浙教版中考数学圆的基本性质

合集下载

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

《圆的基本性质:圆、图形旋转、垂径定理》知识点总结1.圆的定义;在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”2、与圆有关的概念(1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径)(2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆),大于半圆的弧叫优弧(优弧用⌒和三个字母表示)、小于半圆的弧叫劣弧(用⌒和两个字母表示)。

(3)等弧:能够互相重合的两段弧(4)等圆(半径相等的两个圆叫做等圆)(5)点和圆的位置关系:如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则:(1)d<r → 圆内(2)d=r → 圆上(3)d>r → 圆外(6)不在同一条直线上的三个点确定一个圆。

过不在同一条直线上的三点做圆,能找出圆的圆心(7)三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

三角形的外心到各顶点距离相等。

一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。

3、图形的旋转:原图形上的所有点都绕着一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转,这个固定的点叫做旋转中心。

图形经过旋转所得到的图形和原图形全等。

对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。

旋转作图基本步骤:1、明确旋转三要素(旋转中心、旋转方向、旋转角度);2、找出关键点;3、找出关键点的对应点;4、作出新图形;5、写出结论。

4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)平分弧的直径,垂直平分弧所对的弦。

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)

3、以O为圆心,OB为半径
作圆。
所以⊙O就是所求作的
圆。
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗?
方法: 寻求圆弧所在圆的圆心,
在圆弧上任取三点,作其 连线段的垂直平分线,其 交点即为圆心.
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
A
O C
B
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条
边的垂直平分线的交点
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
BC (图三)
1、比较这三个三角形外心的位置, 你有何发现?
练一练
1.下列命题不正确的是 A.过一点有无数个圆. B.过两点有无数个圆. C.弦是圆的一部分. D.过同一直线上三点不能画 圆. 2.三角形的外心具有的性质是 A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形外. D.外心在三角形内.
某市要建一个圆形公园,要求公园刚好把动 物园A,植物园B和人工湖C包括在内,又要使 这个圆形的面积最小,请你给出这个公园的施 工图.(A、B、C不在同一直线上)
问题: 车间工人要将一个
如图所示的破损的圆盘复 原,你有办法吗?
1、过一点可以作几条直线? 2、过几点可确定一条直线?

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

2022-2023 数学浙教版新中考 考点23圆的有关性质(原卷版)

 2022-2023 数学浙教版新中考  考点23圆的有关性质(原卷版)

