中考数学三角函数练习题
九年级中考数学专题练习锐角三角函数的增减性(含解析)

九年级中考数学专题练习锐角三角函数的增减性(含解析)中考数学专题练习-锐角三角函数的增减性(含解析)一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=()A. <cosα<B. <cosα< C.<cosα<D. <cosα<6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<t anβB. sinα<sinβC. cosα<cosβD. cosα>cosβ9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关11.在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有()A. 0个B. 1个C. 2个D. 3个12.三角函数sin30°、cos16°、cos43°之间的大小关系是()A. cos43°>cos16°>sin30°B.cos16°>sin30°>cos43°C. cos16°>cos43°>sin30°D.cos43°>sin30°>cos16°13.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A. 都扩大2倍B. 都扩大4倍C. 没有变化D. 都缩小一半14.如图,△ABC是锐角三角形,sinC= ,则sinA的取值范围是()A.0B.C.D.15.α是锐角,且sinα>,则α()A. 小于30°B. 大于30°C. 小于60°D. 大于60°二、填空题16.比较大小:sin44°________cos44°(填>、<或=).17.若∠A是锐角,cosA>,则∠A的取值范围是________ .18.若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .19.若∠A是锐角,cosA>,则∠A应满足________ .三、解答题20.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.21.已知:在Rt△ABC中,∠C=90°,sinA、sinB 是方程x2+px+q=0的两个根.(1)求实数p、q应满足的条件(2)若p、q满足(1)的条件,方程x2+px+q=0的两个根是否等于Rt△ABC中两锐角A、B的正弦?22.设a、b、c是直角三角形的三边,c为斜边,n为正整数,试判断a n+b n与c n的关系,并证明你的结论.四、综合题23.如图①②,锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(1)根据你探索到的规律,试比较18°,34°,50°,62°,88°这些锐角的正弦值的大小和余弦值的大小.(2)比较大小(在横线上填写“<”“>”或“=”):若α=45°,则sin α________cos α;若α<45°,则sin α________cos α;若α>45°,则sin α________cos α.(3)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.24.如图(1)如图中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律;(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.答案解析部分一、单选题1.已知sinα<0.5,那么锐角α的取值范围是()A. 60°<α<90°B. 30°<α<90°C. 0°<α<60°D. 0°<α<30°【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:由sinα=0.5,得α=30°,由锐角函数的正弦值随锐角的增大而增大,得0°<α<30°,故选:D.【分析】根据锐角函数的正弦值随锐角的增大而增大,可得答案.2.如图,是半径为1的半圆弧,△AOC为等边三角形,D是上的一动点,则△COD的面积S 的最大值是()A. s=B. s=C. s=D. s=【答案】D【考点】锐角三角函数的增减性【解析】【解答】解:S=CO•ODsin∠COD,△COD∵CO=OD=1,=sin∠COD,∴S△COD∵△AOC为等边三角形,∴∠COB=120°,∴0°<∠COD<120°,∴当∠COD=90°时,sin∠COD最大,最大值是1,∴△COD的面积S的最大值是.故选D.=【分析】根据三角形的面积公式S△COD CO•ODsin∠COD,因为ab都是圆的半径1,所以sin∠COD的值越大,面积越大进行解答.3.若sinA=,则A的取值范围是()A. 0°<∠A<30° B. 30°<∠A<45° C. 45°<∠A<60° D. 60°<∠A<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵sin30°=,sin45°=.又<<,正弦值随着角的增大而增大,∴30°<∠A<45.故选B.【分析】首先明确sin30°=,sin45°=;再根据正弦值随着角的增大而增大,进行分析.4.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的余切值()A. 扩大为原来的两倍B. 缩小为原来的C. 不变D. 不能确定【答案】C【考点】锐角三角函数的增减性【解析】【解答】因为△ABC三边的长度都扩大为原来的2倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的余切值也不变.故答案为:C.【分析】根据相似三角形的性质可知三角形的边长扩大,角度不会发生改变,即锐角A的大小没改变,所以锐角A的余切值也不变.5.已知30°<α<60°,下列各式正确的是()A. <cosα<B. <cosα< C.<cosα<D. <cosα<【答案】C【考点】锐角三角函数的增减性【解析】【解答】解:∵cos30°=,cos60°=,余弦函数是减函数,∴<cosα<.故选C.【分析】根据特殊角的三角函数值及余弦函数随角增大而减小解答.6.梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越大,梯子越陡B. co sA的值越大,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】A【考点】锐角三角函数的增减性【解析】【解答】解:根据锐角三角函数值的变化规律,知sinA的值越大,∠A越大,梯子越陡.故选A.【分析】锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.7.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanα B. sinα<tanα<cosα C. tanα<sinα<cosα D. tanα<cosα<sinα【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵0<α<30°,∴0<sinα<, 0<tanα<,<cosα<1,∴sinα<cosα,tanα<cosα,又∵<cosα<1,∴tanα=,∴sinα<tanα<cosα.故选:B.【分析】首先根据0<α<30°,可得0<sinα<, 0<tanα<,<cosα<1,据此判断出sinα<cosα,tanα<cosα;然后判断出sinα<tanα,即可判断出sinα,cosα,tanα的大小关系.8.已知甲、乙两坡的坡角分别为α、β,若甲坡比乙坡更陡些,则下列结论正确的是()A. tanα<tanβB. sinα<sinβC. cosα<cosβD. cosα>cosβ【答案】C【考点】锐角三角函数的增减性【解析】解:根据题意,得α>β.根据锐角三角函数的变化规律,只有C正确.故选C.【分析】若甲坡比乙坡更陡些,则α>β;再根据锐角三角函数的变化规律解答:正弦和正切都是随着角的增大而增大,余弦和余切都是随着角的增大而减小.9.α是锐角,且cosα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:∵在锐角三角函数中,余切值都是随着角的增大而减小,又知cos30°=,cos45°=,故30°<α<45°,故选B.【分析】在锐角三角函数中,余切值都是随着角的增大而减小.cos30°=,cos45°=,故知α的范围.10.如图,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡B. co sA的值越小,梯子越陡C. tanA的值越小,梯子越陡D. 陡缓程度与∠A的函数值无关【答案】B【考点】锐角三角函数的增减性【解析】【解答】解:sinA的值越小,∠A越小,梯子越平缓;cosA的值越小,∠A就越大,梯子越陡;tanA的值越小,∠A越小,梯子越平缓,所以B正确.故答案为:B.【分析】根据锐角三角函数的增减性可判断正误。
中考数学复习之三角函数大题练习

