必修四-任意角与弧度制--知识点汇总(教师版)
教师版__任意角和弧度制知识点和练习

9.一扇形半径长与弧长之比是3:,则该扇形所含弓形面积与该扇形的
面积之比为( )
(A)(B)(C) (D)
针对练习
1.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630°
2.下列命题正确的是( )
A.终边相同的角一定相等 B.第一象限的角都是锐角。 C.锐角都是第一象
12.已知是第二象限角,且则的范围是
.
三、解答题
13. 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象
限角?
(1)
(2)
(3)
14.写出角的终边在下图中阴影区域内角的集合(用弧度制表示)
(1)
(2)
(3)
于的角是锐角。
其中正确的命题序号是
。
例2:写出终边在直线上的角的集合;
练习:写出终边在直线上的角的集合。 例3: 求两个集合的交集 已知集合,, 练习:1、集合,,则等于( )
A、 B、 C、 D、 2、集合,,则等于( ) (A) (B) (C) (D) 3、,求 例4:判断下列角的集合的关系: 已知集合集合,则( )
A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角
C.第二象限的角比第一象限的角大 D.角α是第四象限角的充要条件 是2kπ-
<α<2kπ(k∈Z) 14.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60° 15.若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上 都不对 16.设集合M={α|α=
高一必修四任意角知识点

高一必修四任意角知识点高一必修四任意角知识点一、定义任意角是指角的大小可以是大于0°小于360°的角。
任意角可以用弧度或度数表示。
二、角的转角1. 角的正向转角:角按照逆时针方向转动,转角为正。
2. 角的负向转角:角按照顺时针方向转动,转角为负。
三、角的初边和终边1. 初边:与x轴正半轴重合的射线。
2. 终边:从初边出发,按照逆时针方向旋转得到的射线。
四、角的度数和弧度的转换1. 角度到弧度的转换公式:弧度 = 角度× π / 1802. 弧度到角度的转换公式:角度 = 弧度× 180 / π五、角的相关概念1. 相互对立角:两条射线共享一个起点,但是方向相反的角。
它们的度数和为180°。
2. 余角:与给定角相加得到90°的角。
3. 补角:与给定角相加得到180°的角。
六、三角函数与任意角1. 正弦函数(sin):在平面直角坐标系中,对于一个给定角,其正弦值等于该角对应终边上的y坐标值与终边长的比值。
2. 余弦函数(cos):在平面直角坐标系中,对于一个给定角,其余弦值等于该角对应终边上的x坐标值与终边长的比值。
3. 正切函数(tan):在平面直角坐标系中,对于一个给定角,其正切值等于该角的正弦值与余弦值的比值。
七、任意角的三角函数值的四象限规定1. 第一象限:角的终边位于x轴的正半轴。
2. 第二象限:角的终边位于y轴的正半轴。
3. 第三象限:角的终边位于x轴的负半轴。
4. 第四象限:角的终边位于y轴的负半轴。
八、反三角函数与任意角的关系1. 反正弦函数(arcsin):给定一个比值,反三角函数可以求出对应的角度。
其定义域为[-1, 1],值域为[-π/2, π/2]。
2. 反余弦函数(arccos):给定一个比值,反三角函数可以求出对应的角度。
其定义域为[-1, 1],值域为[0, π]。
3. 反正切函数(arctan):给定一个比值,反三角函数可以求出对应的角度。
高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若13590<<<αβ,求βα-和βα+的范围。
(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。
三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。
终边落在坐标轴角的集合为__________________。
象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。
第三象限的角的集合为_________________;第四象限的角的集合为____________。
例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。
(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。
5.1 任意角和弧度制-教师版

