Thermo-hydro-mechanical coupled mathematical model for controlling the pre-mining coal sea
用于高温气冷堆的核石墨(英文)

第32卷第3期 2017年6月新型炭材料NEW CARBON MATERIALSVol. 32 No. 3Jun. 2017文章编号:1007-8827(2017)03鄄0193-12用于高温气冷堆的核石墨周湘文,唐亚平,卢振明,张杰,刘兵(清华大学核能与新能源技术研究院,先进核能技术协同创新中心,先进反应堆工程与安全教育部重点实验室,北京100084)摘要:自1942年首次在CP-1反应堆中使用以来,核石墨因其优异的综合性能,在核反应堆特别高温气冷堆中被广泛使 用。
作为第四代候选堆型之一,高温气冷堆主要包括球床堆和柱状堆两种堆型。
在两种堆型中,石墨主要用作慢化剂、燃料 元件基体材料及堆内结构材料。
在反应堆运行中,中子辐照使得石墨的相关性能下降甚至可能失效。
原材料及成型方式对 于石墨的结构、性能及其在辐照中的表现起到决定性的作用。
辐照中石墨微观结构及尺寸的变化是其宏观热力学性能变化 的内在原因,辐照温度及剂量对于石墨的结构及性能变化起决定性作用。
本文介绍了高温气冷堆中核石墨的性能要求及核 石墨的生产流程,阐述了不同温度及辐照条件下石墨热力学性能及微观结构的变化规律,并对当前国内外核石墨的研究现状 及未来核石墨的长期发展如焦炭的稳定供应和石墨的回收进行讨论。
本文可为有志于研发用于未来我国商业化的高温气冷 堆中的核石墨的生产厂家提供参考。
关键词:核石墨;高温气冷堆;辐照;微观结构;物理、力学及热学性能中图分类号:TQ127.1 + 1文献标识码:A基金项目:国家公派留学基金(201406215002);国家科技重大专项(ZX06901);清华大学自主科研项目(20121088038).通讯作者:周湘文,副教授,博士. E-mail: xiangwen@ . cnNuclear graphite for high temperature gas-cooled reactorsZHOU Xiang-wen,TANG Ya-ping,LU Zhen-ming,ZHANG Jie,LIU Bing (Institute o f Nuclear and New Energy Technology o f Tsinghua University,Collaborative Innovation Center o f Advanced Nuclear Energy Technology,the key laboratory o f advanced reactor engineering and safety,Ministry o f Education,Beijing100084,China)Abstract: Since its first successful use in the CP-1 nuclear reactor in 1942,nuclear graphite has played an important role in nuclear reactors especially the high temperature gas-cooled type (HTGRs) owing to its outstanding comprehensive nuclear properties. As the most promising candidate for generation IV reactors,HTGRs have two main designs,the pebble bed reactor and the prismatic reactor. In both designs,the graphite acts as the moderator,fuel matrix,and a major core structural component. However,the mechanical and thermal properties of graphite are generally reduced by the high fluences of neutron irradiation of during reactor opera- tion,making graphite more susceptible to failure after a significant neutron dose. Since the starting raw materials such as the cokes and the subsequent forming method play a critical role in determining the structure and corresponding properties and performance of graphite under irradiation,the judicious selection of high-purity raw materials,forming method,graphitization temperature and any halogen purification are required to obtain the desired properties such as the purity and isotropy. The microstructural and corresponding dimensional changes under irradiation are the underlying mechanism for the changes of most thermal and mechanical properties of graphite,and irradiation temperature and neutron fluence play key roles in determining the microstructural and property changes of the graphite. In this paper,the basic requirements of nuclear graphite as a moderator for HTGRs and its manufacturing process are presented. In addition,changes in the mechanical and thermal properties of graphite at different temperatures and under different neutron fluences are elaborated. Furthermore,the current status of nuclear graphite development in China and abroad is discussed,and long-term problems regarding nuclear graphite such as the sustainable and stable supply of cokes as well as the recycling of used material are discussed. This paper is intended to act as a reference for graphite providers who are interested in developing nuclear graphite for potential applications in future commercial Chinese HTGRs.Key words:Nuclear graphite;High temperature gas-cooled reactors;Irradiation;Microstructure;Physical,mechanical and thermal propertiesReceived date:2017-02-26;Revised date:2017-05-13Foundation item:State Scholarship Foundation of China (201406215002) ;Chinese National S&T Major Project (ZX06901) ;Tsinghua University Initiative Scientific Research Program (20121088038).Corresponding author:ZHOU Xiang-wen,Associate Professor. E-mail: xiangwen@ tsinghua. edu. cnEnglish edition available online ScienceDirect ( http://www. sciencedirect. com/science/journal/18725805 ).DOI:10. 1016/S1872-5805(17)60116-1• 194•新型炭材料第32卷1IntroductionThe phrase nuclear graphite began to be used at the end of 1942 when the first nuclear fission occurred in the graphite moderated nuclear reactor CP-1[I]. From the early 1960s, the United Kingdom, the United States and Germany began to develop high temperature gas-cooled reactors (HTGRs). Japan began the construction of a 30 MWth high temperature test reactor (HTTR) in 1991, which reached its first criticality in 1998. In China, a 10 MW experimental high temperature gas-cooled reactor ( HTR-10 )[23], whose design started in 1992 and construction commenced in 1995, reached it criticality in the end of 2000, and its full power in the beginning of 2003. Since the Fukushima accident in March, 2011, the public has paid more and more attention to the safety of nuclear power. As a candidate reactor for the Gen- eration-IV reactors, the construction of a 2x250 MW high temperature gas-cooled reactor pebble-bed module (HTR-PM) with inherent safety is underway in Shidao Bay, Rongcheng of Shandong province, China and is expected to complete in 2017[4]. In both of the research and commercial HTGRs, the reactor reflectors and cores have been constructed by structural graphite components. Past designs represent two primary core concepts commercially favored for HTGRs :the prismatic block reactor (PM R) and the pebble- bed reactor (PB R)[2]. In both of the HTGR concepts the polycrystalline graphite not only is a major structural component which offers thermal and neutron shielding and provides channels for fuel and coolant gas, channels for control and safety shut off devices, but also acts as a moderator and matrix material for the fuel elements and control rods and a heat sink or conduction path during reactor trips and transients.The polycrystalline graphite exhibits significant importance in HTGRs because of its outstanding nuclear physical properties such as high moderating and reflecting efficiency, a relatively low atomic mass and a low absorption cross-section for neutrons, in addition to high mechanical strength, good chemical stability and thermal shock resistance, high machinabili- ty and light weight[5]. The following example illustrates the importance of nuclear graphite in more details. For the thorium high temperature reactor ( TH- TR) in Germany with a power of 300 MWe, nearly 400 000 kg of nuclear graphite has been used[2] •In China, approximately 60 tons of graphite was used in HTR-10[3], and more than 1000 tons of nuclear graphite will be used in HTR-PM as the structural material and matrix graphite of pebble fuel elements ⑷. The raw materials of matrix graphite of fuel elements for HTR-10 and HTR-PM such as natural flake graphite and artificial graphite powder are supplied by Chinese domestic providers[6,7]. The behavior of the individual fuel particles and the matrix graphite material in which the particles are encased are not considered here. However, it should be noted that although the graphite technology associated with the matrix graphite is related to that of the main structural graphite such as the moderator there are differences as non- graphitized materials and natural flake graphite are used in the matrix graphite. Because so far no qualified domestic nuclear graphite is available, all the structural nuclear graphite materials for HTR-10 and HTR-PM are imported from Toyo Tanso of Japan. In April 2015, China Nuclear Engineering Corporation Ltd ( CNEC) announced that its proposal for two commercial 600 MWe HTGRs (HTR-600) at Ruijin city in Jiangxi Province had passed an initial feasibility review. The HTR-600 is planned to start construction in 2017 and for grid connection in 2021[8]. In order to achieve the economy and security of supply, the structural nuclear graphite