普朗克黑体辐射公式推导

合集下载

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。

辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。

实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。

实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。

2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。

3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。

作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。

得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g ,则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导

欢迎阅读普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。

辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。

实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。

实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。

2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。

3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。

作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡;(2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。

得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g , 则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。

黑体辐射公式的推导

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。

其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。

由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。

维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。

普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。

在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。

得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。

这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。

然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。

普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。

不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。

黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。

则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导
普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量。

它是由德国物理学家Max Planck在1900年提出的,他认为,物体发射的辐射量与温度有关,并且可以用一个公式来表示。

普朗克黑体辐射公式的表达式为:
E=σT^4
其中,E表示物体发射的辐射量,σ表示普朗克常数,T表示物体的温度。

普朗克黑体辐射公式的推导过程如下:
首先,Max Planck假设物体发射的辐射量与温度有关,并且可以用一个公式来表示。

其次,Max Planck假设物体发射的辐射量与温度的四次方成正比,即E=kT^4,其中k为
一个常数。

最后,Max Planck根据实验结果,求出了k的值,即普朗克常数σ,最终得到了普朗克黑
体辐射公式:E=σT^4。

普朗克黑体辐射公式是物理学中一个重要的公式,它描述了物体在温度T时发射的辐射量,是Max Planck在1900年提出的,它的推导过程是Max Planck假设物体发射的辐射量与
温度的四次方成正比,根据实验结果,求出了普朗克常数σ,最终得到了普朗克黑体辐射
公式:E=σT^4。

它为物理学的发展做出了重要贡献,并且在现代物理学中仍然具有重要
的意义。

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导普朗克假设黑体辐射是由一系列离散的微观振动体产生的,这些振动体能够吸收和释放以能量量子(hf)为单位的能量。

当这些振动体处于平衡状态时,设振动体的能量分布函数为Ψ(ε),其中ε表示振动体的能量。

考虑单位体积和单位能量范围内的振动体数目,记为N(ε)dε,其中N表示单位体积内振动体的总数。

根据统计力学的理论,N(ε)dε可表达为波尔兹曼分布,即:N(ε)dε = g(ε)exp(-ε/kBT)dε其中,g(ε)表示在特定能量范围内的能量态的数目,exp(-ε/kBT)是由玻尔兹曼因子得到,k是玻尔兹曼常数,T是温度。

由于辐射的能量不连续,因此,可以将单位体积和单位频率范围内的振动体数目表示为N(v)dv,其中v表示频率,dv表示频率范围。

考虑到能量和频率之间的关系,有ε = hv,其中h是普朗克常数。

根据可加性和幂次原理,能量态的数目g(ε)应满足:g(ε)dε=4π(2m/h^2)^(3/2)ε^(1/2)dε其中,m是振动体的质量。

将ε和dε用v和dv表示,并对能量态的数目函数进行简化得到:g(v)dv = (8πv^2/c^3)dv其中,c是光速。

由于单位体积和单位能量范围内的振动体数目与单位体积和单位频率范围内的振动体数目之间有关系:N(ε)dε = N(v)dv将上述得出的g(ε)和g(v)带入上式,并整理可得:N(v) = (8πv^2/c^3)exp(-hv/kBT)dv可以将上式转化为单位面积、单位时间、单位频率范围内的能量密度u(v):u(v) = N(v)hv代入上式并进行整理,得到:u(v) = (8πhv^3/c^3)exp(-hv/kBT)dv利用频率和波长的关系,即v=c/λ,可以将上式转化为以波长表示的能量密度:u(λ) = (8πhc/λ^5)exp(-hc/λkBT)dλ这就是普朗克黑体辐射公式的最终形式。

通过对普朗克黑体辐射公式的推导,我们可以看出,普朗克假设了黑体辐射的能量是以能量量子为单位的离散量,这个假设是量子力学发展的重要先导。

黑体辐射的普朗克公式推导

黑体辐射的普朗克公式推导

黑体辐射的普朗克公式推导普朗克公式描述了黑体辐射的能量分布。

为了推导普朗克公式,我们可以按照以下步骤进行。

首先,我们考虑一个处于热平衡状态的黑体辐射腔室。

由于电磁波是由光子组成的,我们可以将其视为一种粒子,具有能量E和频率ν的量子。

根据量子理论,光子的能量与其频率之间存在关系:E = hν,其中h是普朗克常数。

接下来,我们考虑在辐射腔室中的光子数目与能量之间的关系。

根据统计物理学中的玻尔兹曼分布定律,光子数目n与能量E之间满足以下关系:n(E) = (1 / (exp(E / (kT)) - 1)在这里,k是玻尔兹曼常数,T是绝对温度。