1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr(弧长用l 表示)角度与弧度的换算1°=180πrad ;1 rad =180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2知识梳理例题解析例1写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.【答案】{β|β=k ·360°-1 910°,k ∈Z };元素β见解析 【解析】与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴1111363636k ≤< (k ∈Z ),故取k =4,5,6.k =4时,β=4×360°-1910°=-470°; k =5时,β=5×360°-1910°=-110°; k =6时,β=6×360°-1910°=250°.例2写出终边在直线3y x =上的角的集合. 【答案】{|=,}6k k Z πββπ+∈【解析】直线3y x =的倾斜角为6πα=,所以终边在直线y x =上的角为=2,6k k Z πβπ+∈或7=2,6k k Z πβπ+∈, =2(21),66k k k Z ππβπππ++=++∈,综合得终边在直线y x =上的角为=,6k k Z πβπ+∈,所以终边在直线3y x =上的角的集合为{|=,}6k k Z πββπ+∈.例3已知α为第二象限角,则2α是第几象限角? 【答案】第一或第三象限角 【解析】∵α是第二象限角,∴+2+22k k k Z ππαππ<<∈,,∴++422k k k Z παπππ<<∈,.当k 为偶数时,2α是第一象限角;当k 为奇数时,2α是第三象限角. 所以2α第一或第三象限角. 点睛:确定2()*n n N nα≥∈,终边位置的方法步骤:(1)用终边相同角的形式表示出角α的范围; (2)写出nα的范围;(3)根据k 的可能取值讨论确定nα的终边所在位置例4已知如图.(1)写出终边落在射线OA 、OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)终边落在射线OA 上的角的集合为{}210360,k k Z αα=+⋅∈,终边落在射线OB 上的角的集合为{}300360,k k Z αα=+⋅∈;(2){}210360300360,k k k Z αα+⋅≤≤+⋅∈. 【解析】(1)终边落在射线OA 上的角的集合是{}210360,k k Z αα=+⋅∈,终边落在射线OB 上的角的集合{}300360,k k Z αα=+⋅∈; (2)终边落在阴影部分(含边界)的角的集合是{}210360300360,k k k Z αα+⋅≤≤+⋅∈.例5已知扇形AOB 的圆心角α为23π,半径长R 为6,求: (1)弧AB 的长; (2)扇形所含弓形的面积.【答案】(1)4π;(2)12π- 【解析】 (1)l =α·R =23π×6=4π, 所以弧AB 的长为4π. (2)S 扇形OAB =12lR =12×4π×6=12π. 如图所示,过点O 作OD ⊥AB ,交AB 于点D ,23π=120°,所以∠AOD =60°,∠DAO =30°, 于是有S △OAB =12×AB ×OD=12×2×6cos 30°×3=.所以弓形的面积为S 扇形OAB -S △OAB =12π-所以弓形的面积是12π-例6已知一扇形的圆心角为(0)αα>,所在圆的半径为R .(1)若60α︒=,10R cm =,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【答案】(1)103cm π,()2503cm π⎛- ⎝;(2)2rad α=.【解析】(1)设扇形的弧长为l ,弓形面积为S ,则603πα︒==,10R =,101033l cm ππ=⨯=,()221105*********S cm ππ⎛=⨯⨯-=- ⎝.(2)设扇形弧长为l ,则220l R +=,即10202101l R R π⎛⎫=-<<⎪+⎝⎭,∴扇形面积2211(202)10(5)2522S IR R R R R R ==-⋅=-+=--+, ∴当5R cm =时,S 有最大值225cm ,此时10l cm =,2rad lRα==. 因此当2rad α=时,这个扇形面积最大. 点睛:12,2C l R S lR =+=当周长C 为定值时可得面积()211222S C R R R CR =-=-+ 当面积S 为定值时可得周长22SC R R=+.1.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( ) A .120° B .-120° C .240° D .-240°【答案】D【解析】按顺时针方向旋转形成的角是负角,排除A 、C ;又由题意知旋转的角度是240°,排除B.故选D.随堂检测2.给出下列四个结论:①-15°角是第四象限角;②185°角是第三象限角;③475°角是第二象限角;④-350°角是第一象限角.其中正确的个数为()A.1B.2C.3D.4【答案】D【解析】①-15°角是第四象限角;②因为180°<185°<270°,所以185°角是第三象限角;③因为475°=360°+115°,90°<115°<180°,所以475°角是第二象限角;④因为-350°=-360°+10°,所以-350°角是第一象限角.所以四个结论都是正确的.3.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B=()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}【答案】C【解析】令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.4.已知角α=45°,β=315°,则角α与β的终边()A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.