三角函数篇1.在学校组织的实践活动中,某数学兴趣小组决定利用所学知识测量绿博园观光塔的高度.如图,小轩同学先在湖对面的广场A处放置做好的测倾器,测得观光塔的塔尖F的仰角为37°,接下来小轩向前走20m之后到达B处,测得此时观光塔的塔尖F的仰角为45°,已知测倾器的高度为0.8m,点A、B、E在同一直线上,求观光塔的高度.(结果精确到0.1m,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.414)2.如图,海中有一个小岛A,小岛周围8海里范围内有暗礁,轮船在B点测得小岛A在北偏东45°方向上,轮船由西向东航行20海里到达D点,这时测得小岛A在北偏东30°方向上,求继续航行轮船是否有触礁危险?(参考数值:≈1.414,≈1.732).3.如图,在大楼AB的正前方有一斜坡CD,CD=26米,坡度i=1:2.4,小明在斜坡下端C处测得楼顶点B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为30°,DE与地面垂直,垂足为E,其中点A、C、E在同一直线上.(1)求DE的值;(2)求大楼AB的高度(结果保留根号).4.如图,某政府大楼的顶部竖有一块“民族要复兴,乡村要振兴”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)∠BAH=°;点B距水平面AE的高度BH=米;(2)求广告牌CD的高度.(结果精确到0.01米,参考数据:≈1.41,≈1.73.)5.开封铁塔又名“开宝寺塔”,坐落在开封城东北隅铁塔公园内,因塔身全部以褐色琉璃瓦镶嵌,远看酷似铁色,故称为“铁塔”.在一次综合实践活动中,某数学小组对该铁塔进行测量.如图,他们在远处一山坡坡脚P处,测得铁塔顶端M的仰角为60°,沿山坡向上走35m到达D处,测得铁塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算铁塔的高度ME(结果精确到1m,参考数据:≈1.7).6.李老师给班级布置了一个实践活动,测量云南某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑AG设在1.2米的石台DG上,他们先在水平地面点B处测得石碑最高点A的仰角为22°,然后沿水平MN方向前进21米,到达点C处,测得点A的仰角为45°,测角仪MB的高度为1.7米,求纪念碑AG的高度.(结果精确到0.1米,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)7.2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度BD=10.6米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.已知飞船发射塔垂直于地面,某人在地面A处测得飞船底部D处的仰角45°,顶部B处的仰角为53°,求此时观测点A到发射塔CD的水平距离(结果精确到0.1米).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)8.如图,塔AD的高度为30m,塔的底部D与桥BC位于同一水平直线上,由塔顶A测得桥两端B和C的俯角分别为45°和30°,求桥BC的长.(参考数据:≈1.41,≈1.73)9.数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=1:2.4,在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)10.为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(∠OBC)为61°,探测最小角(∠OAC)为37°.若该校要求测温区域的宽度AB为1.4米,请你帮助学校确定该设备的安装高度OC.(参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.8,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)11.如图,在小山的东侧A处有一热气球,由于受风力影响,它以20m/min的速度沿着与水平线成75°角的方向飞行,30min后到达C处,此时热气球上的人发现热气球与山顶P及小山西侧的B处在一条直线上,同时测得B处的俯角为30°.在A处测得山顶P的仰角为45°,求A与B间的距离及山高(结果保留根号).12.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB 的坡度,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:,)13.如图,大厅的天花板上挂有一盏吊灯AB.测量人员从C点处测得吊灯顶端A的仰角为37°,吊灯底端B的仰角为30°,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为60°,求吊灯AB的长度.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)14.如图,某商场开业之际,为了美化和宣传,该商场在楼上悬挂一块长为3m的宣传牌,即CD=3m.数学小组的同学要在双休日测量宣传牌的底部点D到地面的距离.根据所学的相关知识,他们分别在点A和点B处放置两个测倾仪,它们的高度是AE=BF=1.5m,站在点A处的同学测得宣传牌底部点D的仰角为31°,站在点B处的同学测得宣传牌顶部点C的仰角为45°,AB=6m.依据他们测量的数据能否求出宣传牌底部点D 到地面的距离DH的长?若能,请求出;若不能,请说明理由.(图中点A,B,C,D,E,F,H在同一平面内.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)15.某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是40m,在A处测得甲楼顶部E处的仰角是37°.(1)求甲楼的高度及彩旗的长度;(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为60°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为30°,求乙楼的高度DG.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)16.为测量底部不能到达的建筑物AB的高度,某数学兴趣小组在山坡的顶端C处测得建筑物顶部A的仰角为20°,在山脚D处测得建筑物顶部A的仰角为60°,若山坡CD的(参考数据:sin50°坡度i=1:,坡长CD=20米,求建筑物AB的高度.(精确到1米)≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.41,≈1.73)17.如图1,图2分别是某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑竿DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB=50cm,点B、F在线段AC上,点C在DE上,支杆DF=30cm.(1)若EC=36cm时,B,D相距48cm,试判定BD与DE的位置关系,并说明理由;(2)当∠DCF=45°,CF=AC时,求CD的长.。
中考数学三角函数汇编

中考数学三角函数汇编(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--24题汇编1. 如图,在一笔直的海岸线上有A、B两个观测站,A在B的正东方向,23=BP(单位:km)。
有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向。
(1)求A、B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以3千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°的方向,求小船沿途考察的时间。
(结果有根号的保留根号)2. 如图,在哈市轨道交通的修建中,规划在A、B两地修建地铁2号线,点B在点A 的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得点C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC = 400 m ,请你求出这段地铁AB的长度。
(结果精确到1m,参考数据:732.13,414.12≈≈)23. 如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶部A 点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°。
(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号)。
4. 如图,我市某乡镇学校教学楼后面靠近一座山坡,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因暴雨引发山体滑坡,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?3(结果保留根号)。
5. 如图,一艘轮船位于灯塔B的正西方向A处,且A处与灯塔B相距60海里,轮船沿东北方向匀速航行,速度为20海里/时。
(1)多长时间后轮船行驶到灯塔B的西北方向;(2)轮船不改变航向行驶到达位于灯塔B的北偏东15°方向上的C处,求灯塔B到C 处的距离。
2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数一、综合题1.如图, AB 是O 的直径,点C 、G 为圆上的两点,当点C 是弧 BG 的中点时, CD 垂直直线AG ,垂足为D ,直线 DC 与 AB 的延长线相交于点P ,弦 CE 平分 ACB ∠ ,交 AB 于点F ,连接BE .(1)求证: DC 与 O 相切;(2)求证: PC PF = ; (3)若 1tan 3E =, 5BE =,求线段 PF 的长. 2.如图,AB 是⊙O 的直径,AC 交⊙O 于点D ,点E 时弧AD 的中点,BE 交AC 于点F ,BC =FC.(1)求证:BC 是⊙O 的切线; (2)若BF =3EF ,求tan⊙ACE 的值.3.如图,ABC 内接于,O D 是O 的直径 AB 的延长线上一点, DCB OAC ∠=∠ .过圆心 O作 BC 的平行线交 DC 的延长线于点 E .(1)求证: CD 是 O 的切线;(2)若 4,6CD CE == ,求O 的半径及 tan OCB ∠ 的值;4.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点D 是AC 的中点,连接OD ,交AC 于点E ,作BFCD ,交DO 的延长线于点F.(1)求证:四边形BCDF 是平行四边形. (2)若AC=8,连接BD ,tan⊙DBF=34,求直径AB 的长及四边形ABCD 的周长. 5.如图,已知 AB 是O 的直径,弦 CD AB ⊥ 于点 E , 42AC =, 2BC = .(1)求 sin ABC ∠ ; (2)求CD 的长.6.如图,点 O 在 ABC ∆ 的 BC 边上,O 经过点 A 、 C ,且与 BC 相交于点 D .点 E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB BF = .(1)求证: AB 是O 的切线;(2)若 3OC = , 1OF = ,求 cos B 的值.7.