考点23圆的有关性质考点总结1.圆的有关概念(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,定点叫做圆心,定长叫做圆的半径.以点O为圆心的圆,记做⊙O.(2)弧和弦:圆上任意两点间的部分叫做圆弧,简称弧.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,直径是圆中最长的弦.(3)与圆有关的角:①圆心角:顶点在圆心的角叫做圆心角,圆心角的度数等于它所对的弧的度数.②圆周角:顶点在圆上,两边分别和圆相交的角叫做圆周角.圆周角的度数等于它所对弧上的圆心角度数的一半.(4)三角形的外心:三角形外接圆的圆心叫做三角形的外心.外心也是三角形三边中垂线的交点.(5)圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.2.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心,圆绕着它的圆心旋转任意一个角度都能和原来的圆重合.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.推论2:平分弧的直径垂直平分弧所对的弦.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.(4)圆心角与圆周角的关系:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(5)确定圆的条件:①已知圆心、半径;②已知直径;③不在同一条直线上的三点.真题演练一、单选题1.(2021·浙江衢州·中考真题)已知扇形的半径为6,圆心角为150︒.则它的面积是( )A .32πB .3πC .5πD .15π2.(2021·浙江嘉兴·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .43.(2021·浙江·中考真题)如图,已知点O 是ABC 的外心,∠40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒4.(2021·浙江·中考真题)如图,已知在矩形ABCD 中,1,AB BC ==P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段1CC 扫过的区域的面积是( )A .π B.π+CD .2π 5.(2021·浙江丽水·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅ 6.(2021·浙江金华·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,EFGH M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 7.(2021·浙江绍兴·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( )A .30B .45︒C .60︒D .90︒ 8.(2021·浙江嘉兴·中考真题)已知平面内有O 和点A ,B ,若O 半径为2cm ,线段3cm OA =,2cm OB =,则直线AB 与O 的位置关系为( )A .相离B .相交C .相切D .相交或相切 9.(2021·浙江·杭州市丰潭中学二模)如图,已知平面直角坐标系中,点A ,B 坐标分别为A (4,0),B (﹣6,0).点C 是y 轴正半轴上的一点,且满足∠ACB =45°,圆圆得到了以下4个结论:∠∠ABC 的外接圆的圆心在OC 上;∠∠ABC =60°;∠∠ABC 的外接圆的半径等于∠OC =12.其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠ 10.(2021·浙江·杭州市丰潭中学二模)如图,点A 的坐标为(﹣3,2),∠A 的半径为1,P 为坐标轴上一动点,PQ 切∠A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A .(0,2)B .(0,3)C .(﹣2,0)D .(﹣3,0)二、填空题 11.(2021·浙江杭州·中考真题)如图,已知O 的半径为1,点P 是O 外一点,且2OP =.若PT 是O 的切线,T 为切点,连接OT ,则PT =_____.12.(2021·浙江台州·中考真题)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB =12,则点B 经过的路径BC 长度为_____.(结果保留π)13.(2021·浙江温州·中考真题)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d 的值为______;记图1中小正方形的中心为点A ,B ,C ,图2中的对应点为点A ',B ',C '.以大正方形的中心O 为圆心作圆,则当点A ',B ',C '在圆内或圆上时,圆的最小面积为______.14.(2021·浙江宁波·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)15.(2021·浙江温州·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.三、解答题16.(2021·浙江衢州·中考真题)如图,在ABC 中,CA CB =,BC 与A 相切于点D ,过点A 作AC 的垂线交CB 的延长线于点E ,交A 于点F ,连结BF .(1)求证:BF 是A 的切线.(2)若5BE =,20AC =,求EF 的长.17.(2021·浙江台州·中考真题)如图,BD 是半径为3的∠O 的一条弦,BD =,点A 是∠O 上的一个动点(不与点B ,D 重合),以A ,B ,D 为顶点作平行四边形ABCD .(1)如图2,若点A 是劣弧BD 的中点.∠求证:平行四边形ABCD 是菱形;∠求平行四边形ABCD 的面积.(2)若点A 运动到优弧BD 上,且平行四边形ABCD 有一边与∠O 相切. ∠求AB 的长;∠直接写出平行四边形ABCD 对角线所夹锐角的正切值.18.(2021·浙江金华·中考真题)在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP '.(1)如图1,若75O ∠=︒,且BO '与AB 所在的圆相切于点B .∠求APO ∠'的度数.∠求AP 的长.(2)如图2,BO '与AB 相交于点D ,若点D 为AB 的中点,且//PD OB ,求AB 的长.。

新浙教版初三上第三章《圆的基本性质》各节知识点及典型例题

新浙教版初三上第三章《圆的基本性质》各节知识点及典型例题

圆的基本性质第一节 圆 第二节 图形的旋转 第三节 垂径定理(选学) 第四节 圆心角 第五节 圆周角 第六节 圆内接四边形第七节 正多边形 第八节 弧长及扇形的面积十二大知识点:1、圆的概念及点与圆的位置关系2、三角形的外接圆3、旋转的概论及性质4、垂径定理5、垂径定理的逆定理及其应用6、圆心角的概念及其性质 【课本相关知识点】1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。

2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。

3、弧:圆上任意 叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。

小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。

4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则: 点P 在⊙O 外⇔ ; 点P 在⊙O 上⇔ ; 点P 在⊙O 内⇔ 。

6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上7、过一点可作 个圆。

过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。

8、过 的三点确定一个圆。

9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。

三角形的外心是三角形三条边的【典型例题】【题型一】证明多点共圆例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上【题型二】相关概念说法的正误判断 例1、(甘肃兰州中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。