must be provided by domestic providers in China in the future. Fortunately, with the rocketing development of photovoltaic industry in China, several Chinese companies have emerged which can produce the fine-grained isotropic, isostatic molded, high strength graphite in large scale. Some of the manufacturers with state-of-the-art graphite manufacture capabilities should be chosen as the potential candidate providers of the structural nuclear graphite for HTGRs based on qualification programs. However, during the operation of a reactor, many of the graphite physical properties are significantly changed due to the high fast neutron doses. The physical, mechanical and chemical properties of graphite can be influenced negatively by irradiation induced damage, which would lead to the failure of graphite components. In pebble-bed HTGRs such as HTR-PM in China, the core support graphite structure is particularly considered permanent, although it is expected that certain high neutron dose components ( inner graphite reflector) will be replaced during the whole lifetime of the reactor. During the life time of the reactor, the reflector graphite would be subjected to a very high integrated fluence of fast neutrons of around 3x1022n/cm2(E>0.1M eV)[910]. Therefore, the pre-irradiation and post-irradiation comprehensive properties of nuclear graphite candidates must be thoroughly examined and evaluated. Those properties of nuclear graphite are strongly dependent on the extent of anisotropy, grain size, microstructural orientation and defects, purity, and fabrication method.In this paper, basic nuclear requirements of nu第3期ZHOU Xiang-wen et a l:Nuclear graphite for high temperature gas-cooled reactors•195.clear graphite are presented and the specifications such as the manufacture, material properties with three primary areas (physical, thermal and mechanical) and irradiation responses of nuclear graphite suitable for HTGRs are elaborated, which could be a reference for the potential providers who are anxious to develop the nuclear graphite for future commercial HTGRs of China. The long-term considerations such as those involving the cokes and recycle for nuclear graphite are also discussed.2 Nuclear requirements of graphite for HTGRs2.1 Fission reactions with neutronsThe tremendous energy produced in HTGRs is from the fission of isotopes such as 92 U233,92 U235,and 94Pu239 . Fission of a heavy element,with release of energy and further neutrons,is usually initiated by an impinging neutron. The fission of 92U235 can be described as:92『5+。
PPT化工设备与程序控制热电偶式温度计

熱電偶式溫度計構造
補償導線:由於熱電偶的工作端(測量端)與冷端(參比 端)離得很近,而且冷端又暴露在工作環境之 中,因而容易受到周圍工作環境溫度波動的影 響,所以冷端溫度難以保持恒定,造成測量不 準。實際應用是用專用補償導線,將熱電偶的 冷端延伸至溫度較低和比較穩定的地方。在使 用補償導線時,要注意兩個問題。其一,補償 導線的型號要與熱電偶的型號相配。其二,熱 電偶與補償導線連接端所處的溫度不超過100 ℃,否則補償導線所產生的金屬導體的溫差電 勢不能忽略。
熱電偶式溫度計原理
中間溫度定律(Law of intermediate temperature):
如右圖所示,A 與B 所形成之熱電偶, 兩接合點之溫度為t1與t2時之E 為E12 ,t2與t3 時之E為E23 的話, E12 + E23 = E13。 此時,稱t2 為中間溫度。以中間溫度 t2 選擇如0℃這樣的標準溫度,求得 相對0℃任意的溫度t1、t2、t3‧‧‧tn 之熱電動勢,任意兩點間之熱電動勢 便可以計算求得。
熱電偶式溫度計原理
湯木生效應(Thomson effect): ☆在均勻質之金屬線上,若二端之溫度不同,即發生電 動勢(emf),此電動勢與金屬線兩端之溫度差成正比 。 ☆所得之結論為:電流通過一個有溫度梯度的導線時, 電流有增加或減少溫度差之現象,稱之為湯木生效應 。 ☆若電流方向相反,產生相反的反應,故亦稱為可逆性 效應。
熱電偶式溫度計材料
熱電偶材料須具備的條件 ☆ 熱電效率須較高,亦即能發出較大之emf。
☆ 熱電動勢較穩定,且長期使用亦不發生變化。
☆ 具有抗蝕,抗氧化及抗濕等性質。 ☆ 具有較高之熔點。 ☆ 易製造,有互換性及價格較廉。
MolecularThermodynamicsPDF:分子热力学的PDF

Molecular ThermodynamicsBy John SimonMolecular Thermodynamics Details:Molecular Thermodynamics: Donald A. McQuarrie, John D. Simon ...Evolved from McQuarrie and Simon's best-selling textbook, Physical Chemistry: A Molecular Approach, this text focuses in on the thermodynamics portion of the course. Thermodynamics - Wikipedia, the free encyclopediaThermodynamics is a branch of natural science concerned with heat and its relation to energy and work. It defines macroscopic variables (such as temperature, internal energy, entropy, and pressure) that characterize materials and radiation, and explains how they are related and by what laws they ...Molecular Thermodynamics - Johns Hopkins UniversityMolecular Thermodynamics. The explosion in structural data on bio-molecules provides new opportunities to understand their function in terms of their structure. Thermochemistry - Wikipedia, the free encyclopediaThermochemistry is the study of the energy and heat associated with chemical reactions and/or physical transformations. A reaction may release or absorb energy, and a phase change may do the same, such as in melting and boiling. Thermochemistry focuses on these energy changes, particularly on ...Molecular Thermodynamics, Donald A. McQuarrie and John D. SimonMolecular Thermodynamics, by Donald McQuarrie and John Simon, published in 1999 by University Science Books.Statistical Molecular Thermodynamics | CourseraStatistical Molecular Thermodynamics is a free online class taught by Dr. Christopher J. Cramer of University of MinnesotaMolecular Thermodynamics - Donald Allan McQuarrie, John ...Evolved from McQuarrie and Simon's best-selling Physical Chemistry: A Molecular Approach, this text follows a similar path by first covering the principles of quantum mechanics before engaging those ideas in the subsequent development of thermodynamics. Although many of the chapters are similar ...Introduction to Molecular ThermodynamicsIntroduction to Molecular Thermodynamics. by Robert M. Hanson and Susan Green, St. OlafCollege.enquiries:******************.Publisher'swebsiteforthisbookMolecular Thermodynamics (Physical chemistry monograph series ...Molecular Thermodynamics (Physical chemistry monograph series) [Richard E. Dickerson] on . *FREE* shipping on qualifying offers.Molecular Thermodynamics — ITQB - Universidade Nova de LisboaMolecular Thermodynamics of Liquids and Liquid Solutions, in particular, studies of Ionic Liquids and ionic liquid-containing systems constitute the main activity.Molecular thermodynamics of fluid-phase equilibria - J. M ...Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of ...Molecular thermodynamics - definition of Molecular ...ther·mo·chem·is·try (thûr m-k m-str) n. The chemistry of heat and heat-associated chemical phenomena. ther mo·chem i·cal (--k l) adj. ther mo·chem ist n.Prausnitz Group Home Page - University of California, BerkeleyMolecular Thermodynamics John M. Prausnitz. Professor, University of California, Berkeley Faculty Senior Scientist, Lawrence Berkeley National LaboratorymThermoWait for more... ... The website is going through major upgrade ,, wait for the new look soon :)Molecular thermodynamics - HmolpediaAn encyclopedia of topics on the thermodynamics, chemistry, and physics of human existence.Molecular Thermodynamics of Fluid-Phase Equilibria / Edition ...The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase ...Molecular Thermodynamics of Fluid-Phase EquilibriaThermodynamics Home - Chemical Engineering - Thermodynamics: Molecular Thermodynamics of Fluid-Phase Equilibria by Rudiger N. Lichtenthaler, Edmundo Gomes De Azevedo, John M. Prausnitz, Edmundo G. De AzevedoMolecular thermodynamics definition of Molecular ...thermochemistry [¦th?r·m??kem·?·str?] (physical chemistry) The measurement, interpretation, and analysis of heat changes accompanying chemical reactions and changes in state.Molecular Thermodynamics by Donald A. McQuarrie — Reviews ...Molecular Thermodynamics has 7 ratings and 1 review. Jacob said: This books is incredible. It's extremely comprehensive. If you love physical chemistry a...Introduction to Molecular Thermodynamics, by Robert M. Hanson ...Introduction to Molecular Thermodynamics, by Robert M. Hanson and Susan Green , University Science Books, copyright 2008Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2 - Free ebook download as PDF File (.pdf), Text file (.txt) or read book online for free.Molecular thermodynamics (Book, 1999) []Get this from a library! Molecular thermodynamics. [Donald A McQuarrie; John D Simon]Molecular Thermodynamics - Download for freeMolecular Thermodynamics download from FileSnail - 3188189138905X pdf, Thermodynamics Processes an rar, FilePost DepositFiles and RapidShare files. Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz ...Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz- 2th Edition ) - Free ebook download as Text file (.txt), PDF File (.pdf) or read book online for free. k Molecular thermodynamics (Open Library)Molecular thermodynamics by Richard Earl Dickerson, 1969,W. A. Benjamin edition, in EnglishMolecular thermodynamics - definition of Molecular ...Molecular thermodynamics. Molecular Time Scale Generalized Langevin Equation Molecular Typing by Reverse Dot-Blotting Molecular Typing Working Group Molecular Unit Cell Approximation molecular velocity Molecular vibration Molecular Vibrational SpectrometerCenter for Molecular & Engineering ThermodynamicsThe University of Delaware’s Thomas H. Epps, III, is one of 30 early-career engineers nationwide invited to attend the 2013 European Union-United States Frontiers of Engineering Symposium to be held Nov. 21-23 in Chantilly, France.ChemE | Thermodynamics and Molecular ComputationsThermodynamics and Molecular Computations. Thermodynamics governs processes as diverse as chemical production, bioreaction, creation of advanced materials, protein separation, and environmental treatment.Molecular Thermodynamics Mcquarrie : ?g Rt K Q. Molecular ...pdf document tagged with molecular thermodynamics mcquarrie : ?G RT K Q. user guide pdf categorized in molecular thermodynamics mcquarrieMolecular Thermodynamics of Fluid-Phase Equilibria by John M ...Molecular Thermodynamics of Fluid-Phase Equilibria has 7 ratings and 1 review. Theclassic guide to mixtures, completely updated with new models, theorie...。
中英文流体机械设备翻译词汇大全

towerreactorfluidfluid characteristicsgas-holderbibbPiping componentPipeFittingBendFlangeGasketPiping SpecialtyEnd ConnectionWeldingVarieties of WeldingType of WeldingWelding PositionDefects of WeldingHeat TreatmentConventional Heat Treatment Surface Heat Treatment InspectionTestFerrous MetalNon-metallic MaterialPiping Material Specification Material Take-off45°lateralEquipment NameVesselPipe Supports and Hangers Attachment of SupportType of Pipe Support spectacle blindquarter bendlong radius elbowdouble bevel grooveL-type supportO-ring“S”bendT-boltT-type strainerT-barcombination U and V grooveU-bolt“U”bendX-ray radiographydouble V groovey-type strainergamma radiographysafety factorerectionammonia gasreinforcing saddlessaddlefemale faceAustenitic stainless steel austenitic stainless steel pipe octagonal ring gasketdrawingcrateissueofficehalf couplingsemi-killed steeltracing pipetracing steampackingsaturated steamcold insulationhot insulationinsulation blockquoted pricequotationrupture diskexplosive weldinglimit of explosionnorthspare partsstand-byback to backstyrene-rubberpump housescalespecific heatspecific gravitywall thicknessschedule numbergratelightning preventeritemizeditemized equipmentflat nuttransmittertransformer roomelevationtitle blockstandardstandard pipe supportstandard drawingsurface preparationacrylonitrile-butadiene-styreneacrylic resinwave crestwave troughcorrugated metal gasket with asbestos inserted corrugated metal gasketbellow expansion jointglassglass clothglass tubeglass woo1gage glassBirmingham wire gagePoisson ratiomake-upreinforcement padstainless steelstainless steel pipeBrinell hardnessdepartmentbill of materialmaterial status reportProcurement; Purchasepurchase specificationpurchasing specification summary sheet referencereference drawingresidual stresschannelslot weldinggroove facegrooved metal gasketsketchthermo-paintblanklong radius returnslotnormally closednormally openvendor quotationvendor coordinative meeting future areafree on truckover-dimension cargo ultrasonic test superimposed loadclarifiersettlercountersunk screwlined pipeproductproduction design phase package unitcontractionsocket weldedsocket welding endsocket welding flange sockoletbell endgravity settlerorange colourendurance limitserratedfinshock loadimpact testimpact valueflush valveevacuationoutletcenter line of discharge preliminary stagefree on boardwindowblow-offsoot blowerpurgeperpendicularvertical installafion verticalalkyd enamelenamelmagnetic particle test roughnessstrainercoarseexpeditingbrittlenessquenchingextractoralignment tolerancemismatchlap weldinglapped jointlarge end threadlarge end plainbarometric legatmospheric pollutionatmosphereover haulcode numberside outlet elbowasbestos rope with inconeleye rodhinged expansion jointtied expansion jointpin with holebase teebase elbowstrap clampholdsingle bellowbendsingle U groovemonomersingle actionpacked slip joint spring washerspring hangerspring steelspring constant hangerresting type spring constant support spring supportresting type spring supportspring constantspring bracingelastic limitmodulus ofelasticitylightnitrogencanduitthermal conductivity factorconduit tubeguideroadstraight teestraight crossplasma weldingisothermal quenchingisothermal annealinglow alloy steellow-carbon steellow pressurelow pressure steambase plateflat on bottomprimary coatanchor boltfloor drainground levelabove ground pipingsloptankunder ground pipingearthquakeseismic loadseismic co emc ientprimary valvespot weldingpittingelectrical tracingarc weldingelectro corrosiontelephoneelectric heatercable trenchcurrentelectrical panelcapacitanceelectric-fusionelectric fusion weldingwirevoltageelectroslag weldingresistanceelectric resistance weldingelectric-resistance welded steel pipe backing weldspacertype of gasketwasherlifting lughangerhoisting beamdaviterection openingregulating valvequenching and temperingwing nutnitrile butadiene rubbertop plateJack screwflat on toppurchasing orderlocationtack weldpreset piecesdowel pindirectional stoplimit stopeastdynamic loaddynamic analysisplugplatingchromium-plated, chrome-plated galvanized steel pipe galvanized plain sheet galvanized wiregalvanized wire meshshort radius returnshort radius elbowshort codenipoletnipplereduction of areasection modulusslack quenchingforged steelwrought-iron pipeswageforgingforged valveforged steel clevisreducing swagebuild up weldingsymmetricbutt weldingbutt weldedbutt welded end welding neckflange welding neck collar convection section alignmentmultiple bellow multiport valve trunnionsecondary stresstwo-axis stopfoaminghair feltvalve pitflanged endblind flange, blind protective discflange facingfacing finishflangedlapped pipe end reactionsquare washersquare barsquare nutsquare head bolt orientationdirectionexplosion door moisture-proof packing winterizingcorrosion inhibitor anti-corrosive paint fire-proofingfire dooranti-sweatwater-proof packing rust-proof packing antirust paintventvent valvevent holenon-metallic gasket unpaved area nonferrous alloynon-rotary valvewaste heat boilerrimmed steelvictaulic couplingsubcontractorDecibelseparatorkey plananalytical engineering phaseanalyzer roommolecular sievephenolic paintincineratorwind loadwind velocityback run weldingpeak stresscrevice corrosionfuran resinfluoroplasticssymbolradiant sectionauxiliary boilercorrosioncorrosion testcorrosion allowanceappendant displacement; externally imposed displacement appendixaccessoryclad steelclad pipedry gas-holderdryerinduction hardeningrigidrigid hangerplatestrap steelsteel pipesteel pipe flangesteel ringsteel structuretop of steelreinforced concrete constructioncableleverhigh silicon cast ironhigh alloy steelhigh strength steelhigh-carbon steelhot quenchinghigh pressurehigh pressure steam isolating valvepartition