如图,在Rt ΔABC 中,9068C AC BC ∠=︒==,,,AD平分ABC 的外角BAM ∠,AD BD ⊥于点D ,过D 点作DE 平行BC 交AM 于点E.点P 在线段AB 上,点Q 在直线AC 上,且22CQ BP t ==,连接PQ ,作P 点关于直线DE 的对称点P ',连接PP P Q '',.(1)当P 在AB 中点时,t = ;连接DP ,则此时DP 与EC 位置关系为 (2)①求线段AD 的长:②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上,求点A 到对应点A '的距离;(3)如图,当PP Q '的一边与ABD 的AD 或BD 边平行时,求所有满足条件的t 的值.8.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A(﹣3,0),B(1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC.(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使⊙PBC =⊙BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.9.如图,点F 是正方形ABCD 边AB 上一点,过F 作FG⊙BC ,交CD 于G ,连接FC ,H 是FC 的中点,过H 作EH⊙FC 交BD 于点E .(1)连接EF ,EA ,求证:EF =AE .(2)若BFk BA= , ①若CD =2, 13k = ,求HE 的长;②连接CE ,求tan⊙DCE 的值.(用含k 的代数式表示)10.如图,在 Rt ABC 中, 90,6,8ACB BC AC ∠=︒== ,D 是边AB 的中点,动点P 在线段BA 上且不与点A ,B ,D 重合,以PD 为边构造 Rt PDQ ,使 PDQ A ∠=∠ , 90DPQ ∠=︒ ,且点Q 与点C 在直线AB 同侧,设 BP x = ,PDQ 与 ABC 重叠部分图形的面积为S .(1)当点Q 在边BC 上时,求BP 的长; (2)当 7x ≤ 时,求S 关于x 的函数关系式.11.如图,在⊙ABC中,⊙ABC =90°,过点B 作BD⊙AC 于点D .(1)尺规作图,作边BC 的垂直平分线,交边AC 于点E . (2)若AD :BD =3:4,求sinC 的值.(3)已知BC =10,BD =6.若点P 为平面内任意一动点,且保持⊙BPC =90°,求线段AP 的最大值.12.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(1)【理解运用】如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC ,若AC = AB ,则cos⊙ABC= , sin⊙CAD= .(2)如图2,凸四边形中,AD = BD ,AD⊙BD ,当2CD 2 + CB 2 = CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.(3)【拓展提升】在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于⊙ABC 内部,⊙AEC = 90° + ⊙ABC.设AEBE= u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围 .13.如图,在梯形ABCD 中,AD⊙BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF=5.AE 的延长线交边BC 于点G ,AF 交BD 于点N 、其延长线交BC 的延长线于点H .(1)求证:BG =CH ;(2)设AD =x ,⊙ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当⊙HFG 与⊙ADN 相似时,求AD 的长.14.(1)【问题提出】如图1,在四边形ABCD 中,60A ∠=︒,90ABC ADC ∠=∠=︒,点E 为AB 延长线上一点,连接EC 并延长,交AD 的延长线于点F ,则BCE DCF ∠+∠的度数为 °;(2)【问题探究】如图2,在Rt⊙ABC 中,90ABC ∠=︒,点D 、E 在直线BC 上,连接AD 、AE ,若60DAE ∠=︒,6AB =,求⊙ADE 面积的最小值;(3)【问题解决】近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC (如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB 的延长线上取一点D ,连接DC 并延长到点E ,连接AE ,已知AE BC ,40AB BC ==米,90ABC ∠=︒,为节约修建成本,需使修建后⊙ADE 的面积尽可能小,问⊙ADE 的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.15.抛物线y =﹣x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (﹣1,0),C (0,3).(1)求抛物线的解析式;(2) 如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,且DD'=2CD ,点M 是平移后所得抛物线上位于D'左侧的一点,连结CN.当5D'N+CN 的值最小时16.在 Rt ABC 中, 90ACB ∠=︒ , 3AC = , 4BC = .将 Rt ABC 绕点B 顺时针旋转()060αα︒<<︒ 得到 Rt DEB ,直线DE , AC 交于点P.(1)如图1,当 BD BC ⊥ 时,连接BP. ①求BDP 的面积;②求 tan CBP ∠ 的值;(2)如图2,连接AD ,若F 为AD 中点,求证;C ,E ,F 三点共线.17.如图,抛物线与x 轴交于A (5,0),B ( 1- ,0),与y 轴的正半轴交于点C ,连接BC ,AC ,已知2sin 2BAC ∠=.(1)求抛物线的解析式;(2)直线 y kx = ( 0k > )交线段AC 于点M ,当以A 、O 、M 为顶点的三角形与⊙ABC 相似时,求k 的值,并求出此时点M 的坐标;(3)P 为第一象限内抛物线上一点,连接BP 交AC 于点Q ,请判断: PQQB是否有最大值,如有请求出这个最大值,如没有请说明理由.18.如图1,已知 Rt ABC ∆ 中, 90ACB ∠= , 2AC = , 23BC = ,它在平面直角坐标系中位置如图所示,点 ,A C 在 x 轴的负半轴上(点 C 在点 A 的右侧),顶点 B 在第二象限,将 ABC ∆ 沿AB 所在的直线翻折,点 C 落在点 D 位置(1)若点 C 坐标为 ()1,0- 时,求点 D 的坐标;(2)若点 B 和点 D 在同一个反比例函数的图象上,求点 C 坐标;(3)如图2,将四边形 BCAD 向左平移,平移后的四边形记作四边形 1111B C A D ,过点 1D 的反比例函数 (0)ky k x=≠ 的图象与 CB 的延长线交于点 E ,则在平移过程中,是否存在这样的 k ,使得以点 1,,E B D 为顶点的三角形是直角三角形且点 11,,D BE 在同一条直线上?若存在,求出 k 的值;若不存在,请说明理由答案解析部分1.【答案】(1)证明:CD AD ⊥,90D ∴∠=︒ ,∴⊙DAC+⊙DCA=90°, 点c 是弧 BG 的中点, ∴CG BC =DAC BAC ∴∠=∠ , OA OC = , OCA BAC ∴∠=∠ , OCA DAC ∴∠=∠ , //AD OC ∴ ,∴⊙D=⊙OCP=90°,OC 是圆O 的半径, DC ∴ 与O 相切,(2)证明:AB 是O 的直径,90ACB ∴∠=︒ ,90PCB ACD ∴∠+∠=︒ ,由(1)得: 90DAC DCA ∠+∠=︒ ,PCB DAC ∴∠=∠ , DAC BAC ∠=∠ , PCB BAC ∴∠=∠ , CE 平分 ACB ∠ , ACF BCF ∴∠=∠ ,∵⊙PFC=⊙BAC+⊙ACF ,⊙PCF=⊙PCB+⊙BCF ,PFC PCF ∴∠=∠ , PC PF ∴= ;(3)解:连接 AE ,CE 平分 ACB ∠ ,∴ AE BE = ,AE BE ∴= , AB 是O 的直径,90AEB ∴∠=︒ ,AEB ∴∆ 为等腰直角三角形,∵AB=210BE = ,∴OB=OC= 10∵1tan 3E =∴1tan 3BC CAB AC ∠== , ∵⊙PCB=⊙BAC ,⊙P=⊙P , ∴⊙PCB⊙⊙PAC , ∴13BC PB AC PC == , ∴ 设 PB x = , 3PC x = ,在 Rt OCP ∆ 中, 222OC PC OP += , ∴2221010(3))22x x +=+ , ∴10x =或x=0(舍去), ∴PC=310,∴PF=310.2.【答案】(1)证明:连接AE ,如图,∵AB 是⊙O 的直径, ∴⊙AEB =90°.∴⊙EAF+⊙AFE =⊙EAB+⊙ABE =90°. ∵点E 是弧AD 的中点, ∴AE DE = . ∴⊙EAD =⊙ABE. ∴⊙AFE+⊙ABE =90°. ∵⊙AFE =⊙BFC ,∴⊙ABE+⊙CFB =90°. ∵BC =FC , ∴⊙CFB =⊙CBF. ∴⊙CBF+⊙ABE =90°. ∴⊙ABC =90°, ∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:连接OE ,BD ,∵点E 是弧AD 的中点,∴OH⊙AD ,AH =HD = 12AD . ∵AB 是⊙O 的直径, ∴BD⊙AD.∴BD⊙OE. ∴EH EFBD BF = . ∵BF =3EF ,∴13EH BD = . 设EH =2a ,则BD =6a. ∵OE⊙BD ,OA =OB , ∴OF =12BD =3a. ∴OA =OE =OH+HE =5a. ∴AB =2OA =10a. ∴AD =228AB BD a -= .∴HD =12AD =4a. ∵⊙ABC =90°,BD⊙AC , ∴⊙ABD⊙⊙BCD. ∴AD BDBD CD= . ∴CD = 292BD a AD = .∴CH =HD+CD =172a . 在Rt⊙EHC 中,tan⊙ACE = 2417172EH a CH a ==.3.