该公式描述了光子在不同能量级上的分布情况。

为了得到黑体辐射的能量分布,我们需要计算每个能量级上光子的平均能量。

因此,我们可以使用平均能量公式:<E> = Σ(n * E) / Σn其中,Σ表示对所有能量级求和。

我们将这个表达式应用到光子数目公式中,得到:<E> = Σ((E / (exp(E / (kT)) - 1)) / Σ(1 / (exp(E / (kT)) - 1))接下来,我们将求和转化为积分,以便对能量连续变化的情况进行处理。

通过引入积分变量x = E / (kT),我们可以将上述表达式重写为:<E> = ∫((x^3 / (exp(x) - 1)) / ∫(x^2 / (exp(x) - 1))这就是普朗克公式的推导过程。

最后,我们可以根据上述公式计算不同温度下黑体辐射的能量分布。

需要注意的是,上述推导过程涉及了一些复杂的数学运算和近似方法,包括积分转换、级数展开等。

因此,要完整地推导出普朗克公式需要更详细的数学推导。

黑体辐射公式的推导

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。

其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。

由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。

维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。

普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。

在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。

得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。

这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。

然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。

普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。

不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。

黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。

则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。

黑体辐射普朗克公式推导

黑体辐射普朗克公式推导

黑体普朗克公式推导1. 空腔内的光波模式数在一个由边界限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。

这种驻波称为电磁波的模式或光波模式,以k 为标志。

设空腔为立方体,如下图x图1 立方体空腔沿三个坐标轴方向传播的波分别应满足的驻波条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=∆=∆222λλλq z n y m x (1)式中m 、n 、q 为正整数。

将xx k λπ2=代入(1)式中,有xm k x ∆=π则在x 方向上,相邻两个光波矢量的间隔为: xx m x m k x ∆=∆--∆=∆πππ)1( 同理,相邻两光波矢在三个方向的间隔为:⎪⎪⎪⎩⎪⎪⎪⎨⎧∆=∆∆=∆∆=∆z k y k x k zy x πππ (2)因此每个波矢在波矢空间所占的体积元为 Vzy x k k k z y x 33ππ=∆∆∆=∆∆∆ (3)xk y图2 波矢空间在波矢空间中,处于k 和k d 之间的波矢k 对应的点都在以原点为圆心、k 为半径、k d 为厚度的薄球壳内,这个球壳的体积为()k k k k k d 4d 3434233πππ=-- (4) 式中k =k 、k d d =k 。

根据(1)式的驻波条件,k 的三个分量只能取正值,因此k d 和k d 之间的、可以存在于V 中的光波模式在波矢空间所占的体积只是上述球壳的第一卦限,所以2d 8d 422kk k k V k ππ== (5) 由(3)式已知每个光波矢的体积元,则在该体积内的光波模式数为V kk V V M k 223d /2ππ== (6) 式中乘以2是因为每个光波矢量k 都有两个可能的偏振方向,因此光波模式数是光波矢量数的2倍。

由于λπ2=k ,λλπd 2d 2=k ,上式可以用波长形式表示,即在体积为V 的空腔内,波长λλd +间隔的光波模式数为:λλπd 84VM = (7)2. 黑体辐射公式黑体辐射是黑体温度T 和辐射场波长λ的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学结课论文:
对普朗克黑体辐射公式的推证及总结
摘要:黑体辐射现象是指当黑体(空腔)与内部辐射处于平衡时,腔壁单位面积所发射出的辐射能量与它所吸收的辐射能量相等。