wallinsulationsound insulation chromium steelchrome-molybdenum steel chromium-nickel steel inconelfeed water heaterroot valveroot gaproot crackincomplete penetration locker roomplantshop weldplant northplant limitengineering specification engineering manual engineering drawingtool steelman-dayman-hourindustrial waste water process airprocess flow diagram process gasprocess waterprocess liquidI-beamworking procedureworking pointworking loadoperating temperature operating pressure nominal pressurenominal diameterutility flow diagram metric ibreadpower factortapped; tappingsuppliercopolymerresonancethroughboaom of trenchmemberestimated priceestimatefixed saddlefix pointanchornatural frequencynatural frequency mode client; customer observation door, peep door pipe attachmentpiping layoutpiping arrangement plan piping classclass designationpiping attachmentpiping andline spanpiping flexibility analysis piping designpiping requisition sheet piping studypiping elementpiping support drawing bouom of pipetop of pipespool piecesleeperpiping trenchline spacingfitting to fitting coupling, full coupling clampshellnozzlelist of nozzlesnozzle orientationpipe rackpipe threadcapshoenetwork of pipespiping systemline listpipetubeinvertmoment of inertiaclosetgroutinggroutingdrumtank yardsmoothsmooth raised faceplanning stagecalcium silicatealuminosilicate fiberkieselguhrrolling supportboilerboiler feed waterfilterethylene perchloride paintsuperheated susceptivitysuper heatersuperheated steamover-sea mean levelburn throughwelding plate flangewelding endsymbol of weldwelded steel pipewelding procedure qualification test welding inspectionweld crackweldingiinebranch pipe welded directly to the run pipe weldoletoverlapwelding wirewelding electrodesynthesis towersynthetic rubberalloy steelalloy steel pipestructural alloy steelloadload caseconstant hangergirderredafter coolerpit; cratersliding saddlesliding supporttackle-blockseptic tankchemical analysis chemical cleaning chemical sewagering joint circumferential band ambient temperature ambient temperaturering joint faceeye boltring joint metal gasket flat ring gasketcirele bendepoxy, epoxy resin epoxy resin paintknock out drumheat exchangeryellowbrassgreygrey cast irontemper brittleness direct-fired heater recoverytemperingrotary kilnsummary sheetinter department check mixing valvemixertop of concretelive loadunionflareflare gasflame surface quenching maehine bolt mechanical vibration foundation; footingbasic designexcitationpolar moment of inertiadead-soft annealingultimate strengthquenchercatch basindrip legdrip valvelumped massextrudingmeasuring tankcomputer aided designcalculation sheettechnical specificationextra heavy, extra strongfeed tankstiffienerreinforcing ringheatercleatelastomer with cotton fabric insertionspiral-wound metal gasket with asbestos fillerelastomer with asbestos fabric insertionelastomer with asbestos fabric insertion and with wire r jacketed line, jacketed pipingjacketed valveslag inclusionmethanatortop of supportintermittent weldingdesuperheatersnubberdamping deviceshear stressinspection holeinspectionpart humbetconstructionbuildingkeyalternating stressdelivery orderalternating currentadhesivegussetangle steelhexagonal steel barfillet weldingangular rotationagitatorcontact corrosiongrounding; easthingearth lugreceivercontinue on drawingmatch linenodenode numberpitchcrystallizerbattery limit conditionoff sitemicroscopic testflat metal jacketed asbestos filled gasket clad; metal jacketing; cladding metalgas metal arc weidingmetal hosemetallic stuffingribfeedPTFE impregnated asbestos gasketTeflon impregnated asbestos packing intergranular corrosionfractionating towerfinished, finewellpurifiernet positive suction headnet weightstatic electricitydead loadlocal panelspot annealingsevere cyclic conditiondistancepolyurethanepolyurethanepolyurethane paintpolystyrenepolypropylenepolybutylenepolymerpolymethyl methacrylatepolyvinyl chloridepolyvinylidene fluoride polytetrafluoroethylenePTFE sliding platepolymerizerpolycarbonatepolyolefinpolyamidepolyethylenepolyester resinpolyester fibersabselute elevationroot mean squarehomopolymeras built drawingstart-upkick-off meeting; launching meeting cotter pintensile strengthbending strengthcompressive strengthhardenabilityadjustable cleatadjustable supportmalleable ironflammableair separation facilityair coolerairorificeorifice flangecontrol roomspanquick closing valvequick opening valvequick couplingwide flanged beammineral woolflaring testtension testtension stresshandrailbluecold-drawing seamless pipecold shortnessrefrigerantcold workingcold springcold flowcondensercoolingcooling towercooling towercold loadcold rollingforcemomentcouple of force vertical welding asphaltbituminous painttie plateconnecting rodtie rodhook up drawing interlocktop of beambeamboth end threadboth ends plain reformercritical pointcritical temperature critical pressure temporary load phosphor bronzeflow diagramflow metersulphuric acidradius of gyration hexagonal nut hexagonal head bolt floorstair; stair way funnelfurnace tubefurnacehalogen gas leak test shoulderaluminumalaminium sheet aluminum magnesium aluminum bronzegreenneoprenechlorinated polyvinyl chloride chlorinated polyethertapnutboltbolt circlethreadedthreaded endthreaded flangethreaded joint, pipe threaded joint threadoletspiral plate heat exchangerspiral welded steel pipehelical gas-holderstud boltbare iineRockwell hardnessMartensitic stainless steelmastic weatherproof coatingex wharfpulsationpulsating stressgross weightcliprivetAmerican standard taper pipe thread American wire gagedoormanganese bronzedensitysealing oilblanketareain-planefinishing coatout-planeface to facefire extinguishernomenclaturemodelbase metalmother liquorwoodwood blockwooden boxmolybdenum steelbevel for inside thickness inner ringinternal forcebevel for combined thickness internal pressure stressfire brickalkali-proof paintheat resisting steelincoloyheat-proof paintHastelloycorrosion resistanceacid-proof paintseismic classsouthdeflectionflexible tubenylon plasticcounter clock wiseurea resinnickel steelnickel copper alloyfreezing pointtorquetorsional stress concentrationdischarge valveexhaustblow downblowdown valveblow down tankdraindrain valvedrip ringdrain funnelpad type flangeby passby-pass valvefoam glassfoamed concretecellular polystyrenefoam monitorfoam hydrantfoam fire-fightingfoam stationswitch boardsubstation, switch roomcompanion-flangeejectorsprayerspray nozzleshelterborosilicate glassexpansion jointexpansion boltapproved for planningapproved for designapproved for constructionfatigue limitfatigue testeccentric reducerfrequencyflat gasketplain washerplain endflat weldingwelding-on collarflat metal gasketplanplatformparallelevaluationgroovebeveled endvacuum breakervacuum breakerpaving areageneral structure low-alloy steel general carbon steelspectrum analysisurushiol resin paintcylindergas welding; flame welding vaporizerporosityair tightness testfusion gas weldingcavitation erosiongas-shielded arc weldinggas analysisgaseous corrosiongas chromatographpneumatic teststeam drumleadwallsupport on wallblock valvecut to suittangent linebronzehydrogen embrittlementhydrogenvarnishclean outrequisitioningspheroid, spherical tankspheroids annealingspherical washernodular cast iron; nodular graphite iron ball type expansion jointarea limitzone iimityield pointyield limitsampling valvesampling connectionsample coolerfull jacketedflat face; full faceskirtfuel gasfuel oilthermocouplethermosetting plasticshot workingthermal expansion coefficienthot waterhot-water tracingthermoplasticthermal cyclethermal stressthermal stress analysisheat affected zonehot rollinghot-rolling seamless pipemanholepersonal protectionman-monthtoughesssolvent