关于原点对称【答案】A【解析】因为β=315°=360°-45°,所以315°角与-45°角的终边相同,所以α与β的终边关于x轴对称.5.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C .y 轴的非负半轴上D .y 轴的非正半轴上【答案】A【解析】∵α=β+k ·360°,k ∈Z ,∴α-β=k ·360°,k ∈Z ,∴其终边在x 轴的非负半轴上. 6.(多选)已知角2α的终边在x 轴的上方,那么角α可能是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】AC【解析】因为角2α的终边在x 轴的上方,所以k ·360°<2α<k ·360°+180°,k ∈Z ,则有k ·180°<α<k ·180°+90°,k ∈Z .故当k =2n ,n ∈Z 时,n ·360°<α<n ·360°+90°,n ∈Z ,α为第一象限角;当k =2n +1,n ∈Z 时,n ·360°+180°<α<n ·360°+270°,n ∈Z ,α为第三角限角.故选A 、C.7.若角α与角x +4π有相同的终边,角β与角x -4π有相同的终边,那么α与β间的关系为( ) A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=2π+2k π(k ∈Z ) 【答案】D【解析】∵α=x +4π+2k 1π(k 1∈Z ),β=x -4π+2k 2π(k 2∈Z ),∴α-β=2π+2(k 1-k 2)π(k 1∈Z ,k 2∈Z ).∵k 1∈Z ,k 2∈Z ,∴k 1-k 2∈Z .∴α-β=2π+2k π(k ∈Z ). 8.已知某机械采用齿轮传动,由主动轮M 带着从动轮N 转动(如图所示),设主动轮M 的直径为150 mm ,从动轮N 的直径为300 mm ,若主动轮M 顺时针旋转2π,则从动轮N 逆时针旋转( )A.8π B .4π C.2π D .π【答案】B【解析】设从动轮N 逆时针旋转θ rad ,由题意,知主动轮M 与从动轮N 转动的弧长相等,所以θπ⨯=⨯230022150,解得θ=4π,选B. 9.若α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,则α=________. 【答案】270°【解析】∵5α=α+k ·360°,k ∈Z ,∴α=k ·90°,k ∈Z . 又∵180°<α<360°,∴α=270°.10.集合{α|k ·180°≤α≤k ·180°+45°,k ∈Z }中角表示的范围(用阴影表示)是图中的________(填序号).【答案】②【解析】集合{α|k ·180°≤α≤k ·180°+45°,k ∈Z }中,当k 为偶数时,此集合与{α|0°≤α≤45°}表示终边相同的角,位于第一象限;当k 为奇数时,此集合与{α|180°≤α≤225°}表示终边相同的角,位于第三象限.所以集合{α|k ·180°≤α≤k ·180°+45°,k ∈Z }中角表示的范围为图②所示.11.一条铁路在转弯处呈圆弧形,圆弧的半径为2km ,一列火车以30km /h 的速度通过,10s 间转过_______弧度.【答案】124【解析】10s间列车转过的弧长为10130(km)360012⨯=,转过的角1112224α==(弧度).故答案为:1 2412.已知圆的一段弧长等于该圆外切正三角形的边长,则这段弧所对圆心角的弧度数的绝对值为______;若圆弧长等于其所在圆的内接正方形的周长,那么这段弧所对圆心角的弧度数的绝对_____.【答案】【解析】设圆半径为r,这段弧所对圆心角的弧度数为θ,则圆外切正三角形的边长为r,∴||rθ==;,周长为,即圆弧长为,∴||rθ==13.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.【解析】由题意可知,α+β=-280°+k·360°,k∈Z,∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z,α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.14.如图,点A在半径为1且圆心在原点的圆上,且∠AOx=45°,点P从点A处出发,以逆时针方向沿圆周匀速旋转.已知点P 在1秒内转过的角度为θ(0°<θ<180°),经过2秒钟到达第三象限,经过14秒钟又回到出发点A ,求θ,并判断θ所在的象限.【解析】根据题意知,14秒钟后,点P 在角14θ+45°的终边上,所以45°+k ·360°=14θ+45°,k ∈Z .又180°<2θ+45°<270°, 即67.5°<θ<112.5°,∴67.5°<71800⋅k <112.5°.又k ∈Z ,∴k =3或4,∴所求的θ的值为75400或77200.∵0°<75400<90°,90°<77200<180°,∴θ在第一象限或第二象限.15.已知扇形AOB 的圆心角α为23π,半径长R 为6,求: (1)弧AB 的长; (2)扇形所含弓形的面积.【解析】(1)l =α·R =23π×6=4π, 所以弧AB 的长为4π. (2)S 扇形OAB =12lR =12×4π×6=12π. 如图所示,过点O 作OD ⊥AB ,交AB 于点D ,23π=120°,所以∠AOD =60°,∠DAO =30°, 于是有S △OAB =12×AB ×OD=12×2×6cos 30°×3=.