普朗克黑体辐射公式推导
普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g ,则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
普朗克黑体辐射公式推导

欢迎阅读普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡;(2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g , 则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。
黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。
则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。
普朗克黑体辐射公式用波长证明

普朗克黑体辐射公式用波长证明普朗克黑体辐射公式是描述黑体辐射的一个重要公式,它可以用来计算黑体辐射的能量分布与频率或波长的关系。
在本文中,我们将以波长为变量,证明普朗克黑体辐射公式的有效性。
让我们回顾一下普朗克黑体辐射公式的表达式:B(λ, T) = (2hc²/λ^5) * (1/(e^(hc/λkT) - 1))其中,B(λ, T)表示波长为λ时,温度为T的黑体辐射的辐射能量密度。
h为普朗克常数,c为光速,k为玻尔兹曼常数。
为了证明普朗克黑体辐射公式的有效性,我们需要通过实验数据与该公式进行对比。
为此,我们选取了几组实验数据,并进行了计算和比较。
我们选取了波长为500nm的情况。
假设温度为300K,代入普朗克黑体辐射公式中,得到:B(500nm, 300K) = (2 * 6.62607015 * 10^(-34) * 3 * 10^8² / (500 * 10^(-9))⁵) * (1 / (e^((6.62607015 * 10^(-34) * 3 * 10^8) / (500 * 10^(-9)) * 1.380649 * 10^(-23) * 300) - 1))经过计算,得到B(500nm, 300K)约为 1.484 * 10^(-18) W/m²·nm。
这个数值表示在波长为500nm处,温度为300K的黑体辐射的辐射能量密度。
接下来,我们选取了波长为1000nm的情况。
同样假设温度为300K,代入公式中,得到:B(1000nm, 300K) = (2 * 6.62607015 * 10^(-34) * 3 * 10^8² / (1000 * 10^(-9))⁵) * (1 / (e^((6.62607015 * 10^(-34) * 3 * 10^8) / (1000 * 10^(-9)) * 1.380649 * 10^(-23) * 300) - 1))经过计算,得到B(1000nm, 300K)约为 1.905 * 10^(-20) W/m²·nm。
普朗克黑体辐射公式推导

普朗克黑体辐射公式推导
普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量。
它是由德国物理学家Max Planck在1900年提出的,他认为,物体发射的辐射量与温度有关,并且可以用一个公式来表示。
普朗克黑体辐射公式的表达式为:
E=σT^4
其中,E表示物体发射的辐射量,σ表示普朗克常数,T表示物体的温度。
普朗克黑体辐射公式的推导过程如下:
首先,Max Planck假设物体发射的辐射量与温度有关,并且可以用一个公式来表示。
其次,Max Planck假设物体发射的辐射量与温度的四次方成正比,即E=kT^4,其中k为
一个常数。
最后,Max Planck根据实验结果,求出了k的值,即普朗克常数σ,最终得到了普朗克黑
体辐射公式:E=σT^4。
普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量,是Max Planck在1900年提出的,它的推导过程是Max Planck假设物体发射的辐射量与
温度的四次方成正比,根据实验结果,求出了普朗克常数σ,最终得到了普朗克黑体辐射
公式:E=σT^4。
它为物理学的发展做出了重要贡献,并且在现代物理学中仍然具有重要
的意义。
普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导普朗克假设黑体辐射是由一系列离散的微观振动体产生的,这些振动体能够吸收和释放以能量量子(hf)为单位的能量。
当这些振动体处于平衡状态时,设振动体的能量分布函数为Ψ(ε),其中ε表示振动体的能量。
考虑单位体积和单位能量范围内的振动体数目,记为N(ε)dε,其中N表示单位体积内振动体的总数。
根据统计力学的理论,N(ε)dε可表达为波尔兹曼分布,即:N(ε)dε = g(ε)exp(-ε/kBT)dε其中,g(ε)表示在特定能量范围内的能量态的数目,exp(-ε/kBT)是由玻尔兹曼因子得到,k是玻尔兹曼常数,T是温度。
由于辐射的能量不连续,因此,可以将单位体积和单位频率范围内的振动体数目表示为N(v)dv,其中v表示频率,dv表示频率范围。
考虑到能量和频率之间的关系,有ε = hv,其中h是普朗克常数。
根据可加性和幂次原理,能量态的数目g(ε)应满足:g(ε)dε=4π(2m/h^2)^(3/2)ε^(1/2)dε其中,m是振动体的质量。
将ε和dε用v和dv表示,并对能量态的数目函数进行简化得到:g(v)dv = (8πv^2/c^3)dv其中,c是光速。
由于单位体积和单位能量范围内的振动体数目与单位体积和单位频率范围内的振动体数目之间有关系:N(ε)dε = N(v)dv将上述得出的g(ε)和g(v)带入上式,并整理可得:N(v) = (8πv^2/c^3)exp(-hv/kBT)dv可以将上式转化为单位面积、单位时间、单位频率范围内的能量密度u(v):u(v) = N(v)hv代入上式并进行整理,得到:u(v) = (8πhv^3/c^3)exp(-hv/kBT)dv利用频率和波长的关系,即v=c/λ,可以将上式转化为以波长表示的能量密度:u(λ) = (8πhc/λ^5)exp(-hc/λkBT)dλ这就是普朗克黑体辐射公式的最终形式。
通过对普朗克黑体辐射公式的推导,我们可以看出,普朗克假设了黑体辐射的能量是以能量量子为单位的离散量,这个假设是量子力学发展的重要先导。
黑体辐射的普朗克公式推导