cementsolutionsolution storage tankmelting pointmelterflexibility characteristicflexibilityflexibility factorflexibility stressvisual inspectioncreep rupture strengthcreep limitinletcenter line of suctionhose valvehose connectionhose stationsoftenercork woodsoft waterlubricating oilsprinklerplug weldingtriangular support’teethree way valvebulk materialblisterflash pointflash drumuprisercaustic sodaburnerequipment listequipment item numberdesign specification summary sheet basic engineering design data design managerdesign temperaturedesign documentdesign response spectrumdesign pressuredesign scismic coefficientdesign notefacilitiesradiographic testchillerdarkapprovalcheck listnitridationchromizingchromized steelsoak-away pitaluminizingcarbonizationboostersanitary sewerpig ironsound intensitysound pressure levelsound sourceeconomizerfull water testhumiditywet gas-holderasbestos boardasbastos clothasbestos ropeasbestos fabricgraphite phenolic plasticsnaphthaageing treatmentemergency valvesight glasscommissioninghand-operated valvemanual and automatic inert gas tungsten arc welding handholewrought ironresindata sheetdata basequantityattenuation constantdouble extra heavydouble bellowcorrugated metal double jacketed asbestos filled gasket double jacketed gasketdouble U groovedouble offset expansion “U”double branch elbowwater traatmentwater hammerwater quenchingcold quenchingwater coolerwater-gas steel pipefinishing cementwater monitorwateringhorizontal installationhorizontalhydraulic testclock wisedescriptiongauze strainerTeflon tapcrossloose plate flangeloose hubbed flangelap joint flangeplasticplastic pipeplasticitysour gasarithmetical average roughness height gravel pavingtongue faceacetal plasticindexlock nuttitaniumcarbon steel pipecarbon steelmagnesium carbonateporcelain enamelceramicspecial flangespecial supporttrapezoid threadvolumeskylightnatural white rubber gasketnatural gasnatural rubberslip type expansion jointpackingstuffing box glandpacking boxcaulking materialskip weldingferritic alloy steel pipeshut-downventilating roomtypical pipe supporttypieal installation concentric reducercopperaccuracy of take-offbidlens gasketmale faceraised facestub endfiguredrawing numberlegendcoatingpaintingsurgingthrustannealingcradlestooldesulphurization reactor degasifierdemineralized water demineralizerdeaeratoroval ring gasketellipsoidal headbevel for outside thickncss outer ringexternal forceexternal pressure stress externally applied load bending momentbending testbending stresselbowelboletuniversal jointuniversal type expansion joint checkered platedouble-acting limit stophazardous area classificationhazardous area planmicro crackVickers diamond hardnessmaintenance roomincomplete fusion; lack of fusion displacementdisplacement stress rangedisplacement stressthermometerthermowellfileeddy current testcontaminationcontaminated rain waterseamless steel pipeinorganic zinc-rich paintnon graphited compressed white asbestos gasket non-destructive testingnon-itemized equipmentwestadsorbersuction valvesound-absorbingabsorberscrubbereye washer and showereye washer stationfine threaddownadvanced certified finalfiber reinforced thermoplasticsfield weldwire gagerestriction orificestopstopperlimit rodrestraintintersectionphasesweepoletdetaildetail designdetail design issueprojectjob No.proiect status reportproject managerbatterylimitinside battery limitproiect review meetingrubberrubber hoserubber tuberubber pavingstress relieffire fighting truckfire hose connectionfire waterfire pumphydrantsilencersilencernitric acidpinpinned shansmall end threadsmall end plaincheckbracingslant washermitre bendlatroletharmonic analysisleak testunloading valveshaped steelrevisiontrim to suitallowable stressallowable stress rangebattery roomcantilever supportcyclonesnow loadinquirycireulatloncooling water supplycooling water returncirculating waterflattening testpressure rating, pressure rating class classmanometerpressure balanced expansion pressure testpressure-temperature rating compressor housecompressed asbestos class gasket compression stressargon-arc welding,stackpercentage elongationductilityexcessive spatterrock woolbrinechlorhydric acidcolouroverhead weldingoxygenundercutownerliquefired petroleum gasliquid penetrant testlevel gaugeliquid chromatographhydraulic snubberprimary stressone end threadinstrument airinstrument panelapparatusinstrumental analysisethylene propylene rubber ethylene propylene diene monomer existing steel structurereducing nipple; swage nipple reducing flangereducerreducing couplingreducing teereducing crossreducing elbowcathodic protectionacoustic vibrationpotable waterstrain; deformationstrain energystressstress range reduction factur stress corrosioncoefficient of stress concentration stress intensification factor fluorescent penetrant inspection hardness testrigid foam rubberbraze weldinghard leadhard waterpermanent filteruserclient change noticehigh-quality carbon steeloil quenchingasphalt feltasphalt feltshielded metal arc weldingtoxicorganic silicon paintright hand threadrain watertroughembedded part; inserted plate preheatingpreheaterprefabricatedfabricated pipe bendmemberraw waterroundnessround steelround head boltcircumferential stress; hoop stress taper pintransportationon streamheating mediumreboilerreheaterregenerationregenering towerrecycleprflling towernoise levelrollingwrought-steel pipeviscositylighting; illumination corrugated bendpin holeperlitevacuumvacuum testtrue northamplitudekilled steelevaporatordistillation towersteam tracingsteaming outsteam condensatevapor pressureintegral pipe flangesolid metal serrated gasket normalizingpoint of supponstrutringsupport ringresting supportlugbranch connectionbosslegrun pipedirect currentladdershear lugpreparationdrawnmanufacturer; vendormass spectrometric analysis vermiculitemedium alloy steel neutralization tankinter coolerprocess annealingmedium-carbon steel centerlinecenter to endcenter to facecenter to centermedium pressuremedium pressure steamcounter weight hangerweightcritical pipingheavy oilperiodshaftisometric drawingbearingaxial movement type expansion jointaxial stressbead weldingmost frequent wind directionprincipal stressstorage roomtankcolumnpole type supportcast steelcastingcast ironcast iron pipecast valvedisciplineconverterpilepacking liststatus reporttaper pipe threadseal-welded taper pipe threaded jointdye penetrant inspectiondocumentationpurpleautomatic analysisautomatic submerged arc weldingself tapping screwself springself-sealingfreefree to slidefree vibrationconsolidated piping material summary sheet brownheader, manifoldheader valvegeneral plot planlongitudinal stresswalk way, gangway, access way routing studyflame arresterdamped vibrationassemblydrillcertified finalcoordinateorigin of coordinate塔反应器流体流体特性气柜(水)龙头管道组成件管子管件弯管法兰垫片管道特殊件端部连接焊接焊接种类焊接形式焊接位置焊接缺陷热处理普通热处理表面热处理检验试验黑色金属非金属材料管道材料规定材料统计45°斜三通 设备名称容器管道支吊架管架零部件管支架型式8字盲板90°弯管k半径弯头K形坡口L形管架O形环S形弯管T形螺栓T型粗滤器T型钢U-V组合坡口U形螺栓U形弯管V形坡口X射线照相X形坡口y 型粗滤器γ射线照相安全系数安装氨气鞍形补强板鞍座凹面奥氏体不锈钢奥氏体不锈钢管八角环形垫片拔制板条箱版次办公室半管接头半镇静钢伴热管伴热蒸汽包装饱和蒸汽保冷保温保温块报价报价书爆破片爆炸焊爆炸极限北备品备件备用背至背苯乙烯橡胶泵房比例比热比重壁厚壁厚系列号篦子板避雷针编位号的编位号设备扁螺母变送器变压器室标高,立面标题栏标准标准管架标准图表面处理丙烯腈—丁二烯—苯乙烯丙烯酸树脂波峰波谷波纹金属包嵌石棉垫片波纹金属垫片波纹膨胀节玻璃玻璃布玻璃管玻璃棉玻璃液位计伯明翰线规泊松比;横向变形系数补充补强板不锈钢不锈钢布氏硬度部门材料表材料情况报告采购采购说明采购说明汇总表参考、基准参考图残余应力槽钢槽焊槽面槽形金属垫片草图测温漆插板长半径180°弯头长孔常开厂商报价厂商协调会场地敞车上交货超尺寸运输超声波探伤超载沉淀池沉淀器沉头螺栓衬里管成品成品设计阶段成套设备承包商承插焊的承插焊端承插焊法兰承插支管台承口澄清器橙色的持久极限齿形翅片式导向板冲击荷载冲击试验冲击值冲洗阀抽空;排空出口出口中心线初步阶段船上交货,离岸价格窗吹出吹灰器吹扫垂直,正交,垂直的垂直安装垂直的,立式的醇酸瓷漆瓷漆磁粉探伤粗糙度粗制的催货脆性淬火萃取器错边量错位搭焊搭接接头,松套连接大端带螺纹大端为平的大气腿大气污染大气压大修代码带侧向口的弯头(右向或左向)带铬镍合金丝的石棉绳带环头拉杆带铰链膨胀节带接杆膨胀节带孔销带支座三通带支座弯头带状卡待定单波单侧偏置U形膨胀弯管(| ?形) single offset “U”单面U形坡口单体单向滑动填料函补偿器弹簧垫圈弹簧吊架弹簧钢弹簧恒力吊架弹簧恒力托架弹簧架弹簧托架弹簧系数弹簧支撑架弹性极限弹性模量淡(浅)色的;轻的氮气导管导热系数导向架道路等径三通等径四通等离子焊等温淬火等温退火低合金钢低碳钢低压低压蒸汽底板底平底漆地脚螺栓地漏地面地上管道地下槽地下管道地震地震荷载地震系数第一道阀;根部阀点焊点蚀电伴热电弧焊电化腐蚀电话电加热器电缆沟电流电气盘电容电熔(弧)焊钢板卷管电熔焊电线电压电渣焊电阻电阻焊电阻焊钢管垫板焊垫环垫片的型式吊耳吊架吊梁吊柱吊装孔调节阀调质蝶形螺母丁腈橡胶顶板顶开螺栓,顶起螺栓顶平订货单;订购单定位定位焊定位块定位销定向限位架定值限位架东动力荷载动态分析堵头镀层镀铬的镀锌钢管镀锌铁皮镀锌铁丝镀锌铁丝网短半径180°弯头短半径弯头短代码短管支管台短节断面收缩率断面系数断续淬火锻钢锻铁管锻造,型钢锻造的,锻造锻造阀锻制U形夹锻制异径管堆焊对称的。