【答案】(1)证明:如图,,OA OC =OAC OCA ∴∠=∠ ,DCB OAC ∠=∠ , OCA DCB ∴∠=∠ ,AB 是O 的直径,90ACB ∴∠=︒ ,90OCA OCB ∴∠+∠=︒ ,90DCB OCB ∴∠+∠=︒ ,即 90OCD ∠=︒ , OC DC ∴⊥ ,又OC 是 O 的半径,CD ∴ 是O 的切线.(2)解:,BC OEBD CD OB CE ∴= ,即 4263BD OB == , ∴设 2BD x = ,则 3,5OB OC x OD OB BD x ===+= ,,OC DC ⊥222OC CD OD ∴+=222(3)4(5)x x ∴+= ,解得, 1x = ,33OC x ∴== .即O 的半径为3,,BC OEOCB EOC ∴∠=∠ ,在 Rt OCE 中, 6tan 23EC EOC OC ∠=== , tan tan 2OCB EOC ∴∠=∠=4.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙C=90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD=DC , ∴CA⊙DF ,AE=EC , ∴⊙AEO=90°,∴BC DF , ∵BF CD ,∴四边形BCDE 是平行四边形; (2)∵BC DF , ∴⊙DBF=⊙CDB ,又∵根据圆周角定理有⊙CDB=⊙BAC , ∴⊙DBF=⊙BAC , 即tan⊙BAC=34, ∵AC=8, ∴CB=6,则在Rt⊙ACB 中,利用勾股定理可得AB=10,即AO=5=OD , ∵AE=EC=12AC , ∴AE=EC=4,在Rt⊙AEO 中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt⊙AED 中,利用勾股定理,得55 ∴四边形ABCD 的周长5555.【答案】(1)解:∵AB 是O 的直径, 42AC =, 2BC = ,∴90ACB ∠=︒ , 22236AB AC BC =+= , ∴6AB = , 2sin 3ABC ∠=(2)解:∵CD AB ⊥ ,∴CE DE = , 由三角形的面积公式得:1122AC BC AB CE ⨯⨯=⨯⨯ , ∴423CE =, ∴822CD CE ==. 6.【答案】(1)证明:连接 OA 、 OE ,∵点 E 是下半圆弧的中点, OE 过 O , ∴OE DC ⊥ , ∴90FOE ∠=︒ , ∴90E OFE ∠+∠=︒ , ∵OA OE = , AB BF = ,∴BAF BFA ∠=∠ , E OAE ∠=∠ , ∵AFB OFE ∠=∠ , ∴90OAE BAF ∠+∠=︒ , 即 OA AB ⊥ , ∵OA 为半径, ∴AB 是O 的切线(2)解:设 AB x = ,则 BF x = , 1OB x =+ , ∵3OA OC == ,由勾股定理得: 222OB AB OA =+ , ∴()22213x x +=+ , 解得: 4x = ,∴4cos 5AB B OB == 7.【答案】(1)5;平行(2)解:①P 在AB 中点时,连接DP 并延长交BC 于点F ,由(1):DP CE ,∴1BF BPFC AP==, ∴142BF FC BC ===,∴132PF AC ==,11822DF DP PF AB AC =+=+=,∵90DEA BCE PDE ∠=∠=∠=︒, ∴四边形DECF 是矩形, ∴84CE DF DE CF ====,, ∴2AE CE AC =-=, ∴22222425AD AE DE =+=+=②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上, ∴AA '与DD '垂直平分,两条线段的交点O 即为旋转中心,如图所示:则:OD AB ⊥,∵902510ADB AD AB ∠=︒==,,, ∴()2222102545BD AB AD =-=-=∵1122ABD S AD BD AB DO ∆=⋅=⋅, ∴254510DO =, ∴4OD =, ∴222AO AD OD =-=,∴24AA OA '==;(3)解:当P Q AD '时;如图:延长P P '交BC 于点G ,过点P P ',分别作PH AC P T CQ '⊥⊥,,垂足为:H T ,,则:四边形CGP T '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PG BP sin ABC t BG BP cos ABC t =⋅∠==⋅∠=,,∴34855CH PG t P T CG BC BG t ====-=-',,∴385HE CE CH t =-=-,∵P ,P '关于直线DE 对称 ∴385ET EH t ==-,∴3138821655t QT CT CQ CE ET CQ t t =-=+-=+--=-,∵P Q AD ', ∴P QT DAE ∠=∠',∴2DEtan P QT tan DAE AE∠='∠==, ∴2P T TQ '=,即:413821655t t ⎛⎫-=- ⎪⎝⎭, 解得:6011t =; 当PQ BD 时,延长BD 交CQ 于点K ,∵PQ BD ,∴APQ ABD AQP AKB ∠=∠∠=∠,,∵90ADB ADK DAB KAD ∠=∠=︒∠=∠,(角平分线), ∴ABD AKB ∠=∠, ∴APQ AQP ∠=∠, ∴AP AQ =,∵1026AP AB BP t AQ CQ AC t =-=-=-=-,, ∴1026t t -=-, 解得:163t =; 当P Q BD '时,如图:延长P P '交BC 于点G ,过点P P ',分别作PO AC P R CQ '⊥⊥,,垂足为:OR,,延长BD ,交CM 于点S ,则:四边形CNP R '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PN BP sin ABC t BN BP cos ABC t =⋅∠==⋅∠=,,∴34855CO PN t P R CN BC BN t ====-=-',,∴385OE CE CO t =-=-,∵P ,P '关于直线DE 对称 ∴385ER OE t ==-,∴3132881655t QR CQ CR CQ CE ER t t =-=-+=--+=-; ∵AD BD ⊥,90AED ∠=︒,∴90ADE EDS ADE DAE ∠+∠=∠+∠=︒ ∴EDS DAE ∠=∠, ∵P Q BD ',∴QP R EDS DAE ∠=∠=∠', ∴2DEtan QP R tan DAE AE∠='∠==, ∴2QR P R =', 即:413281655t t ⎛⎫-=- ⎪⎝⎭,解得:8011t =; 综上:当PP Q '的一边与ABD 的AD 或BD 边平行时,6011t =或163t =或8011t =. 8.【答案】(1)解:根据二次函数交点式为 ()()()120y a x x x x a =--≠ ,抛物线过A(﹣3,0),B(1,0)两点,∴设 ()()2331y ax bx a x x =+-=+- ,∵x=0时,y =ax 2+bx ﹣3=-3,∴将 ()0,3- 代入 ()()31y a x x =+- ∴﹣3a =﹣3, ∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)解:由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠= ,则 cos 10BCO ∠= ,当点P (P′)在点C 的右侧时,如图所示:∵⊙P'BC =⊙BCO ,故P′B⊙y 轴,则点P′(1,﹣2), 当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN⊙BC 于点N , ∵⊙P'BC =⊙BCO , ∴⊙BCH 为等腰三角形,则 222cos 23110BC CH BCO CH =⋅∠=⨯=+, 解得: 53CH =,则 433OH CH =-= ,故点 4(0,)3H = , 由点B 、H 的坐标得,直线BH的表达式为: 4433y x =-②,联立①②并解得:58xy=-⎧⎨=-⎩,故点P的坐标为(﹣5,﹣8),综上所述,满足条件的点P坐标为(1,﹣2)或(﹣5,﹣8).(3)M(﹣1,2﹣2),N(﹣1﹣2,﹣2)或M'(﹣1,﹣2﹣2),N'(﹣1+ 2,﹣2) 9.【答案】(1)证明:如图,连接EF,EA,EC,∵ EH⊙FC,H是FC的中点,∴EF=EC,∵AD=CD,⊙ADE=⊙CDE=45°,DE=DE,∴⊙ADE⊙⊙CDE,∴AE=EC,∴EF=AE;(2)解:如图,①∵CD=2,13 BFBA=,∴BF=23,AF=43,∴FC=22210 3BC BF+=,过点E作EM⊙AB于点M,∵EF=AE,∴EM垂直平分FA,∴FM=AM=23,∴BM=ME=43,∴2253FM ME+=,∵H是FC的中点,∴10,∴2210EF FH-=②设AB=2a,∵BFkBA=,∴BF=2ak,∴FM=MA=a-ka,BM=a+ak=ME,∵⊙ADE⊙⊙CDE,∴⊙DCE=⊙DAE=⊙FEM,∴tan⊙DCE=tan⊙FEM=11FM kME k-=+. 10.【答案】(1)解:在Rt ABC中,90,6,8 ACB BC AC∠=︒==,22226810 AB AC BC∴+=+=.4tan3ACBBC==,3tan4BCAAC==, ∵D是边AB的中点,∴5BD=如图,当点Q落在BC上时,BP x = ,4tan 3PQ BP B x ==, ∵PDQ A ∠=∠ , 90DPQ ∠=︒ ,16tan 9QP PD x A == , 5BD PD BP =+= ,1659xx += , 解得, 95x = ,95BP ∴= ;(2)解:如图,当 905x < 时,设PQ 、DQ 与BC 交于点M 、N ,∵D 是边AB 的中点,∴5BD = , 4ND = , 3BN = ,4tan 3PM BP B x == , 211423462233BNDPBMS SSx x x =-=⨯⨯-⨯=- ; 当955x << 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 当 57x <≤ 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 故 PDQ 与 ABC 重叠部分图形的面积关系式为: 2222960353157595848531575(57)848x x S x x x x x x ⎧⎛⎫-< ⎪⎪⎝⎭⎪⎪⎛⎫=-+<<⎨ ⎪⎝⎭⎪⎪-+<⎪⎩ . 