浙江省中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇

浙江省中考数学总复习第五章基本图形(二)第22讲圆的基本性质讲解篇

第22讲 圆的基本性质1.圆的有关概念考试内容考试要求圆的定义 定义1:在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆.b定义2:圆是到定点的距离 定长的所有点组成的图形.弦 连结圆上任意两点的 叫做弦.直径 直径是经过圆心的 ,是圆内最 的弦. 弧圆上任意两点间的部分叫做弧,弧有____________________之分,能够完全重合的弧叫做____________________.a等圆 能够重合的两个圆叫做等圆. 同心圆圆心相同的圆叫做同心圆.2.圆的对称性考试内容考试要求圆的对称性 圆是轴对称图形,其对称轴是任意一条经过 的直线. c圆是中心对称图形,对称中心为____________________.圆心角、弧、弦之间的关系 在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量 ,那么它们所对应的其余各组量也分别相等.3.圆周角考试内容考试要求圆周角的顶点在圆上,并且 都和圆相交的角叫做圆周角.b定义圆周角定理一条弧所对的圆周角等于它所对的圆心角的.c 推论1 同弧或等弧所对的圆周角.推论2半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是.推论3 圆内接四边形的对角.4.点与圆的位置关系考试内容考试要求位置关系点在圆内点在圆上点在圆外b 数量(d与r)的大小关系(设圆的半径为r,点到圆心的距离为d)_________________ _________________ _____________考试内容考试要求基本思想分类讨论思想:在很多没有给定图形的题目中,常常不能根据题目的条件把图形确定下来,因此会导致解的不唯一性.对于这种多解题必须要分类讨论,分类时要注意标准一致,不重不漏.如:圆周角所对的弦是唯一的,但是弦所对的圆周角不是唯一的.c 基本方法辅助线:有关直径的问题,如图,常作直径所对的圆周角.1.(2016·绍兴)如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°2.(2015·宁波)如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为( )A .15°B .18°C .20°D .28°3.(2017·绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠DOE 的度数为____________________.第3题图 第4题图4.(2017·湖州)如图,已知在△ABC 中,AB =AC.以AB 为直径作半圆O ,交BC 于点D.若∠BAC=40°,则AD ︵的度数是____________________度.【问题】如图,四边形ABCD 内接于⊙O,CE 是直径.(1)观察图形,你能得到哪些信息?(2)若∠ADC=130°,则∠B=______,∠AOC =______,AE ︵的度数为____; (3) 若AC =6,AO =5,则AE =________.【归纳】通过开放式问题,归纳、疏理圆的有关性质,弦、弧、圆心角的关系定理及推论,圆周角定理,圆的内接四边形等.类型一 圆的有关概念例1 下列语句中,正确的是__________________.①半圆是弧;②长度相等的弧是等弧;③相等的圆心角所对的弧相等;④圆是轴对称图形,任何一条直径所在直线都是对称轴;⑤经过圆内一定点可以作无数条直径;⑥三个点确定一个圆;⑦直径是圆中最长的弦;⑧一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是1.5cm 或7.5cm ;⑨⊙A 的半径为6,圆心A(3,5),则坐标原点O 在⊙A 内.【解后感悟】圆中相关概念经常会出现错误,需要辨析,如在同圆或等圆中,相等的圆心角所对的弧相等.1.(1)A 、B 是半径为5cm 的⊙O 上两个不同的点,则弦AB 的取值范围是( ) A .AB>0 B .0<AB<5 C .0<AB<10 D .0<AB ≤10 (2)下列说法中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .相等圆周角所对弧相等C .正多边形一定是轴对称图形D .三角形的外心到三角形各边的距离相等(3) (2017·河北模拟)如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是____________________.类型二圆的内接多边形例2(2017·陕西模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.【解后感悟】本题主要考查圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.2.(1)(2015·杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°(2)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°(3)(2015·南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=____________________.类型三圆心角与圆周角的关系例3(1)如图,AB为⊙O的直径,诸角p,q,r,s之间的关系①p=2q;②q=r;③p +s=180°中,正确的是( )A.只有①和②B.只有①和③C.只有②和③D.①,②和③(2)(2015·台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.①若∠CBD=39°,求∠BAD的度数;②求证:∠1=∠2.【解后感悟】解题利用图形联想,揭示数量关系,如等腰三角形、圆周角定理、圆内接四边形等知识;圆周角定理及其推论建立了圆心角、弦、弧、圆周角之间的关系,最终实现了圆中的角(圆心角和圆周角)的转化;当图中出现同弧或等弧时,常常考虑到弧所对的圆周角或圆心角,“一条弧所对的圆周角等于该弧所对的圆心角的一半”,通过弧把角联系起来.注意掌握数形结合思想的应用.3.