所以弓形的面积为S 扇形OAB -S △OAB =12π-所以弓形的面积是12π-16,宽为1dm 的长方形在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方形的底边与桌面所成的角为6π,求点A 走过的路程及走过的弧所在扇形的总面积.【解析】如图:在扇形1ABA 中,圆心角为2π,弧长()1dm 22l AB πππ=⨯==,面积()21112dm 22S AB πππ=⨯⨯=⨯⨯=. 在扇形12A CA 中,圆心角为2π, 弧长()211dm 222l AC πππ=⨯=⨯=,面积()221111dm 2244S AC πππ=⨯⨯=⨯⨯=, 在扇形23A DA 中,圆心角为263ππππ--=,弧长()3233dm 333l A D πππ=⨯=⨯=, 面积()232131323dm 2332S A D πππ=⨯⨯=⨯⨯=. 综上,点A 走过的路程()()1239233dm 236l l l l ππππ+=++=++=, 点A 走过的弧所在扇形的总面积()21237dm 424ππππ=++=++=S S S S一、单选题1.300-化为弧度是( )课后练习A .43π-B .53π-C .23π-D .56π-【答案】B 【解析】300530023603ππ-=-⨯=-2.下列各角中,与2019°终边相同的角为( ) A .41° B .129°C .219°D .﹣231°【答案】C 【解析】因为20195360219=⨯+,所以219与2019°终边相同. 故选:C.3.若α是第四象限角,则180°+α一定是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】B 【解析】∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限, 故选B.4.一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1C D .2【答案】D 【解析】圆心角为51506πα==,设扇形的半径为R , 2215152326S R R ππα=⋅⇒=⨯,解得2R =. 故选:D5.在0360~︒︒的范围内,与510︒-终边相同的角是( )A .330︒B .210︒C .150︒D .30︒【答案】B 【解析】因为510720210︒-=-+,则在0360~︒︒的范围内,与510︒-终边相同的角是210︒, 故选:B.6.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的面积为( ). A .8cm 2 B .10cm 2C .12cm 2D .14cm 2【答案】A 【解析】设扇形的半径为r cm ,∵扇形的周长为12cm ,圆心角为4rad , ∴2412r r +=,得2r,∴此扇形的面积214282S =⨯⨯=(cm 2),故选:A .7.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角} D .以上都不对【答案】D【解析】∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D .8.已知半径为1的扇形面积为38π,则扇形的圆心角为( ) A .316π B .38π C .34π D .32π 【答案】C【解析】由212S r α=得231182πα=⨯⨯,所以34πα=, 故选:C.9.已知某扇形的半径为4cm ,圆心角为2rad ,则此扇形的面积为( ) A .232cm B .216cmC .28cmD .24cm【答案】B【解析】由题意,某扇形的半径为4cm ,圆心角为2rad , 根据扇形的面积公式,可得22211241622S r cm α==⨯⨯= 所以此扇形的面积为216cm . 故选:B.10.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个【解析】若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为1326ππ⨯⨯=,圆的周长为122ππ⨯=,故它们的周长相等,正确;(5)正三角形的边长为1,则三角形对应的扇形面积为2166ππ⨯=,正三角形的面积1112S =⨯⨯=,则一个弓形面积6S π=则整个区域的面积为3(62ππ+= 而圆的面积为2124ππ⎛⎫= ⎪⎝⎭,不相等,故错误; 综上,正确的有2个, 故选:B. 二、多选题11.下列四个选项正确的有( ) A .75-︒角是第四象限角 B .225︒角是第三象限角 C .475︒角是第二象限角 D .315-︒是第一象限角【答案】ABCD对于A 如图1所示,75-︒角是第四象限角; 对于B 如图2所示,225︒角是第三象限角;对于C 如图3所示,475︒角是第二象限角; 对于D 如图4所示,315-︒角是第一象限角. 故选:ABCD .12.下列与412︒角的终边相同的角是( ) A .52︒ B .778︒C .308-︒D .1132︒【答案】ACD 【解析】因为41236052=︒︒+︒,所以与412︒角的终边相同角为36052,k k Z β=⨯︒+︒∈,当1k =-时,308β=-︒,当0k =时,52β=︒,当2k =时,772β=︒,当3k =时,1132β=︒,当4k =时,1492β=︒, 综上,选项A 、C 、D 正确. 