11.【答案】(1)解:作图如下:(2)解:∵⊙ABC=⊙BDC=90°, ∴⊙ABD +⊙CBD=90°,⊙CBD +⊙C=90°,∴⊙ABD=⊙C ,在Rt⊙ABD 中,AD :BD =3:4, ∴AB⊙AD=3⊙5,∴sinC=sin⊙ABD=35AD AB =. (3)解:如图,点P 在BC 为直径的圆上,O 为圆心,当A 、P 、O 三点共线时,AP 最大,∵BC =10,BD =6,∴CD=8,∵⊙ABD⊙⊙BCD ,∴2BD AD CD =⋅,26=8AD ,解得9=2AD , 在Rt⊙ABD 中,AB=152,∵BC=10, ∴BO=OP=5, 在Rt⊙ABO 中,22513AO AB OB =+=, ∴AP=AO +513, 故答案为:5132.. 12.【答案】(1)35;1225(2)解:如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM⊙DC ,使得DM =DC ,连接CM. ∵四边形ABCD 中,AD =BD ,AD⊙BD ,∴⊙DAB =⊙DBA =45°, ∵⊙DCM =⊙DMC =45°, ∴⊙CDM =⊙ADB =90°, ∴⊙ADC =⊙BDM , ∵AD =DB ,CD =DM , ∴⊙ADC⊙⊙BDM (SAS ), ∴AC =BM ,∵2CD 2+CB 2=CA 2,CM 2=DM 2+CD 2=2CD 2,∴CM 2+CB 2=BM 2, ∴⊙BCM =90°,∴⊙DCB =45°, ∴⊙DAB+⊙DCB =90°, ∴四边形ABCD 是对余四边形. (3)4)2tu t =<< 13.【答案】(1)解:∵AD⊙BC ,∴AD DE BG EB = , AD DFCH FC= . ∵DB =DC =15,DE =DF =5,∴12DE DF EB FC == , ∴AD ADBG CH= . ∴BG =CH .(2)解:过点D 作DP⊙BC ,过点N 作NQ⊙AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP =CP =9,DP =12.∵12AD DE BG EB == , ∴BG =CH =2x , ∴BH =18+2x . ∵AD⊙BC ,∴AD DNBH NB = , ∴182x DNx NB=+ , ∴18215xDN DNx x NB DN ==+++ ,∴56xDNx=+.∵AD⊙BC,∴⊙ADN=⊙DBC,∴sin⊙ADN=sin⊙DBC,∴NQ PD DN BD=,∴46xNQx=+.∴211422266x xy AD NQ xx x=⋅=⋅=++(0<x≤9).(3)解:∵AD⊙BC,∴⊙DAN=⊙FHG.(i)当⊙ADN=⊙FGH时,∵⊙ADN=⊙DBC,∴⊙DBC=⊙FGH,∴BD⊙FG,∴BG DF BC DC=,∴5 1815 BG=,∴BG=6,∴AD=3.(ii)当⊙ADN=⊙GFH时,∵⊙ADN=⊙DBC=⊙DCB,又∵⊙AND=⊙FGH,∴⊙ADN⊙⊙FCG.∴AD FC DN CG=,∴5(182)106xx xx⋅-=⨯+,整理得x2﹣3x﹣29=0,解得3552x+=,或3552x-=(舍去).综上所述,当⊙HFG与⊙ADN相似时,AD的长为3或3552x+=.14.【答案】(1)60(2)解:S⊙ADE=12DE·AB=3DE,∴当DE取最小值时,⊙ADE面积取最小值.作⊙ADE的外接圆,圆心为O,连接OD、OE、OA,过O作OH⊙DE于H,则⊙DOE=2⊙DAE=120°,由OD=OE知,⊙ODH=30°,∴OD=2OH,∵OA+OH≥AB,∴OA+12OA≥6,即OA≥4,OH≥2,由垂径定理得:3OH≥3此时,A、O、H共线,AD=AE,∴⊙ADE面积的最小值为:3×433(3)解:过C作CH⊙AE于H,如图所示,设BD=x,EF=y,∵⊙ABC=90°,AE⊙BC,∴四边形ABCF 为矩形, ∵AB=BC=40∴四边形ABCF 为正方形, 由tan⊙E=tan⊙BCD 知,CF BDEF BC=, 即4040x y =, ∴y=1600x, 即xy=1600, ∵22220x x y y x y-+=≥,∴2x y xy +≥,当x=y 时取等号,即x+y 的最小值为80,又⊙ADE 的面积=正方形ABCF 面积+三角形BCD 面积+三角形CEF 面积, 即⊙ADE 的面积=1600+20(x+y )≥1600+20×80=3200, 综上所述,⊙ADE 的面积的最小值为3200 m 2.15.【答案】(1)解:∵y =﹣x 2+bx+c 经过B (﹣1,6),3),∴340c b c =⎧⎨-++=⎩ , 解得 25b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+7(2)解:如图1中,过点B 作BT⊙y 轴交AC 于T.设P(m ,﹣m 2+2m+3),对于抛物线y =﹣x 2+5x+3,令y =0,∴A(2,0), ∵C(0,8),∴直线AC 的解析式为y =﹣x+3, ∵B(﹣1,2), ∴T(﹣1,4), ∴BT =3, ∵PQ⊙OC , ∴Q(m ,﹣m+3),∴PQ =﹣m 2+2m+3﹣(﹣m+3)=﹣m 3+3m , ∵PQ⊙BT , ∴PQ BT = PE BC = 15, ∴﹣m 2+3m =4,解得m =1或2,∴P(4,4)或2.(3)解:如图8中,连接AD ,过点C 作CT⊙AD 于T.∵抛物线y=﹣x2+2x+6=﹣(x﹣1)2+3,∴顶点D(1,4),∵C(8,3),∴直线CD的解析式为y=x+3,CD=7,∵DD′=2CD,∵DD′=2 4,CD′=3 2,∴D′(4,6),∵A(3,2),∴AD′⊙x轴,∴OD′=22OA D A+'=2256+=3 5,∴sin⊙OD′A=OAOD'=45,∵CT⊙AD′,∴CT=3,∵NJ⊙AD′,∴NJ=ND′•sin⊙OD′A=7D′N,5D'N+CN=CN+NJ,∵CN+NJ≥CT,∴55D'N+CN≥7,5D'N+CN的最小值为8.16.【答案】(1)解:①过点P作PH BD⊥于H.BD BC⊥,PH BD⊥,90CBH PHB C∴∠=∠=∠=︒,∴四边形BCPH 是矩形,4PH BC∴==,在Rt ACB中,2222345AB AC BC++=,由旋转的旋转可知,5BD BA==,11541022PBDS BD PH∆∴=⋅⋅=⨯⨯=.②由旋转的性质可知,4BE BC==,12PBDS PD BE∆=⋅⋅,2054PD∴==,90PHD∠=︒,2222543DH PD PH∴=-=-=,2PC BH∴==,90C∠=︒,21tan42PCPBCBC∴∠===.(2)证明:如图2中,连接BF,取BD的中点T,连接FT,ET.BC BE = , BA BD = ,BCE BEC ∴∠=∠ , BAD BDA ∠=∠ ,BDE ∆ 是由 BAC ∆ 旋转得到, BCE ABD ∴∠=∠ , BEC ADB ∴∠=∠ ,BA BD = , AF DF = , BF AD ∴⊥ , 90AFD ∴∠=︒ ,90BED AFD ∠=∠=︒ , DT TB = ,12ET BD ∴=, 12FT BD = , ET FT DT TB ∴=== , E ∴ ,F ,D ,B 四点共圆, 1DBF ∴∠=∠ ,90DBF BDF ∠+∠=︒ , 190BEC ∴∠+∠=︒ ,1180BEC BED ∴∠+∠+∠=︒ , C ∴ 、E 、F 三点共线.17.【答案】(1)解:由 ()50A ,可知 5OA = , 在Rt⊙AOC 中, 2sin 2BAC ∠= , ∴45BAC ∠=︒ ,∴5OA OC == ,即点C (0,5),由题意可设 ()()51y a x x =-+ ,把点C 代入得: 55a -= , 解得: 1a =- ,∴抛物线解析式为 ()()25145y x x x x =--+=-++ ;(2)解:由(1)可得:C (0,5), ()50A ,,设直线AC 的解析式为 1y k x b =+ ,把点A 、C 坐标代入得:{b =55k 1+b =0 ,解得: {b =5k 1=−1, ∴直线AC 的解析式为 5y x =-+ ,∵直线 y kx = ( 0k > )交线段AC 于点M ,则设 ()5M m m -+,, ∴5m k m-+=, 由(1)可知 5OA OC == , 1OB = , ∴()()22055052AC =-+-=, 6AB = ,由题意可分:①当 AOM ABC ∽ 时,∴56AO AM AB AC == , ∴525266AM AC ==, ∴由两点距离公式可得: ()()226255518m m -+-= , 解得: 1255566m m ==, , ∵05m ≤≤ , ∴56m =, ∴55525655666M k -+⎛⎫== ⎪⎝⎭,, ; ②当 AOM ACB ∽ 时,∴2252AO AM AC AB ===,∴232AM AB ==,∴由两点距离公式可得: ()()225518m m -+-= , 解得: 1228m m ==, (不符合题意,舍去),∴()2532322M k -+==,, ; (3)解:过点B 作BF⊙x 轴,交AC 的延长线于点F ,过点P 作PD⊙x 轴于点D ,交AC 于点H ,如图所示:∴BF⊙PH ,∴BQF PQH ∽ ,∴PQ PHBQ BF= , 由(2)知,直线AC 的解析式为 5y x =-+ ,点 ()10B -, , ∴点 ()16F -, ,即 6BF = , 设点 ()245P a a a -++,,则有 ()5H a a -+, , ∴()224555PH a a a a a =-++--+=-+ ,∴225152566224PQ a a a BQ -+⎛⎫==--+⎪⎝⎭ , ∵106-< , ∴当 52a =时, PQ BQ 的值最大,最大值为 2524.18.【答案】(1)解:如图,过点 D 作 DM x ⊥ 轴于点 M∵90ACB ∠=︒ , ∴3tan 32BC CAB AC ∠===∴60CAB ∠=由题意可知 2DA AC == , 60DAB CAB ∠=∠=︒ . ∴180180606060DAM DAB CAB ∠=︒-∠-∠=︒-︒-︒=︒ . ∴906030ADM ∠=︒-︒=︒ 在 Rt ADM ∆ 中, 2DA = , ∴1AM = , 3DM =.