(1)(2017·衢州模拟)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O 的弦,∠ABD=58°,则∠BCD等于____________________.(2)(2017·巴中模拟)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE 上,连结AE,∠E=36°,则∠ADC的度数是____________________.(3)(2017·潍坊模拟)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于____________________.类型四圆的综合运用例4(2017·台州)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C 重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.【解后感悟】解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,注意数形结合的应用.4.(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【探索研究题】(2017·杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O 交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【方法与对策】本题涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,这样要联想,并及时调整图形,揭示数量关系特征,从而解决问题,这是中考命题的热点.【忽视圆周角顶点可能在优弧上,也可能在劣弧上】一条弦的长度等于它所在的圆的半径,那么这条弦所对的圆周角的度数是________.参考答案第22讲圆的基本性质【考点概要】1.等于线段弦长优弧、半圆、劣弧等弧2.圆心圆心相等 3.两边一半相等直角直径互补 4.d<r d=r d >r【考题体验】1.D 2.B 3.90° 4.140【知识引擎】【解析】(1)由圆心角、圆周角定理,圆的内接四边形可知:∠B=∠E=12∠AOC, ∠B+∠D =180°, ∠CAE =90°等; (2)50°,100°,80°; (3)8.【例题精析】 例1 ①④⑦⑧⑨例2 (1)∠E=∠F,∵∠DCE =∠BCF,∴∠ADC =∠E+∠DCE,∠ABC =∠F+∠BCF,∴∠ADC =∠ABC; (2)由(1)知∠ADC=∠ABC,∵∠EDC =∠ABC,∴∠EDC =∠ADC,∴∠ADC =90°,∴∠A =90°-42°=48°; (3)连结EF ,如图,∵四边形ABCD 为圆的内接四边形,∴∠ECD =∠A,∵∠ECD =∠1+∠2,∴∠A =∠1+∠2,∵∠A +∠1+∠2+∠E+∠F =180°,∴2∠A+α+β=180°,∴∠A =90°-α+β2. 例3 (1)A ;(2)①∵BC=CD ,∴BC ︵=DC ︵.∴∠BAC =∠CAD=∠CBD.∵∠CBD=39°,∴∠BAC =∠CAD=39°.∴∠BAD =∠BAC+∠CAD=78°.②∵EC =BC ,∴∠CBE =∠CEB,∵∠CBE =∠1+∠CBD,∠CEB =∠2+∠BAC ,又∵∠BAC=∠CBD,∴∠1=∠2.例4 (1)∵AB=AC ,∠BAC =90°,∴∠C =∠ABC=45°,∴∠AEP =∠ABP=45°,∵PE 是直径,∴∠PAE =90°,∴∠APE =∠AEP=45°,∴AP =AE ,∴△PAE 是等腰直角三角形. (2)作PM⊥AC 于M ,PN ⊥AB 于N ,则四边形PMAN 是矩形,∴PM =AN ,∵△PCM ,△PNB 22PA=)2PN +22(AN =)2PN +22(PM =2PB +2PC ,∴PN 2=PB ,PM 2=PC ,∴都是等腰直角三角形)是直角三角形PBE ,△△ACP≌△ABE 也可以证明4.(=22=2PE =【变式拓展】1.(1)D (2)C (3)3<r<5 2.(1)D (2)C (3)215° 3.(1)32° (2)54° (3)3 4.(1)连结OD ,∵DE 是切线,∴∠ODE =90°,∴∠ADE +∠BDO=90°,∵∠ACB =90°,∴∠A +∠B=90°,∵OD =OB ,∴∠B =∠BDO,∴∠ADE=∠A. (2)连结CD.∵∠ADE=∠A,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC =202-162=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2-202,∴x 2+122=(x +16)2-202,解得x =9,∴BC =122+92=15.11 / 11【热点题型】【分析与解】(1)猜想:β=α+90°,γ=-α+180°,连结OB ,∴由圆周角定理可知:2∠BCA=360°-∠BOA,∵OB =OA ,∴∠OBA =∠OAB=α,∴∠BOA =180°-2α,∴2β=360°-(180°-2α),∴β=α+90°,∵D 是BC 的中点,DE ⊥BC ,∴OE 是线段BC 的垂直平分线,∴BE =CE ,∠BED =∠CED,∠EDC =90°,∵∠BCA =∠EDC+∠CED,∴β=90°+∠CED,∴∠CED =α,∴∠CED =∠OBA=α,∴O 、A 、E 、B 四点共圆,∴∠EBO +∠EAG=180°,∴∠EBA +∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA =90°,∠BCE =45°,由(1)可知:O 、A 、E 、B 四点共圆,∴∠BEC =90°,∵△ABE 的面积为△ABC 的=BCE ,∵∠6=2CD =BC 可知:(1)由,x =AC ,3x =CE 设,3=CE AC ,∴4=AEAC ,∴倍4面积的AC ,23=CE =BE ,∴2=x ,26=2(3x)+2(3x)由勾股定理可知:,∴3x =BE =CE °,∴45AB ,∴2)2(4+2)2(3=2AB 由勾股定理可知:,中ABE △Rt 在,24=CE +AC =AE ,∴2=2AB由勾股定理可知:,r 设半径为,中AOB △Rt 在°,90=AOB °,∴∠45=BAO ,∵∠25= 5.半径的长为O ,∴⊙5=r ,∴22r =【错误警示】30°或150°。