高压电缆热机械效应分析与弧幅滑移量计算研究

第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀高压电缆热机械效应分析与弧幅滑移量计算研究倪一铭,㊀马宏忠,㊀段大卫,㊀薛健侗,㊀王健,㊀迮恒鹏,㊀万可力(河海大学能源与电气学院,江苏南京211100)摘㊀要:针对现有方法无法准确计算热机械效应下高压电缆应变和弧幅滑移量,首先分析热机械效应机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法㊂其次以高压单芯交流XLPE 电缆为研究对象,通过有限元仿真分析热机械效应下高压电缆的温度场㊁应力和应变㊁弧幅滑移量㊂最后进行现场应变试验与弧幅滑移量测量试验㊂应变试验结果表明:应变片测量结果分别为1.84㊁1.19㊁1.12㊁2.16mm ,高压电缆最大应变理论计算值达到2.33mm ,根据测量和计算可判断高压电缆最大应变位置㊂弧幅滑移量测量试验结果表明:弧幅滑移量计算结果符合试验测量值和有限元仿真值,比现行标准计算值的相对误差减小了18.65%㊂上述试验结果验证了应变计算方法㊁弧幅滑移量计算方法符合高压电缆实际工况且便捷准确,为高压电缆蛇形敷设参数提供了有效的工程计算方法㊂关键词:高压电缆;热机械效应;应变;弧幅滑移量;有限元;悬链线方程DOI :10.15938/j.emc.2023.12.007中图分类号:TM247文献标志码:A文章编号:1007-449X(2023)12-0062-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-10-18基金项目:国家自然科学基金(51577050);国家电网有限公司科技项目(J2022009)作者简介:倪一铭(1998 ),男,硕士研究生,研究方向为高压电缆故障分析与诊断;马宏忠(1962 ),男,博士,教授,博士生导师,研究方向为电力设备状态监测㊁故障诊断与健康预警;段大卫(1987 ),男,博士研究生,研究方向为电力设备故障诊断与治理㊂通信作者:倪一铭Analysis of thermo-mechanical effect of high-voltage cables andcalculation of arc slipNI Yiming,㊀MA Hongzhong,㊀DUAN Dawei,㊀XUE Jiantong,㊀WANG Jian,㊀ZE Hengpeng,㊀WAN Keli(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)Abstract :In view of the inability of existing methods to accurately calculate the strain and arc slip of high-voltage cables under the thermo-mechanical effect,firstly,the mechanism of the thermo-mechanical effect was analyzed,and the method of calculating the strain for high-voltage cables and the method of calculating the arc slip based on the catenary equation were proposed.Secondly,a high-voltage single-core AC XLPE cable was used as the research object.The temperature field,stress,strain,and arc slip under thermo-mechanical effect were analyzed by finite element simulation.Finally,a field strain test and an arc slip measurement test were carried out on the high-voltage cable.The strain test results show that the strain gauges are measured 1.84,1.19,1.12and 2.16mm respectively,and the maximum strain of the high-voltage cable is calculated to be 2.33mm.The location of the maximum strain in the high-volt-age cables can be determined from measurements and calculations.The results of the arc slip measure-ment tests show that the calculated arc slip is in accordance with the test measurements and finite elementsimulation results,and the relative error is reduced by 18.65%compared to the current standard calcula-tion results.The above test results verify that the strain calculation method and the arc slip calculation method are in line with the actual working conditions of high-voltage cables and are convenient and accu-rate,providing an effective engineering calculation method for the snake laying of high-voltage cables. Keywords:high-voltage cables;thermo-mechanical effect;strain;arc slip;finite element;catenary e-quation0㊀引㊀言随着 双碳 政策的实施,高压电缆的建设快速发展,在城市输电设备中占据了重要地位㊂为了减少热机械应力的影响,大多数高压电缆采用蛇形敷设的方式[1],该方式在一定程度上可以减少热机械应力的影响㊂但由于弧幅滑移量参数选择不当或弧幅打弯半径缺少有效的标准等原因,蛇形敷设下的高压电缆表现出显著的热机械效应问题[2],例如绝缘层击穿㊁绝缘材料老化变质㊁接头破损等故障[3-4]㊂统计数据表明,2016~2021年,由于热机械效应导致的高压电缆故障约占总故障数量的60%㊂事后故障分析表明:高压电缆的热机械应力具有作用区域广㊁隐蔽性强㊁故障后果严重等特点[5-9]㊂针对高压电缆的热机械效应,目前的研究集中在电缆材料的电气特性㊁物理场仿真等方面㊂文献[10]与文献[11]等研究了电缆在应力作用下绝缘层的性能,得出了绝缘性能与温度场㊁电场数值呈负相关的结论;文献[12]等通过高压XLPE电缆的热老化实验,研究了不同时间下的热机械振动产生的应力对绝缘层的损伤情况,得出了热机械振动会加速XLPE绝缘层老化的结论;文献[13]和文献[14]等通过建立电-热耦合模型,对故障电缆接头处的电场㊁温度场㊁应力场进行研究,分析了电缆接头处的物理场与接头结构损伤机理㊂综上,现阶段的研究集中于电缆热机械应力的宏观分析㊁绝缘层局部微观结构损伤㊁电缆及其接头物理场仿真等方面,在热机械效应下高压电缆应变的具体情况研究和能够用于实际工程敷设的参数计算方法等方面仍处于空白阶段㊂本文首先分析高压电缆热机械效应与热机械应力机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法;同时针对电压应变片的参数转化计算,提出一种基于直流电桥的电压应变片应变计算方法;其次采用有限元软件对高压单芯交流XLPE电缆进行建模,对热机械效应下温度场㊁应力和应变㊁弧幅滑移量进行仿真分析;再次通过高压电缆应变试验对其径向应变进行研究,验证应变计算方法的有效性,且热机械应力会使内部结构发生严重相互挤压;最后通过弧幅滑移量测量试验验证弧幅滑移量计算的结果,以试验测量值为基准,将新方法计算结果与有限元仿真结果㊁‘城市电力电缆线路设计技术规定“(下文简称‘规定“)计算结果进行对比分析,证明弧幅滑移量计算方法的准确性,为高压电缆敷设工程应用提供理论与数据支撑㊂1㊀高压电缆热机械应力计算常见的高压单芯交流XLPE电缆由内到外依次为导体㊁导体屏蔽㊁绝缘层㊁绝缘屏蔽㊁缓冲层㊁金属护层㊁电缆沥青和外护层组成[15],具体的截面示意图如图1所示㊂图1㊀高压电缆截面图Fig.1㊀High-voltage cable cross section运行中的高压电缆由于内部材料性质不同,在负荷电流和环境温度的影响下,电缆会热胀冷缩产生热机械应力,使内部材料发生应变,称为热机械效应㊂考虑到高压电缆中导体㊁金属护层的密度㊁硬度远大于绝缘层等非金属材料,绝缘层等非金属部分材质产生的热机械应力可忽略不计[16],故重点研究导体㊁金属护层在负荷电流和环境温度影响下产生36第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究的热机械应力㊂1.1㊀导体的热机械应力计算负荷电流变化产生的导体热机械应力为σC1=αCΔθC1E C A C㊂(1)式中:αC为导体的线膨胀系数,ħ-1;ΔθC1为高压电缆正常运行时,导体的实际最高温度相对于当时环境温度的温升,ħ;E C为导体的等值弹性模量, N/m2;A C为导体的横截面积,m2㊂环境温度变化产生的导体热机械应力为σC2=αCΔθC2E C A C㊂(2)式中:ΔθC2为高压电缆正常运行时,导体额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(1)中相同㊂1.2㊀金属护层的热机械应力计算负荷电流变化产生的金属护层热机械应力为σM1=αMΔθM1E M A M㊂(3)式中:σM为金属护层的线膨胀系数,ħ-1;ΔθM1为高压电缆正常运行时,金属护层的实际最高温度相对于当时环境温度的温升,ħ;E M为金属护层的等值弹性模量,N/m2;A M为金属护层的横截面积,m2㊂环境温度变化产生的金属护层热机械应力为σM2=αMΔθM2E M A M㊂(4)式中:ΔθM2为高压电缆正常运行时,金属护层额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(3)中相同㊂因此,高压电缆的热机械应力为σ=ð2i=1σCi+ð2i=1σMi㊂(5) 2㊀高压电缆应变计算测量应变是将应变片直接与被测物体接触,根据应变片的电阻-应变效应以及相关计算公式推出物体的应变值㊂但现有公式在计算应变片面积变化时采用的是经验值估算[17],存在较大的估计误差㊂针对现有方法的不足和高压电缆热机械效应中产生的应变,结合式(5)热机械应力的计算方法,提出一种基于直流电桥的电压应变片应变计算方法㊂2.1㊀基于广义胡克定律的高压电缆应变计算高压电缆内部各层结构可视为连续均匀的固体,且满足各向同性的假设条件[18]㊂根据广义胡克定律[19],各向同性材料的应变分量与应力分量之间满足方程:εx=1E[σx-μ(σy+σz)];εy=1E[σy-μ(σx+σz)];εz=1E[σz-μ(σx+σy)]㊂üþýïïïïïï(6)γxy=τxy G;γyz=τyz G;γxz=τxz G㊂üþýïïïïïïï(7)G=E2(1+μ)㊂(8)式(6)~式(8)中:εx,εy,εz为线应变分量;E为等值弹性模量,N/m2;μ为泊松比;σx,σy,σz为正应力分量;τxy,τyz,τxz为切应力分量;γxy,γyz,γxz为切应变分量;G为切变模量,N/m2㊂高压电缆产生的热机械应力在同一平面内,切应力分量为零[20],即τxy=τyz=τxz=0,故切应变分量为零㊂高压电缆由于温度升高产生应变,但高压电缆需满足安全运行要求,故应变不能无休止发生㊂考虑到高压电缆内部各结构间相互紧密约束,此时的应变量为εmax=1E[σ-μ(σC2+σM2)]+αΔθ㊂(9)式中:α为外护层的线膨胀系数,ħ-1;Δθ为高压电缆正常运行时,外护层的最高温度相对于当时环境温度的温升,ħ㊂2.2㊀基于直流电桥的电压应变片应变计算直流电桥测量应变电路图如图2所示㊂当电压应变片发生如图3所示应变时,其电阻值会发生改变,此时该电桥的电压差值为ΔU1=ΔRR c U(R+ΔR+R a)(R b+R c)㊂(10)式中:ΔU1为电压差值,V;R为应变片电阻,Ω;ΔR 为应变片电阻的变化值,Ω;R a㊁R b㊁R c为外接电阻,Ω;U为外接电源,V㊂应变片电阻的计算公式为R=ρL S㊂(11)式中:ρ为电阻率,Ω㊃mm;L为应变片长度,mm;S 为应变片的面积,mm2㊂式(11)两边同时取对数并微分:d RR=dρρ+d LL-d SS㊂(12)46电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀式中d L /L 为应变片长度的相对变化,可用应变ε表示,即ε=d L /L㊂图2㊀直流电桥测量应变电路图Fig.2㊀Schematic of strain measurement based onDCbridge图3㊀应变片发生应变示意图Fig.3㊀Diagram of strain generation in strain gaugesd S /S 为应变片截面积的相对变化,即d S S =μDMS A d LAL=μDMS ε㊂(13)式中μDMS 为应变片的泊松比㊂应变片的电阻率在测量过程中基本保持不变,即d ρ/ρ=0㊂根据式(12)㊁式(13)可得,应变片的应变ε与电阻变化值ΔR 近似满足:ΔR ʈd R =(1-μDMS )εR ㊂(14)根据式(10)可求得ΔR ,代入式(15)中即可求得应变:ε=ΔR(1-μDMS )R㊂(15)3㊀高压电缆弧幅滑移量计算蛇形敷设下的高压电缆在选择敷设参数时须考虑蛇形弧幅的滑移量,‘规定“中提供了电缆的蛇形弧幅滑移量n 的计算公式[21]:n =B 2+1.6lm -B ㊂(16)式中:B 为蛇形弧幅,mm;l 为蛇形弧幅的水平长度,mm;m 为电缆的热伸缩量,mm㊂式(16)计算时需要已知电缆热伸缩量m ,现有的测量仪器无法精确测出m 的数值,且热伸缩量m 涉及到摩擦系数,该系数是通过经验值进行估计,导致滑移量n 的计算误差较大㊂针对现有计算方法的不足,提出基于悬链线方程的高压电缆弧幅滑移量的新计算方法㊂3.1㊀悬链线方程悬链线是一种常见的曲线,其物理意义为同一平面内,固定在水平两点间且受重力作用自然下垂的链条的形状[22],例如悬索桥等㊂以悬链线弧幅最低点为原点,建立如图4所示的平面直角坐标系,故可将悬链线方程设为y =f (x ),固定悬链线的两点分别为点A 和点B ;设点D (x ,y )为悬链线上任意一点,该点的切线方向与水平方向的夹角设为ϕ㊂图4㊀悬链线Fig.4㊀Catenary对点D 进行受力分析可知,点D 受到沿其切线方向的拉力F ,铅锤方向上的重力G 以及水平向左的拉力T ,如图5所示㊂图5㊀受力分析Fig.5㊀Analysis of forces由受力分析可知:tan ϕ=G T㊂(17)重力G 和拉力T 可表示为:G =kSL x ;T =ψ0S ㊂}(18)k =9.8ˑM 0Sˑ10-3㊂(19)式中:k 为链的自重比载,N /m㊃mm 2;S 为链的截面积,mm 2;L x 为点O 与点D 间的弧长,m;ψ0为链中的压强,MPa;M 0为每公里链的质量,kg /km㊂任意点D 的斜率可由tan ϕ表示,结合式(16)得tan ϕ=k ψ0L x =d y d x㊂(20)式(20)两边取微分可得d(tan ϕ)=k ψ0d(L x )=k ψ0(d x )2+(d y )2=k ψ01+tan 2ϕd x ㊂(21)56第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究式(21)两边整理并积分可得ʏd(tan ϕ)1+tan 2ϕ=ʏkψ0d x ㊂(22)由双曲函数积分公式并结合式(22)化简,代入初始条件x =0,y =0时,tan ϕ=0可得悬链线方程为y =f (x )=ψ0k cosh k ψ0x ()-1[]㊂(23)3.2㊀基于悬链线方程的高压电缆弧幅滑移量计算蛇形敷设下的高压电缆两端受到夹具的固定,弧幅自然下垂,故可近似等效为一条悬链线,如图6所示㊂在热机械应力的作用下,蛇形弧幅会向下发生一定量的滑移㊂由于蛇形敷设下的高压电缆可看作是水平对称的,高压电缆的蛇形弧幅滑移即为图中的点O 处产生的滑移量n ㊂图6㊀蛇形敷设的高压电缆Fig.6㊀Snake laying high-voltage cable计算高压电缆的滑移量时,悬链线方程中的压强ψ0(MPa)可用式(24)的热机械应力σ(N)计算得到:ψ0=σS㊂(24)为计算点O 处的滑移量,将式(24)代入式(23)并展开为x =0的麦克劳林级数:y =f (x )=kS 2σx 2+k 3S 324σ3x 4+k 5S 5720σ5x 6+ +k 2n -1S 2n -1(2n )!