实验得出的平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状和组成物质无关。

基于能量量子化的假设,普朗克提出了与实验结果相符的黑体辐射能量公式:
ρv dν=8πhν3
c3

1
e hv kT−1
普朗克的理论很好地解释了黑体辐射现象,并且突破了经典物理学在微观领域内的束缚,打开了人类认识光的微粒性的途径[1]。

本文主要介绍了普朗克公式的推导过程及其能量假设并将普朗克对黑体辐射的解释做了总结。

关键词:黑体辐射能量量子化普朗克公式麦克斯韦-玻尔兹曼分布
1.普朗克的量子化假设:
黑体以hν为能量单位不连续地发射和吸收频率为ν的光子的能量.
且能量单位hν称为能量子,h为普朗克常量(h=6.62606896×10−34J∙S)
2.普朗克公式的推导过程:
2.1任意频率ν下的辐射能量:
假设有一处于平衡状态的黑体,其内有数量为N 的原子可吸收或发出频率为ν的光子,其中N g 为这些原子中处在基态的原子数,N e 为处在激发态(此处指可由基态原子受频率为ν的光子激发达到的能态)的原子数,n 为频率为ν的光子平均数。

则由统计力学中的麦克斯韦-玻尔兹曼公式[2]知:
N e ∝N e
−E e kT N g ∝ N e −E g kT 由此可得 N e
N g =e −Ee−Eg kT =e −h νkT (2.1.1)
平衡状态下,体系内原子在两能级间相互转化的速率相等,且其速率正比于转化的概率和该状态下的原子数目。

结合爱因斯坦系数关系[3]可得: N g n=N e (n+1)
(2.1.2) 结合(2.1.1),可解得: n =1
e h νkT −1 (2.1.3)
则该状态下光子总能量为:
ε0= nhv =
hv e h νkT −1 (2.1.4) 2.2 v ~v +d v 频率段中可被体系接收的频率数目
设所求黑体为规整的立方体,其长,宽,高分别为L x ,L y ,L z 。

体积为V 0。

不妨先讨论一维情况:
体系线宽为L ,则L 必为光子半波长的整数倍,设其波数为K ,有
k j =jπ
L
(j为整数)(2.2.1)成立。

则两相邻可被体系接收的频率所对应的波数间隔为
δk=k j+1−k j=π
L
(2.2.2)
由此可得在∆k波数段内,可被体系接收的频率数目(或称波数数
目)为:∆N =∆k
δk
=L
π
∆k (2.2.3)
因空腔内光波为驻波(波数为K和-K的两列波合成),考虑K值的
正负,(2.2.3)式可修正为:∆N =L

∆k (2.2.4) 由此可得,在三维情况下,有
∆N x =L x

∆k x
∆N y=L y

∆k y (2.2.5)
∆N z =L z

∆k z
并由此得到
∆N(k)=∆Nx∙∆Ny∙∆Nz= L x L y L z

∆k x∆k y∆k z (2.2.6)
因L x L y L z为黑体体积V0,∆k x∆k y∆k z为K体积元d3k ,考虑半径为K,厚度为dk的球壳,则(2.2.6)式可化为:
dN (k )=V 08πd 3k =V
08π4πk 2dk
即dN (k )
=V 0
2πk 2dk (2.2.7) 由 k =2πv c 代入(2.2.7)可得 dN (v )=4πν3
c V 0 dν (2.2.8)
因光为电磁波,对任意波矢K 可有两正交的偏振,其频率相互独立,所以(2.2.8)应修正为:
dN (v )=8πν3
c V 0 dν (2.2.9)
此即为v ~v +d v 频率段中可被体系接收的频率数目。

2.3 v ~v +d v 频率段内的黑体辐射能量
由(2.1.4)和(2.2.9)可得v ~v +d v 频率段内的黑体辐射能量为: ε0dN(v) =
8πhν3c 3(e h νkT −1)V 0 dν 继而可得:
ρv dν=ε0dN(v)
V 0=8πhν3c 3∙1
e hv kT −1 (2.3.1)
由此,普朗克公式已推出。

结论:
相较于同时提出的维恩公式及瑞利-金斯公式,普朗克提出的(2.3.1)式精确地贴合了实验得出的黑体辐射能量分布曲线(如下图)。

普朗克对黑体辐射光谱的研究以及他对(2.3.1)的发现开创了量子力学整个学科。

[4]
推导过程中的不足:论证结果是在黑体为规整的立方体的前提下得出的,没有进行更具有一般性的论证。

参考资料:
[1]周世勋,陈灏《量子力学教程(第二版)》北京:高等教育出版社 ,2008
[2]何丽珠,邵渭泉《热学》北京:清华大学出版社,2013 [3][4]费恩曼,莱顿,桑兹著,潘笃武,李洪芳译,《费恩曼物理学讲义(新千年版)》第三卷,第四章。

相关文档
最新文档