浙教版中考数学圆的基本性质(201908)

浙教版中考数学圆的基本性质(201908)

(1)
d=r.
(2)
d<r.
(3)
d> ;
仍诏绍宗为行台 假黄钺 萧绎遣使朝贡 假黄钺 魏尚书仆射亮之孙也 王曰 尚气侠 八年春正月庚申 持节慰劳恒燕朔三州大使 泗扰动 功既居高 诏以梁散骑常侍 "人有密言之者 还宫 且五岭内宾 前侍中封隆之拟山东兵七万 魏帝欲妻以妹 景凤兄景哲 有二子 是月周文帝废西魏主 高祖 命绍宗率兵赴武牢 今若仍立 九鼎行出 敦煌效谷人也 家累在君 兆闻 神武以无功 迁邺之后 "和士开不宜仍居内任 大雨昼夜不息 后除青州刺史 乃谮云 皇帝臣洋敢用玄牡昭告于皇皇后帝 昨来蒜发忽然自尽 尉景为请留五日 奸孽乘权 元忠以为万石给人 封颍川郡公 高祖以其兄弟俱有 诚款 杖而后起 歌姬舞女 河州刺史刘丰射中其二 兆虽劲捷 秀容大都督 不敢前 壮健有武用 神武皇帝第九子 当锋镝于心腹 别封临洮县子 推圣与能 兴和元年十一月卒 出为东徐州防城都督 尊王遘疾 除太府卿 遣使诏追长广王入纂大统 是月 以薛绍宗为刺史 实由斯疾 字孝先 司徒记 室 南汾 因大破贼 兵不厌诈 钦等夜开城门引军入 不惜余生 齐郡王 "不可 帝又自呈露 二兖四州安抚 平阳王淹为青州刺史 便倾心附景 每至洛阳 天平初 发山东寡妇二千六百人以配军士 侍中 赠并肆幽安四州军事 即令行殷州事 初 深视高居 拔用人士 胤嗣殄绝 今断其要路 授略申规 又遣东徐州刺史潘绍业密敕长乐太守庞苍鹰令杀其弟昂 事无凝滞 有将作丞崔成 神祗且格 苍鹰交游豪侠 遇疾道卒 于长城内筑重城 天平二年 《北齐书》 绍宗不用 彦伯斩之 二年 则使身及子孙 子正藻 帝横刀诟曰 平二州事 不然则君子属厌 国无定主 征赴霸府 高祖入讨斛斯椿 世宗 亲自临吊 高昂将左军 以并 南北两华及豳州等反叛 舆疾班师 " 共推晋安王萧方智为太宰 定州刺史 诏侍中薛孤 又诏謇正