∵点 C 坐标为 (10)-,, ∴1214OM OC AC AM =++=++= . ∴点 D 的坐标是 (3)-(2)解:设点 C 坐标为 (,0)a ( 0a < ),则点 B 的坐标是 (,3)a , 由(1)可知:点 D 的坐标是 (3)a - ∵点 B 和点 D 在同一个反比例函数的图象上, ∴33(3)a a =- .解得 3a =- . ∴点 C 坐标为 (3,0)-(3)解:存在这样的 k ,使得以点 E, 1B , D 为顶点的三角形是直角三角形①当 190EDB ∠= 时.如图所示,连接 ED , 1B B , 1B D , 1B B 与 ED 相交于点 N .则 190EBN NDB ∠=∠=︒ , 1BNE DNB ∠=∠ , 130DBN NB E ∠=∠= .∴BNE ∆ ⊙ 1DNB ∆∴1BN ENDN B N= ∴1BN DNEN B N= 又∵1BND ENB ∠=∠ , ∴BND ∆ ⊙ 1ENB ∆ .∴130NEB NBD ∠=∠= , 130NDB NB E ∠=∠= , ∴30BED BDE ∠=∠=︒ . ∴23BE BD == , 16tan 30BEBB ==设 (43)E m , ( 0m < ),则 1(3)D m - , ∵E , 1D 在同一反比例函数图象上, ∴433(9)m m =- .解得: 3m =- . ∴(343)E -,∴343123k =-⨯=-②当 190EB D ∠= 时.如图所示,连接 ED , 1B B , 1B D ,∵1//BD ED ,∴1118090BDB EB D ∠=︒-∠=︒ .在 1Rt BDB ∆ 中,∵130DBB ∠=︒ , 3BD =, ∴14cos30BDBB == .在 1Rt EBB ∆ 中, ∵130BB E ∠=︒ ,∴143tan 30EB BB =︒=. ∴1033EC BC EB =+=设 3(,)3E m ( 0m < ),则 1(13)D m - ∵E , 1D 在同一反比例函数图象上,1033(7)m=-.解得:3m=-,∴103 (3,3 E-∴3333k=-⨯=-21/ 21。
中考数学《三角函数》大题专练

中考数学《三角函数》大题专练(30道) 1.(2019·天津中考模拟)如图,某数学小组在水平空地上对无人机进行测高实验,在E 处测得无人机C 的仰角45CAB ∠=︒,在D 处测得无人机C 的仰角30CBA ∠=︒,已知测角仪的高1m AE BD ==,E 、D两处相距50m ,根据所给数据计算无人机C 的高度.(结果精确到0.1米, 1.41≈ 1.73≈)2.(2019·山东省中考模拟)如图,某风景区内有一瀑布,AB 表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D 处测得瀑布顶端A 的仰角β为45°,沿坡度i =1:3的斜坡向上走100米,到达观景台C ,在C 处测得瀑布顶端A 的仰角α为37°,若点B 、D 、E 在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75≈1.41≈3.16)(1)观景台的高度CE 为 米(结果保留准确值);(2)求瀑布的落差AB (结果保留整数).3.(2019·海南省中考模拟)如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值;(2)求斜坡CD 的长度.4.(2018·贵州省中考模拟)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方点C出发,沿斜面坡度i CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB∠BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)5.(2019·河南省中考模拟)在某飞机场东西方向的地面l 上有一长为1km 的飞机跑道MN(如图),在跑道MN的正西端14.5 千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15 千米的B 处;经过1 分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN 之间?请说明理由.6.(2019·山东省中考模拟)今年“五一” 假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B 点的海拔;(2)求斜坡AB 的坡度.7.(2019·浙江省中考模拟)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732 1.732≈, 1.414≈)8.(2019·东阿县姚寨镇联合校中考模拟)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)9.(2019·河南省中考模拟)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)10.(2018·辽宁省中考模拟)如图,甲、乙只捕捞船同时从A 港出海捕鱼,甲船以每小时 km 的速度沿北偏西60°方向前进,乙船以每小时15 km 的速度沿东北方向前进.甲船航行2 h 到达C 处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.问:(1)甲船从C 处出发追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?11.(2019·河南省中考模拟)如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM∠AN ).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米)..sin37°≈060,cos37°≈0.80,tan37°≈0.75)12.(2019·天津中考模拟)如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC (结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.13.(2019·兴化市顾庄学校中考模拟)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249 1.4142.14.(2019·天津市红光中学中考模拟)某地一人行天桥如图所示,天桥高6 m,坡面BC的坡比为1∠1,为了方便行人推车过天桥,有关部门决定降低坡比,使新坡面AC的坡比为(1)求新坡面的坡角α;(2)原天桥底部正前方8 m处(PB的长)的文化墙PM是否需要拆除.请说明理由.15.(2019·山东省中考模拟)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).16.(2019·江苏省中考模拟)高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC 为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)17.(2018·山东省中考模拟)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG∠HG,CH∠AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)18.(2019·山东省中考模拟)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上 1.732,结果取整数)?19.(2019·山东省中考模拟)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)20.(2019·江苏省中考模拟)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(2019·天津中考模拟)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∠CD,AM∠BN∠ED,AE∠DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)22.(2019·河南省中考模拟)如图,一艘渔船位于灯塔A的南偏西75°方向的B处,距离A处30海里,渔船沿北偏东30°方向追寻鱼群,航行一段时间后,到达位于A处北偏西20°方向的C处,渔船出现了故障立即向正在灯塔A处的巡逻船发出求救信号.巡逻船收到信号后以40海里每小时的速度前往救助,请问巡逻船多少分钟能够到达C≈1.4,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,最后结果精确到1分钟).23.(2018·上海中考模拟)如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75≈1.41≈2.24)24.(2018·江苏省中考模拟)如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30m,点C与点A恰好在同一水平线上,点A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)25.(2019·山东省中考模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.26.(2018·湖北省中考模拟)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB∠BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)27.(2018·广西壮族自治区中考模拟)如图,海面上甲、乙两船分别从A,B两处同时出发,由西向东行驶,甲船的速度为24n mile/h,乙船的速度为15n mile/h,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile,经过20分钟后,甲、乙两船分别到达C ,D 两处.(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)(1)求两条航线间的距离;(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)28.