子,其能量只能取一个最小能量单元的整数倍即()ννεεnh n =→,他认为振子的平均分布仍遵从麦克斯韦——玻尔兹曼分布,即()
νβεανn e
a n --=)(代表频率为v 对的振子处于能级
()v n ε的平均数,于是振子的平均能量为()()∑∑∑∑------=
=
n
n
n n
n
n n
n
n
n
e e e
e βεβε
βεαβεανενεε,
即()()νβ
νεZ ln ∂∂
-
= 其中()()
∑∞
=-
=
n n
e Z νβεν代表频率为v 的振子的配分函数,可以得到
()ν
βνβνh n h n e
e Z -∞
=--=
=∑11。
()()1
1
ln -=-=∂∂-
=kT
h h e
h e h Z ν
νβνννβνε由此可以知道振子的平均能量与其频率有关,能
量均分定理不成立。
把上式代入()()ννενd g d T v u ~
,=得到:
()1
8,/33-=kT h d e h c d T v u νννπν这就是普朗克辐射公式。
此
时
辐射场的
内能为
()()⎰⎰⎰∞
=∞
=∞
===-==-==0
33454
334
3
0/33
158,18/,18,n x n kT h n c h k a aT dx e x h kT c E kT hv x e
d h c d T u E ππννπ
ννν其中得令,5,对 Planck 辐射定律的讨论:νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833 (1)当 v 很大(短波)时,因为 exp(hv /kT)-1 ≈ exp(hv /kT),
于是
Planck 定律
化为 Wien 公式。
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833变为νννπνρνd kT h C h d )/ex p(833-= ννννρνd T C C d Wien )/ex p(231-=公式
2)当 v 很小(长波)时,因为 exp(hv /kT)-1 ≈ 1+(h v /kT)-1=(h v /kT), 则 Planck 定律变为 Rayleigh-Jeans 公式。