故选:ACD.13.下列条件中,能使α和β的终边关于y 轴对称的是( )A .90αβ+=B .180αβ+=C .()36090k k Z αβ︒︒+=⋅+∈D .()360k k Z αβ︒+=⋅∈E.()()21180k k Z αβ+=+⋅∈ 【答案】BE【解析】假设α、β为0180内的角,如图所示,因为α、β的终边关于y 轴对称,所以180αβ︒+=,所以B 满足条件; 结合终边相同的角的概念,可得()()36018021180Z k k k αβ+=⋅+=+⋅∈,所以E 满足条件,ACD 都不满足条件. 故选:BE.14.设α是第三象限角,则2α所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】BD【解析】α是第三象限角,360180360270k k α∴⋅︒+︒<<⋅︒+︒,k Z ∈, 则180901801352k k α⋅︒+︒<<⋅︒+︒,k Z ∈,令2k n =,n Z ∈ 有360903601352n n α⋅︒+︒<<⋅︒+︒,n Z ∈;在二象限;21k n =+,n z ∈, 有3602703603152n n α⋅︒+︒<<⋅︒+︒,n Z ∈;在四象限;故选:B D .三、填空题15.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.【答案】{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z .【解析】在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅ {}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅ {}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈16.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为 .【答案】4【解析】设扇形半径为r ,弧长为l ,则142{2lr l r ==,解得4{2l r ==.17.一个面积为1的扇形,所对弧长也为1,则该扇形的圆心角是________弧度【答案】12【解析】设扇形的所在圆的半径为r ,圆心角为α,因为扇形的面积为1,弧长也为1,可得21121r r αα⎧⋅=⎪⎨⎪=⎩,即221r r αα⎧⋅=⎨=⎩,解得12,2r α==.故答案为:1218.24︒=_________弧度;49π弧度=________. 【答案】215π 80° 【解析】 根据角度制与弧度制的互化公式1801,1180rad ππ==,可得2180241245ππ︒==⨯,441808099π=⨯=. 故答案为:215π,80. 19.(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.(把正确说法的序号都写上)(2)将时钟拨快20分钟,则分针转过的度数是________.【答案】② 120-︒【解析】(1)①锐角的范围为()0,90︒︒是第一象限的角,命题①正确;②第一象限角的范围为()()360,90360k k k Z ⋅︒︒+⋅︒∈,故第一象限角可以为负角,故②错误;③根据任意角的概念,可知小于180°的角,可以为负角,故③错误;(2)将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒故答案为:120-︒20.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为4π,弧所在的圆的半径为6,则弧田的弦AB 长是__________,弧田的面积是__________.【答案】 12π﹣【解析】∵如图,弧田的弧AB 长为4π,弧所在的圆的半径为6,过O 作OC AB ⊥,交AB 于D ,根据圆的几何性质可知,OC 垂直平分AB .∴α=∠AOB =46π=23π,可得∠AOD =3π,OA =6,∴AB =2AD =2OA sin3π=2×6∴弧田的面积S =S 扇形OAB ﹣S △OAB =12⨯4π×6﹣132⨯=12π﹣故答案为:12π﹣21.已知扇形的周长为40,当它的圆心角为____时,扇形的面积最大,最大面积为____.【答案】2 100【解析】设扇形半径为r ,则其弧长为402r -,4020,20r r -><,∴020r <<. ∴221(402)20(10)1002S r r r r r =-=-+=--+, ∴10r =时,max 100S =.此时圆心角为40210210-⨯=. 故答案为:2;100.。
数学必修4知识导航 1.1任意角、弧度 含解析 精品