(2019·河南省中考模拟)某校数学兴趣小组的同学测量一架无人飞机P 的高度,如图,A ,B 两个观测点相距300m ,在A 处测得P 在北偏东71°方向上,同时在B 处测得P 在北偏东35°方向上.求无人飞机P 离地面的高度.(结果精确到1米,参考数据:sin350.57︒≈,tan350.70︒≈,sin71°≈0.95,tan71°≈2.90)29.(2018·河南省中考模拟)如图,小东在楼AB 的顶部A 处测得该楼正前方旗杆CD 的顶端C 的俯角为42∘,在楼AB 的底部B 处测得旗杆CD 的顶端C 的仰角为30∘,已知旗杆CD 的高度为12m ,根据测得的数据,计算楼AB 的高度.(结果保留整数,参考数据:sin42∘≈0.7,cos42∘≈0.7,tan42∘≈0.9,√3≈1.7)30.(2019·内蒙古自治区中考模拟)如图,旗杆AB 的顶端B 在夕阳的余辉下落在一个斜坡上的点D 处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A 处测得点D 的仰角为15°,AC =10米,又测得∠BDA =45°.已知斜坡CD 的坡度为i =1求旗杆AB 的高度 1.7≈,结果精确到个位).2020中考数学《三角函数》大题专练(30道)参考答案1.(2019·天津中考模拟)如图,某数学小组在水平空地上对无人机进行测高实验,在E 处测得无人机C 的仰角45CAB ∠=︒,在D 处测得无人机C 的仰角30CBA ∠=︒,已知测角仪的高1m AE BD ==,E 、D两处相距50m ,根据所给数据计算无人机C 的高度.(结果精确到0.1米, 1.41≈ 1.73≈)【答案】19.3m.【解析】解:如图,过点C 作点CH AB ⊥于H .∵45CAB ∠=︒,∵AH CH =.设CH x =,则AH x =.∵30CBA ∠=︒,∵BH ==.由题意知:50AB ED ==,∵50 x+=.解得:5018.32.73x=≈.18.3119.3+=.答:计算得到的无人机的高约为19.3m.【点睛】此题主要考察三角函数的应用.2.(2019·山东省中考模拟)如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,沿坡度i=1:3的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75≈1.41≈3.16)(1)观景台的高度CE为米(结果保留准确值);(2)求瀑布的落差AB(结果保留整数).【答案】(1);(2)瀑布的落差约为411米.【解析】(1)∵tan∵CDE=13 CE CD=∵CD=3CE.又CD=100米,∵100==∵CE=.故答案是:.(2)作CF ∵AB 于F ,则四边形CEBF 是矩形.∵CE =BF =,CF =BE .在直角∵ADB 中,∵DB =45°.设AB =BD =x 米. ∵CE CD =13,∵DE =.在直角∵ACF 中,∵ACF =37°,tan∵ACF 0.75AF CF ==≈ 解得x ≈411.答:瀑布的落差约为411米.【点睛】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.3.(2019·海南省中考模拟)如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值;(2)求斜坡CD 的长度.【答案】(1)坡底C 点到大楼距离AC 的值为(2)斜坡CD 的长度为120米.【解析】(1)在直角∵ABC 中,∵BAC=90°,∵BCA=60°,AB=60米,则AC=60AB tan ==︒(米)答:坡底C 点到大楼距离AC 的值是(2)过点D 作DF∵AB 于点F ,则四边形AEDF 为矩形,∵AF=DE ,DF=AE.设CD=x 米,在Rt∵CDE 中,DE=12x 米,米 在Rt∵BDF 中,∵BDF=45°,∵BF=DF=AB -AF=60-12x (米) ∵DF=AE=AC+CE ,-12x解得:120(米)故斜坡CD 的长度为(120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.4.(2018·贵州省中考模拟)如图,某数学活动小组为测量学校旗杆AB 的高度,沿旗杆正前方点C 出发,沿斜面坡度i =CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米.已知A 、B 、C 、D 、E 在同一平面内,AB∠BC,AB//DE.求旗杆AB 的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】【解析】如图,延长ED 交BC 延长线于点F ,则∵CFD=90°,,∵∵DCF=30°,∵CD=4,∵DF=12CD=2,过点E 作EG∵AB 于点G ,则GB=EF=ED+DF=1.5+2=3.5,又∵∵AED=37°,,则,故旗杆AB 的高度为()米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题5.(2019·河南省中考模拟)在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.【答案】(1)km/h ;(2)能,见解析【解析】解:(1)由题意,得90BAC ∠︒=,15,AB AC ==BC ∴=∴飞机航行的速度为:160=km/h )(2)能;作CE l ⊥ 于点 E ,设直线 BC 交 l 于点 F .在Rt ABC 中,BC AC ==,∵30ABC ∠︒=,即60BCA ∠︒=,又∵30CAE ∠︒=,∴60ACE ∠︒= ,18060FCE ACB ACE ∠=∠-∠=︒∴-,即ACE FCE ∠=∠ACE FCE ∴≅AE EF ∴= 又 152AE AC cos CAE =⋅∠= 152AE EF ∴==15AF ∴= 14.5,15.5AM AN ==∴AM AF AN <<∵飞机不改变航向继续航行,可以落在跑道 M N 之间.【点睛】本题主要考查解直角三角形的实际应用,准确理解题意,并且画出辅助线是求解本题的关键.6.(2019·山东省中考模拟)今年“五一” 假期.某数学活动小组组织一次登山活动.他们从山脚下A 点出发沿斜坡AB 到达B 点.再从B 点沿斜坡BC 到达山顶C 点,路线如图所示.斜坡AB 的长为1040米,斜坡BC 的长为400米,在C 点测得B 点的俯角为30°.已知A 点海拔121米.C 点海拔721米. (1)求B 点的海拔;(2)求斜坡AB 的坡度.【答案】(1)521(米);(2)1:2.4.【解析】解:如图,过C 作CF∵AM ,F 为垂足,过B 点作BE∵AM ,BD∵CF ,E 、D 为垂足.在C 点测得B 点的俯角为30°,∵∵CBD=30°,又BC=400米,∵CD=400×sin30°=400×12=200(米). ∵B 点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,=960米,∵AB 的坡度i AB =BE AE =400960=512. 故斜坡AB 的坡度为1:2.4.【点睛】此题将坡度的定义与解直角三角形相结合,考查了同学们应用数学知识解决简单实际问题的能力,是一道中档题.7.(2019·浙江省中考模拟)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732 1.732≈, 1.414≈)【答案】3.05米.【解析】延长FE 交CB 的延长线于M ,过A 作AG∵FM 于G ,在Rt∵ABC 中,tan∵ACB=AB BC, ∵AB=BC•tan75°=0.60×3.732=2.2392,∵GM=AB=2.2392,在Rt∵AGF 中,∵∵FAG=∵FHD=60°,sin∵FAG=FG AF,∵sin60°=2.52FG =, ∵FG=2.165,∵DM=FG+GM ﹣DF≈3.05米.答:篮框D 到地面的距离是3.05米.考点:解直角三角形的应用.8.(2019·东阿县姚寨镇联合校中考模拟)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【答案】1.8米【解析】在Rt∵APN 中,∵NAP =45°,∵P A =PN ,在Rt∵APM 中,tan MP MAP AP∠=, 设P A =PN =x ,∵∵MAP =58°,∵tan MP AP MAP =⋅∠=1.6x ,在Rt∵BPM 中,tan MP MBP BP ∠=, ∵∵MBP =31°,AB =5, ∵ 1.60.65x x =+, ∵ x =3,∵MN=MP -NP =0.6x =1.8(米),答:广告牌的宽MN 的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.9.(2019·河南省中考模拟)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)【解析】 过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∵()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∵()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()tan 3029033EF EH cm =︒=⨯=.答:支角钢CD 的长为45cm ,EF .考点:三角函数的应用10.(2018·辽宁省中考模拟)如图,甲、乙只捕捞船同时从A 港出海捕鱼,甲船以每小时 km 的速度沿北偏西60°方向前进,乙船以每小时15 km 的速度沿东北方向前进.甲船航行2 h 到达C 处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.问:(1)甲船从C 处出发追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是每小时多少千米?【答案】(1) 2 h ;(2) 15(1千米.【解析】(1)如图,过A 作AD∵BC 于点D .作CG∵AE 交AD 于点G .∵乙船沿东北方向前进,∵∵HAB=45°,∵∵EAC=30°,∵∵CAH=90°-30°=60°∵∵CAB=60°+45°=105°.∵CG∵EA,∵∵GCA=∵EAC=30°.∵∵FCD=75°,∵∵BCG=15°,∵BCA=15°+30°=45°,∵∵B=180°-∵BCA-∵CAB=30°.在直角∵ACD中,∵ACD=45°,.