σ2n -1x 2n+ο(x 2n +1)㊂(25)考虑到实际蛇形敷设下的高压电缆夹具处电缆存在一定的弯曲半径且其水平长度远大于弧幅(d /l ɤ0.1),可略去式(25)中的高次项式[23],其精度可以满足敷设工程的需要,即n (x )=kS 2σx 2+k 3S 324σ3x 4㊂(26)将x =l /2代入上式,可得高压电缆蛇形弧幅滑移量n =kSl 28σ1+k 2S 2l 248σ2()㊂(27)式中l 为高压电缆的水平长度,单位m㊂4㊀高压电缆有限元仿真分析4.1㊀高压电缆有限元建模仿真高压电缆中的导体屏蔽㊁绝缘屏蔽以及电缆沥青厚度相对较小且材质与相邻层近似,考虑到建模中有限元网格划分,故将导体屏蔽㊁绝缘屏蔽与绝缘层合并,电缆沥青与外护层合并[24],故内部具体结构由内到外依次为:导体㊁绝缘层㊁缓冲层㊁金属护层㊁外护层,各结构具体参数如表1所示㊂在COM-SOL Multiphysics 中建立上述高压电缆的实物模型,相邻夹具之间的水平距离约为4m,高压电缆弧幅约为0.20m;在建模时高压电缆两端向外侧延伸1cm 并设置为固定约束,模拟高压电缆两端的夹具固定,如图7所示㊂表1㊀电缆结构参数Table 1㊀Cable construction parameters结构外半径/mm 厚度/mm ㊀导体㊀㊀19.5㊀绝缘㊀㊀37.217.7㊀缓冲层㊀41.1 3.9㊀金属护层42.9 1.8㊀外护层㊀46.13.2图7㊀有限元模型Fig.7㊀Finite element modelling为了研究高压电缆的热机械效应与弧幅滑移量,模拟高压电缆在负荷电流下运行,但须确保导体的最高温度不超过90ħ[25]㊂高压电缆产生的热量主要通过热传导方式传递到外护层表面[26],电缆外护层与外界换热主要通过热对流方式实现[27]㊂因此,在模型中设定边界条件:外护层与空气接触面传热系数10W /(m 2㊃K),外部温度与高压电缆初始温度均设置为293.15K㊂66电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀4.2㊀温度场仿真模拟高压电缆实际运行后,高压电缆温度截面图和曲线图分别如图8㊁图9所示,其最高温度达到了68.1ħ㊂由于导体㊁金属护层是高压电缆中的热源,金属材料具有良好的导热性,电缆温度在导体㊁金属护层区域无明显变化㊂高压电缆的整体温度随运行时间递增,绝缘层等非金属部分温度由内向外递减,近似呈线性减少趋势㊂图8㊀高压电缆温度截面图Fig.8㊀High-voltage cable temperature crosssection图9㊀不同运行时间下高压电缆温度图Fig.9㊀Temperature diagram for high-voltage cables atdifferent operating times4.3㊀应力与应变仿真高压电缆中导体㊁金属护层产生的热机械应力远大于绝缘层等非金属部分产生的热机械应力如图10~图12所示㊂夹具处的热机械应力的最大值存在于金属护层与缓冲层的接触面,仿真中该接触面的压强已接近于金属护层材质铝的屈服强度最大值,金属护层可能会发生损坏㊂图10㊀金属护层应力分布图Fig.10㊀Metal sheathing stress distributiondiagram图11㊀导体应力分布图Fig.11㊀Conductor stress distributiondiagram图12㊀非金属部分应力分布图Fig.12㊀Stress distribution diagrams for non-metallicparts高压电缆在热机械应力下会产生应变,选取高压电缆的应变截面图如图13所示㊂绝缘层㊁外护层会发生较为明显的热膨胀,其中绝缘层受热膨胀约1.4%,外护层受热膨胀约0.6%㊂导体产生的热量和热机械应力直接施加在导体与绝缘层的接触面上,在两者的共同作用下,该接触面的应变值最大㊂在这种情况下运行,绝缘层将加速老化,长时间后其内部结构将造成不可逆的热疲劳拉伸,存在安全隐患㊂76第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究图13㊀应变截面图Fig.13㊀Strain section diagram4.4㊀弧幅滑移仿真高压电缆在夹具固定作用下,自身达到一种受力平衡的状态㊂但热机械应力打破了该平衡状态,高压电缆在热机械应力下产生滑移,滑移较大的部分集中于蛇形弧幅,夹具处的电缆几乎不发生滑移,如图14所示㊂图14㊀电缆滑移分布图Fig.14㊀Cable slip distribution map不同运行时间下电缆全长的滑移分布曲线如图15所示,所有时间下的滑移分布曲线均关于x =0对称且最大值出现在该处,故可判断最大滑移发生在蛇形弧幅的最低点㊂图15㊀不同运行时间下电缆全长滑移分布图Fig.15㊀Slip distribution of the full length of the cableat different operating times5㊀试验验证与分析国内某市高压单芯交流XLPE 电缆实际敷设现场如图16所示㊂高压电缆敷设于专用的电缆隧道中,夹具之间水平距离为4.04m,高压电缆处于自然下垂状态,初始弧幅最大处约为0.18m㊂该隧道中的电缆规格为1200mm 2的单芯电缆,具体结构参数同表1㊂为分析高压电缆热机械效应下电缆产生的应变与弧幅滑移量,在高压电缆敷设现场进行应变试验与弧幅滑移量测量试验㊂图16㊀高压电缆敷设现场Fig.16㊀High-voltage cables laying site5.1㊀应变试验与分析高压电缆的应变在负荷电流较小时不易测量,为了确保试验分析的准确性,本次试验选择在日负荷电流较大的时段研究应变情况㊂当地的供电公司后台长期监测0~24时运行负荷电流的数值,日负荷电流较大时段约为10~14时,平均值约为550A,故选取该时段进行应变试验㊂在不改变高压电缆任何敷设参数的情况下,选取高压电缆蛇形弧幅段外表面上的某个位置进行应变测量㊂如图17所示,在该位置上布置四个应变片,该应变片可将应变量转化为电压值输出;应变量与始末输出电压差值成正比,可通过式(15)计算出应变值,并可判断高压电缆内部结构的应变状况,试验示意图如图18所示,试验现场如图19所示㊂图17㊀应变片布置示意图Fig.17㊀Strain gauge arrangement diagram试验开始测量时间选择为9时55分,结束测量时间为14时05分,当天0~24时的负荷电流如图20所示,试验测量时段的平均电流为551.69A㊂不同位置上的应变片都要达到电压平衡的状态,所86电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀以应变信号接收仪中的调零电位器自动设置的初始输出电压值不同㊂测量结束后导出接收仪中记录的输出电压值,经小波降噪后得到输出电压波形如图21所示㊂图18㊀试验示意图Fig.18㊀Schematic diagram of theexperiment图19㊀试验现场图Fig.19㊀Experimental siteplan图20㊀当天0~24时的负荷电流Fig.20㊀Load current from 0to 24hours of the day与图13仿真得到的应变图对比,在理想化的运行条件下,高压电缆运行会发生热膨胀,其内部各层均产生了应变㊂但试验过程中存在负荷波动㊁温度变化等因素,根据应变测量结果可以看出:高压电缆沿径向发生了不同程度的热膨胀,导致了内部各层发生了不同的应变㊂图21㊀应变片输出电压Fig.21㊀Output voltage of strain gauges通过试验分析和数据计算,各应变片的应变的数据如表2㊁3所示㊂根据式(15)计算得到应变片1~4的应变量为1.84㊁1.19㊁1.12㊁2.16mm,试验中应变片4的位置发生了较大的应变㊂表2㊀应变片数据Table 2㊀Strain gauge data单位:V应变片初始时刻电压结束时刻电压电压差值10.6780.7930.11520.6070.6880.08130.6080.6870.07940.4140.5610.147表3㊀测量与计算数据Table 3㊀Measurement and calculation data单位:mm数据来源测量数据最大应变应变片1 1.84 应变片2 1.19 应变片3 1.12 应变片42.16 基于广义胡克定律的应变计算2.33式(9)基于广义胡克定律的高压电缆应变计算结果为2.33mm,结合应变片1和4产生的应变量相近,且两者明显大于应变片2和3的结果,可以推出由于高压电缆内部材料属性不同,导体㊁金属护层在热机械应力作用下在径向平面向左下方发生了相对偏移,即应变片1和4的中间位置,该位置存在应变量最大值,如图22所示㊂高压电缆是一个密封的整体,导体㊁金属护层产生的热机械应力直接作用于绝缘层㊁缓冲层㊁外护层96第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究产生应变,然后被外护层上布置的应变片测量得到㊂该试验结果表明:在热机械效应中,热机械应力会使高压电缆发生不均匀的应变,电缆内部的金属部分会严重向下挤压非金属部分㊂热机械应力长时间作用于绝缘层上,会造成绝缘的热拉伸㊁热老化等现象[4],导致分子键的断裂㊁绝缘击穿电压降低[12],可能造成高压电缆的运行事故㊂图22㊀内部结构偏移图Fig.22㊀Internal structure offset diagram5.2㊀弧幅滑移量测量试验与分析本试验采用2个激光测距传感器,测量高压电缆产生的滑移量㊂通过测量不同时刻高压电缆蛇形弧幅距离传感器的高度可以得到滑移量的具体数值,试验示意图如图23所示㊂本试验采用的激光测距传感器测量精度较高,需在地面上架设一个辅助支架,从而将测量距离控制在传感器量程范围内,试验现场如图24所示㊂图23㊀试验示意图Fig.23㊀Schematic diagram of theexperiment图24㊀试验现场图Fig.24㊀Experimental site plan激光测距传感器测量了当天0~24时的高压电缆蛇形弧幅距离传感器的高度H 的数值,如图25所示㊂设前一天运行结束24h 的H 值为初始高度H 0,经测量初始高度H 0为17.90cm㊂结合图17分析,0~7h 处于谷时用电阶段,负荷电流较小,此时高压电缆中产生的热量会相较于前一天晚上峰时用电时产生的热量大幅减少,电缆会因此向上 收缩 ㊂随着8h 开始负荷电流的增大,H 值开始减小,即蛇形弧幅开始向下产生滑移;在负荷电流增幅较大的7时30分~13时19分,H 值减幅较大,并在15时42分时出现最小值H min 为16.49cm,即相对于初始高度H 0滑移了1.41cm㊂表4提供了部分时间点的负荷电流数与H 值,表中滑移数值为正表示向下滑移,数值为负表示向上滑移㊂图25㊀当天0~24时的高度Fig.23㊀Height of the day from 0to 24hours 表4㊀部分时间点的负荷电流数与H 值Table 4㊀Number of load currents and H at sometime points时间/h负荷电流/A H /cm 滑移/cm 0286.4117.903214.1518.17-0.276211.8318.26-0.369426.4017.650.2512544.9916.940.9615463.6916.51 1.3918402.8116.81 1.0921409.7616.83 1.0724267.4517.220.68从上述试验过程中测得的数据可以得出,高压电缆在运行过程中产生的热机械效应会使高压电缆发生滑移,如图26所示,可以得出以下结论:负荷电流越大,产生的热机械效应越大,高压电缆在热机械应力作用下产生向下滑移,滑移量的大小会随着负荷电流的变化趋势产生相同的变化;瞬时的负荷电流波动不能产生明显的滑移,只有负荷电流大幅增大且持续一段时间后才发生滑移,说明高压电缆存07电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀在热惯性与机械惯性,热机械效应不是一个瞬时的过程,会随运行时间持续 叠加㊂图26㊀时间-负荷电流-滑移图Fig.26㊀Time-load current-slip diagram根据‘规定“中的相关滑移量计算公式(16),计算得到弧幅滑移量为11.21mm;用有限元软件对敷设隧道中的高压电缆进行1ʒ1建模仿真计算,其弧幅滑移量为14.43mm,如图27所示㊂图27㊀有限元仿真结果Fig.27㊀Finite element simulation results针对第3节中计算高压电缆弧幅滑移量所需参数如表5和表6所示,当时隧道内的温度约为21.2ħ,该电缆的自重比载为0.38N /m㊃mm 2㊂将参数代入式(26),可得该电缆在热机械应力下产生的弧幅滑移理论计算值为14.26mm㊂表5㊀导体参数Table 5㊀Conductor parameters㊀㊀㊀参数数值线膨胀系数αC /ħ-117ˑ10-6等值弹性模量E C /(N /m 2)119ˑ109运行最高温度/ħ69.1额定最高温度/ħ90表6㊀金属护层参数Table 6㊀Metal sheathing parameters㊀㊀㊀参数数值线膨胀系数αM /ħ-123ˑ10-6等值弹性模量E M /(N /m 2)71.9ˑ109运行最高温度/ħ47.2额定最高温度/ħ68㊀㊀表7列出了不同方法得到的高压电缆弧幅滑移计算结果,以试验测量数据为基准值进行对比误差分析:由于有限元仿真中,高压电缆中流过的负荷电流的无法模拟实际运行中电流的数值波动,故存在一定量的仿真误差;基于悬链线方程的高压电缆弧幅滑移量计算方法的相对误差小于‘规定“中的相对误差,且计算结果符合有限元仿真结果与试验测量数据,证明了本文提出的弧幅滑移量计算方法是较为准确的㊂表7㊀不同计算方法及结果Table 7㊀Different calculation methods and results㊀方法弧幅滑移量/mm误差/mm相对误差/%试验测量14.10 有限元仿真14.430.33 2.34‘规定“11.21 2.8920.49本文计算14.360.261.846㊀总㊀结本文对高压电缆的热机械效应进行研究,提出了热机械应力㊁应变和弧幅滑移量的计算方法,通过有限元仿真,分析了热机械应力下高压电缆的应变和弧幅滑移量,并通过现场试验验证了本文计算方法的有效性,总结如下:1)基于广义胡克定律提出了一种适用于高压电缆热机械效应的最大应变计算方法,该应变计算方法符合高压电缆热机械效应的实际情况,且通过应变试验验证了本方法的可行性㊂2)基于直流电桥的电压应变片应变计算方法详细分析了应变片的实际应变情况,对应变片面积的变化采用微分计算,该方法计算简便且具有良好的现场适用性,可用于其他电力设备的应变测量㊂3)通过分析高压电缆径向平面的应变量,热机械效应下的导体和金属护层会严重向下挤压绝缘层㊁缓冲层㊁外护层,二者长期挤压会对高压电缆绝缘层㊁缓冲层㊁外护层产生不可逆的损伤㊂4)基于悬链线方程的高压电缆弧幅滑移计算方法与有限元仿真㊁试验测量㊁‘规定“进行结果对比分析,该方法符合实际运行情况且相对误差较小㊁计算便捷,为高压电缆的弧幅滑移量计算提供了理论支撑㊂此外滑移量也可作为高压电缆运行状态的监测量,可及时预防热机械效应下的潜在故障㊂17第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究。
基于渗透非线性的黏土岩热_水_力耦合效应研究

第31卷 第3期 岩 土 工 程 学 报 Vol.31 No.3 2009年 3月 Chinese Journal of Geotechnical Engineering Mar. 2009 基于渗透非线性的黏土岩热–水–力耦合效应研究蒋中明1,2,Dashnor HOXHA2(1.长沙理工大学岩土工程研究所,湖南 长沙 410076;2. LAEGO of Institute of National Polytechnic of Lorraine, Nancy 54501, France)摘 要:在多孔介质的热–水–力耦合分析中,孔隙率和孔隙水的黏滞性是影响渗透性的主要因素。
通过研究孔隙率和孔隙水黏滞性的改变规律,在数值分析时,引入了孔隙率随应力改变和孔隙水黏滞性随温度改变的渗透非线性分析方法。
同时研究了数值分析中温度荷载作用下应力边界条件和位移边界条件对温度应力的影响。
研究结果表明:温度荷载作用下,数值分析时采用应力约束边界比位移约束边界更合理;考虑渗透非线性情况下得到的孔隙压力计算值与实测值更接近。
关键词:多孔介质;渗透非线性;应力边界;热荷载;热–水–力耦合分析中图分类号:TU41;P588.23 文献标识码:A 文章编号:1000–4548(2009)03–0361–04作者简介:蒋中明(1969–),男,重庆人,博士后,教授,硕士研究生导师,主要从事岩石力学与工程的科研教学。
E-mail: zzmmjiang@。