1.1 任意角、弧度知识梳理一、角的概念的推广1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.旋转开始时的射线叫做角α的始边,旋转终止时的射线叫做角α的终边,射线的端点叫做角α的顶点.2.角的分类:正角、零角、负角.3.象限角如果把角放在直角坐标系内来讨论,使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,那么角的终边落在第几象限,就说这个角是第几象限角.α是第一象限角时,可表示为{α|2kπ<α<2kπ+2π,k ∈Z }; α是第二象限角时,可表示为{α|2kπ+2π<α<2kπ+π,k ∈Z }; α是第三象限角时,可表示为{α|2kπ+π<α<2kπ+23π,k ∈Z }; α是第四象限角时,可表示为{α|2kπ+23π<α<2kπ+2π,k ∈Z }. 4.轴线角(象限界角)当角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,如果角的终边落在坐标轴上,就称该角为轴线角,也叫象限界角.终边落在x 轴正半轴上的角的集合可记作:{α|α=2kπ,k ∈Z };终边落在x 轴负半轴上的角的集合可记作:{α|α=2kπ+π,k ∈Z };终边落在y 轴正半轴上的角的集合可记作:{α|α=2kπ+2π,k ∈Z }; 终边落在y 轴负半轴上的角的集合可记作:{α|α=2kπ+23π,k ∈Z }; 终边落在坐标轴上的角可表示为{α|α=2πk ,k ∈Z }. 5.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+2kπ,k ∈Z }.二、弧度制1.角度制:规定周角的3601为1度的角,这种计量角的度量方法称为角度制. 2.弧度的定义:规定圆弧上弧长等于半径的弧所对的圆心角为1弧度的角,即3601周角=1°,π21周角=1弧度. 3.弧度与角度的换算360°=2π rad ,180°=π rad ,1°=180πrad≈0.017 45 rad ,1 rad=(π180)°≈57.30°=57°18′.4.弧长公式:l=|α|·r(其中r 为扇形的半径,α为扇形圆心角的弧度数).5.扇形的面积公式:S 扇形=21l·r=21|α|r 2(其中r 为扇形的半径,α为扇形圆心角的弧度数). 知识导学要理解任意角概念,可创设情境“转体720°,逆(顺)时针旋转”,从而知晓角有大于360°角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、象限界角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;再通过创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式,以具体的实例学习角度制与弧度制的互化,能正确使用计算器.疑难突破1.弧度制与角度制相比,具有哪些优点?剖析:(1)用角度制来度量角时,人们总是十进制、六十进制并用的.例如α=66°32′2″,其中66、32、2都是十进数,而度、分、秒之间的关系是六十进(退)位的.于是,为了找出与角对应的实数(我们学的实数都是十进制),需要经过一番计算,这就太不方便了.但在用弧度表示角时,只用十进制,所以容易找到与角对应的实数.(2)弧度制下的弧长公式l=|α|r 、扇形面积公式S=21|α|r 2,与角度制下的弧长公式l=180r n π、扇形面积公式S=3602r n π比较,不但具有更简洁的形式,而且在计算弧长和扇形面积时,也更为方便.2.为何说三角函数看成是以实数为自变量的函数时,角的集合与实数集R 是一一对应关系? 剖析:在用弧度制或角度制度量角的前提下,角的集合与实数集R 建立了一种一一对应关系:每一个角都有唯一的一个实数(即这个角的角度数或弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(角的角度数或弧度数等于这个实数)与它对应.于是,有了角的集合与实数集R 的一一对应关系,就可以把三角函数看成是以实数为自变量的函数.要注意角度制是60进位制,类似22°30′这样的角,应该把它化为十进制22.5°,它与实数22.5对应,但弧度制不存在这个问题 ,因为弧度制是十进制的实数.。
(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。
教师版任意角与弧度制

一、任意角 1、角的推广角,一条射线绕着它的端点旋转得到的图形叫做角。
①、按逆时针方向旋 转所形成的角叫正角 ②、顺时针方向旋转所形成的角叫负角, ③、当一条射线没有作任何旋转时,称为零角 2、象限角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角 象限角的注意①主要是固定好始边看终边 ②坐标轴上的角不叫象限角第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限{}36090360180,k k k α⋅+<⋅+∈Z 第三象限{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 3、终边相同的角的表示S={β|β=α+k ×3600,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和 任意两个角α,β同终边的条件是:πβαk 2=-(或︒⨯360k )Z k ∈4、角与二倍角、半角的象限关系。