黑体辐射的普朗克公式推导普朗克公式描述了黑体辐射的能量分布。
为了推导普朗克公式,我们可以按照以下步骤进行。
首先,我们考虑一个处于热平衡状态的黑体辐射腔室。
由于电磁波是由光子组成的,我们可以将其视为一种粒子,具有能量E和频率ν的量子。
根据量子理论,光子的能量与其频率之间存在关系:E = hν,其中h是普朗克常数。
接下来,我们考虑在辐射腔室中的光子数目与能量之间的关系。
根据统计物理学中的玻尔兹曼分布定律,光子数目n与能量E之间满足以下关系:n(E) = (1 / (exp(E / (kT)) - 1)在这里,k是玻尔兹曼常数,T是绝对温度。
该公式描述了光子在不同能量级上的分布情况。
为了得到黑体辐射的能量分布,我们需要计算每个能量级上光子的平均能量。
因此,我们可以使用平均能量公式:<E> = Σ(n * E) / Σn其中,Σ表示对所有能量级求和。
我们将这个表达式应用到光子数目公式中,得到:<E> = Σ((E / (exp(E / (kT)) - 1)) / Σ(1 / (exp(E / (kT)) - 1))接下来,我们将求和转化为积分,以便对能量连续变化的情况进行处理。
通过引入积分变量x = E / (kT),我们可以将上述表达式重写为:<E> = ∫((x^3 / (exp(x) - 1)) / ∫(x^2 / (exp(x) - 1))这就是普朗克公式的推导过程。
最后,我们可以根据上述公式计算不同温度下黑体辐射的能量分布。
需要注意的是,上述推导过程涉及了一些复杂的数学运算和近似方法,包括积分转换、级数展开等。
因此,要完整地推导出普朗克公式需要更详细的数学推导。
黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。
黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。
则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普朗克黑体辐射公式的推导
所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:
热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.W ien 公式
从热力学出发加上一些特殊的假设,得到一个分布公式:
Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleig h-Jeans 公式
Raylei gh-Je ans 公式在低频区和实验相符,但是
在高频区公式与实验不符,并且
∞→=⎰∞
v v d E E ,既单位体积的能量发散,而
实
验测得的黑体辐射的能量密度是4
T E σ=,该式
叫
做Stefa n-Bolz mann 公式,σ叫做St efan-Bol zman n常数。
3. Planc k黑体辐射定律
1900年12月14日Plan ck提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,P lanck 假定:
(1)原子的性能和谐振子一样,以给定的频率v 振荡;
(2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833该式称为P lanck 辐射定律 h为普朗克常数,h=s j .10626.634
-⨯
4,普朗克的推导过程:
把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为)
.(),(wt r K i k k e C t r -=αβψ,
为常系数振方向,表示两个互相垂直的偏ααk C 2,1=
每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g , 则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()νννν
d g G ⎰=0。
借助几何方法求出()3338νπνc V G =
,取微分得()ννπννd c V d g 2
3
8=
令E 代表体积为V 的空窖内热平衡辐射的总内能,(
)ννd T u ,代表单位体积,频率间隔在()νννd +,内的能量,于是()ννεννd g d T u V E
⎰⎰∞
∞==0
~0)(,,的振子的平均能量代表频率为νε,()()ννπνννd c g V d g 23~81=≡代表
单位体积内频率间隔在()νννd +,内的振动自由度数。
应用经典统计的能量均分定理得到平均能量为KT =ε与振子的频率无关,代入()()ννενd g d T v u ~
,=可以得到
()ννπ
νd kT c
d T v u 238,=
,这就是瑞利-金斯公式,在低频区和实验符合,高频区严重偏离。
普朗克热辐射理论采用的也是波的观点,()()ννπ
νννd c g V d g 23~81=≡依旧认为他正确,但是能量均分定理不适
用,原因在于麦克斯韦——波尔滋蔓分布不对,问题出在振子能量取连续值上。
Pla nck 假定:黑体只能以E=h
v为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量,对于频率为v的振子,其能量只能取一个最小能量单元的整数倍即()ννεεnh n =→,他认为振子的平均分布仍遵从麦克斯韦——玻尔兹曼分布,即()
νβεανn e
a n --=)(代表频率为v对的振子处于能级()v n ε的平均数,于是振子
的平均能量为()()∑∑∑∑-
-
-
--
-=
=
n
n
n n
n
n n
n
n
n
e e e e βε
βεβε
αβε
ανενεε,
即()()νβ
νεZ ln ∂∂
-
= 其中()()
∑∞
=-=
n n e
Z νβεν代表频率为v的振子的配分函数,可以得到()ν
βνβνh n h n e
e Z -∞
=--=
=
∑11。
()()1
1
ln -=-=∂∂-
=kT
h h e
h e h Z ν
νβνννβνε由此可以知道振子的平均能量与其频率有关,能量均分定理不成立。
把上式代入()(
)ννενd g d T v u ~
,=得到: ()1
8,/33-=kT h d e h c d T v u νν
νπν这就是普朗克辐射公式。
此时辐射场的内能为()()⎰⎰⎰∞
=∞
=∞
===-==-==
33454
334
30/330
158,18/,18,n x n kT h n c h k a aT dx e x h kT c E kT hv x e
d h c d T u E ππννπ
ννν其中得令,5,对Pla nck 辐射定律的讨论:νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833 (1)当v很大(短波)时,因为e xp(hv/kT )-1≈exp(h v/kT), 于是ﻩPl anck 定律化为Wien 公式。
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833变为νννπνρνd kT h C h d )/ex p(833-= 2)当v 很小(长波)时,因为e xp(hv/kT)-1≈1+(hv /kT)-1=(h v/kT),则Plan ck 定律变为Ra yl e
igh-Jeans 公式。