=30千米.×2CD=AC•cos45°=30千米.在直角∵ABD中,∵B=30°.则AB=2AD=60千米.则甲船从C处追赶上乙船的时间是:60÷15-2=2小时;(2)千米.则甲船追赶乙船的速度是每小时(千米/小时.答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时千米.【点睛】一般三角形的计算可以通过作高线转化为直角三角形的计算,正确作辅助线是解决本题的关键.11.(2019·河南省中考模拟)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∠AN).(1)求灯杆CD 的高度;(2)求AB 的长度(结果精确到0.1米)..sin37°≈060,cos37°≈0.80,tan37°≈0.75)【答案】(1)10米;(2)11.4米【解析】(1)如图,延长DC 交AN 于H ,∵∵DBH=60°,∵DHB=90°,∵∵BDH=30°,∵∵CBH=30°,∵∵CBD=∵BDC=30°,∵BC=CD=10(米);(2)在Rt∵BCH 中,CH=12BC=5,, ∵DH=15,在Rt∵ADH 中,AH=tan 37DH ≈150.75=20, ∵AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2019·天津中考模拟)如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC(结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.【答案】乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【解析】解:过点B 作BE CD ⊥,垂足为点E ,可知BAC ACE BEC 90∠∠∠===︒.∵四边形ACEB 是矩形.∵AB CE =,AC BE =.设甲乙两楼之间的距离为x m.则BE AC x ==,在Rt DBE 中,DBE 19∠=︒,DEtan DBE BE ∠=.∵DE BE tan DBE x tan19∠=⋅=⋅︒.在Rt DAC 中,DAC 40∠=︒,DCtan DAC AC ∠=.∵DC AC tan DAC x tan DAC x tan40∠∠=⋅=⋅=⋅︒.∵DC DE CE -=,∵x tan40x tan1918.6⋅︒-⋅︒=.∵0.84x 0.34x 18.6-≈.解得x 37.2≈.∵AC 37≈.DE x tan4037.2.8431=⋅︒≈⨯≈.答:乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【点睛】本题考查了解直角三角形的应用,解题的关键是从复杂的实际问题中整理出直角三角形并选择合适的边角关系列出方程.13.(2019·兴化市顾庄学校中考模拟)如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249 1.4142≈.【答案】塔高AB 约为32.99米.【解析】解:过点D 作DH ∵AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∵ABC =∵AHD = 90°,∵ADH = 32°.设AB = x ,则 AH = x – 3.在Rt∵ABE 中,由 ∵AEB = 45°,得 tan tan451ABAEB EB ∠=︒==.∵ EB = AB = x .∵ HD = BC = BE + EC = x + 15.在Rt∵AHD 中,由 ∵AHD = 90°,得 tan AHADH HD ∠=.即得 3tan3215x x -︒=+.解得15tan32332.991tan32x⋅︒+=≈-︒.∵ 塔高AB约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(2019·天津市红光中学中考模拟)某地一人行天桥如图所示,天桥高6 m,坡面BC的坡比为1∠1,为了方便行人推车过天桥,有关部门决定降低坡比,使新坡面AC的坡比为(1)求新坡面的坡角α;(2)原天桥底部正前方8 m处(PB的长)的文化墙PM是否需要拆除.请说明理由.【答案】(1)α=30°;(2)文化墙PM不需要拆除,理由见解析.【解析】(1)∵新坡面的坡度为1,∵∵α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD∵AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1∵BD=CD=6,∵AB=AD﹣﹣6<8,∵文化墙PM不需要拆除.【点睛】本题考查解直角三角形的应用.15.(2019·山东省中考模拟)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号).【答案】【解析】解:作AD∵BC 于D ,∵∵EAB=30°,AE∵BF ,∵∵FBA=30°,又∵FBC=75°,∵∵ABD=45°,又AB=60,∵AD=BD=∵∵BAC=∵BAE+∵CAE=75°,∵ABC=45°,∵∵C=60°,在Rt∵ACD 中,∵C=60°,AD=,则tanC=AD CD ,=∵BC=故该船与B 港口之间的距离CB 的长为【点睛】本题考查解直角三角形的应用-方向角问题.16.(2019·江苏省中考模拟)高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC 为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】17【解析】解:设AH的长为x米,则CH的长为(x-2)米.在Rt∵ABH中,AH=BH tan45°,则BH=x,所以DH=BH-BD=x-10在Rt∵CDH中,CH=DH tan65°,即x-2=2.14(x-10),解得:x=17.01≈17.0答:立柱AH的长为17米.【点睛】本题考查了解直角三角形的应用,由三角函数列出关于AH的方程是解题关键.17.(2018·山东省中考模拟)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG∠HG,CH∠AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【答案】63米.【解析】解:如图,作BE∵DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt∵ACH 中,CH=AH tan∵CAH=tan55°•x,∵CE=CH﹣EH=tan55°•x﹣10,∵∵DBE=45°,∵BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∵CH=tan55°•x=1.4×45=63.答:塔杆CH的高为63米.点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.18.(2019·山东省中考模拟)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上 1.732,结果取整数)?【答案】450m.【解析】解:ABD 120∠=︒,D 30∠=︒,AED 1203090∠∴=︒-︒=︒,在Rt ΔBDE 中,BD 520m =,D 30∠=︒,1BE BD 260m 2∴==,()DE 450m ∴==≈.答:另一边开挖点E 离D450m ,正好使A ,C ,E 三点在一直线上.【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.19.(2019·山东省中考模拟)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆9m 的B 处安置高为1.5m 的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留根号)【答案】拉线CE 的长约为米.【解析】解:过点A 作AH∵CD ,垂足为H ,由题意可知四边形ABDH 为矩形,∵CAH=30°,∵AB=DH=1.5,BD=AH=9,在Rt∵ACH 中,tan∵CAH=CH AH, ∵CH=AH•tan∵CAH ,。
中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
初中数学中考复习:25锐角三角函数综合复习(含答案)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数专项训练
1.(2009眉山)海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.
2.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)
3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)
4.(2009年凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.
(1)MN 是否穿过原始森林保护区?为什么?(参考数据:3 1.732≈)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
C D
B
A
北
60°
30°
5.(2009年辽宁省锦州)为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A 处观测河对岸水边有一点C ,测得C 在北偏东60°的方向上,沿河岸向东前行30米到达B 处,测得C 在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度.(结果保留根号
)
6.(2009年湖南长沙)某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进550米到点C 处,测得B 在点C 的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732≈)
7.(2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.
A
B C D
E F 60°30°
北
东
西
南
C
A
B C
B N M A
(第21题)。