5、 已知α是第二象限的角,判断3α所在的象限.探索:若α分别在第一、二、三、四象限,,,2,323αααα分别在第几象限? 经典考点一、任意角的概念问题1.设集合{|90E x x =是小于的角},{|F x x =是锐角},={|G x x 是第一象限的角}, {|M x x =是小于90,但不小于0的角},则下列关系成立的是( ).A .B .C .(E G ) D .G M F =2、已知集合=A {第一象限的角},=B {锐角},=C {小于90o的角},下列四个命题: ①C B A == ② C A ⊂ ③A C ⊂ ④B C A =⊂正确的命题个数是 ( ) A .1个 B.2个. C.3个. D.4个.3、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα经典考点二、终边相同的角以及象限角1、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.写出-720°到720°之间与-1068°终边相同的角的集合___________________.3.与610°角终边相同的角表示为 A. k ·360°+230°(k ∈Z ) B. k ·360°+250°(k ∈Z ) C. k ·360°+70°(k ∈Z ) D. k ·360°+270°(k ∈Z )4.将885- 化为360(0360,)k k Z αα+⋅≤<∈的形式是( ). A .165(2)360-+-⨯B . 195(3)360+-⨯C .195(2)360+-⨯D .165(3)360+-⨯5.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z}(B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z}6.若{|360,}A k k Z αα==⋅∈ ;{|180,}B k k Z αα==⋅∈ ;{|90,}C k k Z αα==⋅∈,则下列关系中正确的是( ). A .A B C == B .A B C =⊆C .A B C ⊆=D .A BC 刎7.已知集合{|6030,}M x x k k Z ==⋅+∈,{|3060,}N y y n n Z ==⋅+∈, 若M N α∈ ,且9090α-<< ,则由角α组成的集合为__________. 8、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|,{}Z k k x k x B ∈⋅<<-⋅=,360210360| ,求B A ,B A .9.已知{|(1),}4kk k Z πθααπ∈=+-⋅∈,判断角θ所在象限.10.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 经典考点三、分角象限的确实1.若α是第四象限角,则180°-α是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.若α是第四象限角,则180°+α一定是( )Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角 3.角α=45°+k·90°的终边在第 象限.4.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α(B) 90°+α (C)360°-α (D)180°+α5.下列说法中正确的是( ).A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角D .若360()k k Z βα=+⋅∈,则α与β终边相同6、.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.经典考点四、区域角的表示 1.若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则集合B A 为( ).A .[1,0][,1]3π- B .[,2]3π C .[2,0][,2]3π- D .[2,][,2]43ππ- 2、写出(0)y x x =±≥所夹区域内的角的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角 知识梳理:
正角:按照 方向转定的角。
零角: 旋转的角。
负角:按照 方向旋转的角。
例1、(1)时针走过2小时40分,则分针转过的角度是 (2)将分针拨快10分钟,则分针转过的弧度数是 . 例2、30︒ ;390︒ ;-330︒是第 象限角 300︒ 、 -60︒是第 象限角
585︒ ; 1180︒是第 象限角 -2000︒是第 象限角。
例3、(1)A={小于90°的角},B={第一象限的角},则A ∩B= (填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角}
④以上都不对
(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A∩C
B .B∪C=
C C .A ⊂C
D .A=B=C
例3、写出各个象限角的集合: 例4、若α是第二象限的角,试分别确定2α,2
α
的终边所在位置.
拓展:已知α是第三象限角,问
3
α
是哪个象限的角?
终边相同的角:所有与α终边相同的角连同α在内可以构成一个集合 例1、(1)若
θ角的终边与5
8π角的终边相同,则在[]π2,0上终边与4
θ的角终边相同的角
为 。
(2)若βα和是终边相同的角。
那么βα-等于 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)
210-; (2)731484'-
.
例3、求θ,使θ与
900-角的终边相同,且[
]
1260180,
-∈θ.