Coupled thermo-hydro-mechanical response of argillite rock based on nonlinearseepage behavoirJIANG Zhong-ming1, 2, Dashnor HOXHA2(1. Institute of Geotechnical Engineering, Changsha University of Science & Technology, Changsha 410076, China; 2. LAEGO of Instituteof National Polytechnic of Lorraine, Nancy 54501, France)Abstract: During the coupled thermal-hydro-mechanical analysis of porous media, the porosity and viscosity of porous water are the main factors affecting the permeability of the rock mass. Based on the variation law of porosity and viscosity of porous water undertaking loads, a method of stress-dependent porosity and temperature-dependent viscosity of porous water is developed during the numerical analysis. To investigate the influence of mechanical boundary conditions on the thermal stress,a comparison of the results between displacement boundary and stress boundary is made. The study indicates that the values ofthermal stress and pore pressure obtained by stress boundary are smaller than those by displacement boundary. The calculated values of pore pressure taking nonlinear seepage behavior into account are closer to the measured ones.Key words: porous media; nonlinear seepage behavior; stress boundary; thermal load; coupled thermo-hydro-mechanical analysis1 概 况多孔介质由于荷载作用引起的应力会导致孔隙率的改变。
赛默飞世尔哈克流变仪总样本

模块化转矩流变仪 HAAKE PolyLab QC 新型模块化转矩流变仪 HAAKE Polylab QC 系统可以与兼具互换功能的密炼单元、单 螺杆挤出单元、以及锥形双螺杆挤出单元连接。基于向下兼容的设计理念,甚至连客户现 在已有的 HAAKE 密炼单元与挤出单元亦可与之连接。使用者可以自由地选择台式或落 地式结构以适应其实验室自身的环境要求。系统控制采用 PolySoft 操作软件,该软件基 于大众熟悉且易于上手的 Microsoft Windows 操作平台。USB PC 接口或选配的 LAN 接口既方便数据采集及处理,而且便于采用客户自选的 PC 机来控制。自动化软件和脱机 程序运行更显著节省了测试时间,并提高了测试结果的重现性。
技术规格及主要参数
1. 主机
最大功率:4kW 最大扭矩:300Nm 扭矩精度:0.15% 最高转速:200rpm 转速解析度:0.1rpm
2. 密炼单元
腔体积:120 或 625cm3 腔体材质:不锈钢 DIN1.4301 最高温度:400℃ 最高转速:200rpm 齿轮比:3:2(可选 2:3)
3. 单螺杆挤出单元
技术规格及主要参数
1. 最大功率:400W 2. 转速范围:1-360rpm 3. 最高温度:300°C 4. 最大压力:200bar 5. 腔体体积:7cm3 6. 腔体材质:高性能塑料模具钢(M340) 7. 螺杆结构:锥形同向 / 反向旋转 8. 喂料方式:手动加料
微量注射成型仪 HAAKE MiniJet II 微量注射成型仪 HAAKE MiniJet II 是为少量样品(5-8 克)的注射成型而专门研制开 发的实验室配套设备。它采用垂直设计,方便加料和操作,即可单独使用,也可与微量混 合流变仪 HAAKE MiniLab II 配合使用,制备各种标准的拉伸、冲击等样条用于其他物 理性能测试,其独特的带数字显示功能的液晶控制器可记录存储数据。
温敏水凝胶的英语

温敏水凝胶的英语The English Composition on Thermo-Sensitive HydrogelsThermo-sensitive hydrogels have gained significant attention in the field of biomedicine due to their unique properties and potential applications. These intelligent materials possess the ability to undergo reversible phase transitions in response to changes in temperature, making them particularly useful in various biomedical applications.Hydrogels are a class of hydrophilic polymeric networks that can absorb and retain large amounts of water or biological fluids within their three-dimensional structure. Thermo-sensitive hydrogels, specifically, exhibit a temperature-dependent phase transition, which means they can undergo a sol-gel transition as the temperature changes. This property is often referred to as the lower critical solution temperature (LCST) or upper critical solution temperature (UCST), depending on the specific polymer system.One of the most well-known thermo-sensitive hydrogels is poly(N-isopropylacrylamide) (PNIPAAm), wh ich has an LCST around 32°C, close to the human body temperature. Below the LCST, PNIPAAmhydrogels are in a swollen, hydrophilic state, allowing for the incorporation and release of various therapeutic agents. However, as the temperature increases above the LCST, the polymer chains undergo a conformational change, leading to the collapse of the hydrogel structure and the expulsion of water. This temperature-induced phase transition makes PNIPAAm-based hydrogels particularly useful for controlled drug delivery applications.The mechanism behind the temperature-responsive behavior of thermo-sensitive hydrogels, such as PNIPAAm, is related to the delicate balance between hydrophobic and hydrophilic interactions within the polymer network. At temperatures below the LCST, the polymer chains are hydrated, and the hydrogen bonding between water molecules and the polymer's amide groups dominates, leading to a swollen, hydrophilic state. As the temperature increases above the LCST, the hydrogen bonding between water and the polymer becomes weaker, and the hydrophobic interactions between the isopropyl groups of the polymer become more prominent. This results in the collapse of the polymer chains, causing the expulsion of water and the formation of a more compact, hydrophobic structure.The unique temperature-responsive behavior of thermo-sensitive hydrogels has led to their widespread application in various biomedical fields. One of the primary applications is in controlleddrug delivery systems. Thermo-sensitive hydrogels can be used as carriers for therapeutic agents, such as small-molecule drugs, proteins, or even cells. These hydrogels can be designed to release the encapsulated drugs in a controlled manner by responding to the temperature changes in the body. For example, a PNIPAAm-based hydrogel loaded with a drug can be administered in a liquid state at room temperature and then undergo a phase transition to a gel state upon reaching body temperature, effectively trapping the drug within the hydrogel matrix. As the temperature increases further, the hydrogel can undergo a volume phase transition, leading to the release of the drug in a controlled manner.Another important application of thermo-sensitive hydrogels is in tissue engineering and regenerative medicine. These hydrogels can be used as scaffolds for cell growth and tissue regeneration. The temperature-responsive nature of the hydrogels allows for easy administration and in situ gelation, which can facilitate the encapsulation of cells or the delivery of growth factors directly to the site of injury or disease. The hydrogel scaffold can then provide a suitable microenvironment for cell proliferation, differentiation, and tissue formation.Thermo-sensitive hydrogels have also found applications in wound healing and burn treatment. The ability of these hydrogels to undergo a sol-gel transition in response to temperature changes canbe exploited to create wound dressings that can be easily applied in a liquid form and then transition to a gel state upon contact with the body. This can help maintain a moist environment, promote wound healing, and prevent infection.Furthermore, thermo-sensitive hydrogels have been investigated for use in various diagnostic and sensing applications. For instance, they can be designed to incorporate responsive elements, such as enzyme-substrate pairs or antibody-antigen interactions, which can trigger a detectable change in the hydrogel's physical properties in response to the presence of specific analytes or biomarkers.The development of thermo-sensitive hydrogels has also led to advancements in the field of injectable biomaterials. These hydrogels can be designed to be injected in a liquid form and then undergo in situ gelation at the target site, allowing for minimally invasive procedures and the delivery of therapeutic agents or cells directly to the site of interest.Despite the numerous promising applications of thermo-sensitive hydrogels, there are still several challenges that need to be addressed. One of the key challenges is the optimization of the LCST or UCST to match the specific requirements of the target application. Researchers are exploring ways to fine-tune the polymer composition and structure to achieve the desired temperature-responsive behavior. Additionally, the long-term biocompatibility and biodegradability of these hydrogels need to be thoroughly investigated to ensure their safe and effective use in biomedical applications.In conclusion, thermo-sensitive hydrogels have emerged as a versatile class of biomaterials with tremendous potential in the field of biomedical engineering. Their temperature-responsive behavior, coupled with their ability to encapsulate and deliver therapeutic agents, make them a promising platform for a wide range of applications, from controlled drug delivery to tissue engineering and regenerative medicine. As research in this field continues to advance, we can expect to see even more innovative and impactful applications of thermo-sensitive hydrogels in the years to come.。