2、终边在x 轴上的角的集合: 终边在y 轴上的角的集合: 终边在坐标轴上的角的集合:
3、终边在y =x 轴上的角的集合: 终边在x y -=轴上的角的集合:
4、若角α与角β的终边关于x 轴对称,则角α与角β的关系: 若角α与角β的终边关于y 轴对称,则角α与角β的关系: 若角α与角β的终边关于原点对称,则角α与角β的关系:
例1、若θα+⋅=
360k ,),(360Z m k m ∈-⋅=θβ
则角α与角β的中变得位置关系是( )。
A.重合
B.关于原点对称
C.关于x 轴对称
D.有关于y 轴对称 例2、将下列各角化成0到π2的角加上)(2Z k k ∈π的形式 (1) π3
19
(2) 315-
例3、设集合{
}
Z k k x k x A ∈+⋅<<+⋅=,30036060360|
,
{}
Z k k x k x B ∈⋅<<-⋅=,360210360| ,求B A ,B A .
例1、若
13590<<<αβ,求βα-和βα+的范围。
1、终边在第二象限的角的集合可以表示为( )
A. 00
{|90180}αα<< B. 0
{|270360180360,}k k k Z αα-+⋅<<-+⋅∈
C. 0000{|90180180180,}k k k Z αα+⋅<<+⋅∈
D. 0000
{|270180180180,}k k k Z αα-+⋅<<-+⋅∈ 2、已知一扇形的周长为20
,当这个扇形的面积最大时,半径的值为()A. 4cm B. 5cm C. 6cm D. 7cm
3、下列角终边位于第二象限的是( )A. B.
C.
D.
4、与角3π-
终边相同的角是( )A. 53π B. 116π C. 56π- D. 23
π
- 5、α是第二象限角,则2
α
是( )
A. 第一象限角
B. 第二象限角
C. 第一象限角或第三象限角
D. 第一象限角或第二象限角
6、在区间(0,2π)范围内,与-终边相同的角是 A. B. C. D.
7、已知A={第一象限角},B={锐角},C={小于的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 8、若角4α=-,则α的终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
弧度与弧度制 1、弧度与弧度制:
弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角。
2、角度制与弧度制的换算
弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360︒= rad 180︒= rad
∴ 1︒=rad rad 01745.0180≈π
'185730.571801
=≈⎪⎭⎫ ⎝⎛=πrad
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067
化成弧度 例2、 把rad π5
3
化成度
例3、将下列各角从弧度化成角度 (1)36
π
rad (2)2.1 rad (3) rad
π5
3
例4、用弧度制表示:1、终边在x 轴上的角的集合
2、终边在y 轴上的角的集合
弧长公式和扇形面积公式
r l α= ; 22
1
21r lR S α==
例1、已知扇形的周长是6 cm ,面积是2 cm 2
,则扇形的中心角的弧度数是 . 例2、若两个角的差为1弧度,它们的和为
1,求这连个角的大小分别为 。
例3、 直径为20cm 的圆中,求下列各圆心所对的弧长
例4、(1)一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?
(2)一扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?
例5、(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;
(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?
o r C
2rad 1rad r l=2r o A
A B
1、半径为cm π,中心角为060动点扇形的弧长为( )
A. 23cm π
B. 3cm π
C. 23
cm π
D.
223cm π 2、若一圆弧长等于它所在圆的内接正三角形的边长,则该弧所对的圆心角弧度数为( )
23π D. 3
π
3、设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度是_________.
4、已知扇形周长为40cm ,面积为100cm 2
,则它的半径和圆心角分别为_______和_______; 5、已知扇形的周长为,当扇形面积最大时,扇形的圆心角 .
6、若角α的终边与6
π
的终边关于y 轴对称,则角α的取值集合为__________.
7、已知3
π
α=
.(1)写出所有与α终边相同的角;(2)写出在()4,2ππ-内与α终边相同的角;
(3)若角β与α终边相同,则2
β
是第几象限的角?
8、已知扇形的圆心角为α,所在圆的半径为r .(1)若0120α=,6r =,求扇形的弧长. (2)若扇形的周长为24,当α为多少弧度时,该扇形面积S 最大?并求出最大面积.
9、已知扇形的圆心角是α,半径为R ,弧长为l. (1)若α=60°,R =10cm ,求扇形的弧长l.
(2)若扇形的周长是20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? (3)若α=3
π
,R =2cm ,求扇形的弧所在的弓形的面积.。