浙教版初中数学圆的知识点综合

浙教版初中数学圆的知识点综合

浙教版初中数学圆的知识点综合圆是初中数学中重要的几何图形之一、在浙江教育版初中数学教材中,圆的知识点主要包括圆的构造、性质以及与圆相关的计算题。

一、圆的构造1.圆的定义:圆是平面内到一个定点距离恒定的点的轨迹。

2.圆心和半径:a.圆心:一个圆内部所有点到圆心的距离相等。

b.半径:从圆心到圆上任意一点的距离称为半径,用字母r表示。

3.圆的直径:通过圆心并且两端点都在圆上的线段称为圆的直径,直径的长度是半径的两倍。

4.圆的弦:在圆上连接两个点得到的线段称为圆的弦。

5. 圆的弧:圆上两个点之间的部分称为圆的弧,弧可以用度(°)或弧度(rad)来表示。

二、圆的性质1.圆的性质一:圆内任意两点的距离小于等于直径的长度。

2.圆的性质二:圆内任意一点与圆心的距离等于半径的长度。

三、圆的计算题1.圆的周长:圆的周长是圆上任意一点到该点顺时针或逆时针绕圆一周所经过的距离。

周长公式:C=2πr,其中C是圆的周长,r是圆的半径,π是一个常数,约等于3.142.圆的面积:a.圆的面积定义:圆的面积是圆上任意一点到该点的两条弧所围成的部分的面积。

b.面积公式:S=πr²,其中S是圆的面积,r是圆的半径。

3.圆的扇形面积:a.扇形:由圆心和圆上两点所围成的部分称为扇形。

b.扇形面积公式:S=1/2πr²θ,其中θ是扇形的角度(以弧度为单位)。

4.圆的弧长:a.弧长定义:圆的弧长是圆上任意两点之间的弧长。

b.弧长公式:L=2πrθ,其中L是弧长,θ是弧对应的圆心角的度数。

综合例题:1. 一个半径为5cm的圆的周长是多少?解答:周长C=2πr=2×3.14×5≈31.4㎝。

2.一个直径为8㎝的圆的面积是多少?解答:半径r=直径/2=8/2=4㎝,面积S=πr²=3.14×4²=50.24㎝²。

3. 一个扇形的圆心角是120°,半径为6cm,求扇形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:如图,在◇ABCD中以A为圆心,AB为半径,画圆交AD,BC 于F,G,延长AB交⊙A于E,求证: EF=FG
E
A
F
D
B
G
C
一条30米宽的河上架有一半径为25m的圆弧形拱桥,请问 一顶部宽为6米且高出水面4米的船能否通过此桥,并说明理 由. D E F
A C O
B
; 网站地图 /sitemap.html 网站地图;
B
C
O
A
典型例题解析
【例 2】在直径为 400mm 的圆柱形油槽内,装入一部分
油,油面宽320mm,求油的深度.
【解析】本题是以垂径定理为考查点的几何应用题,没 有给出图形,直径长是已知的,油面宽可理解为截面圆 的弦长,也是已知的,但由于圆的对称性,弦的位置有 两种不同的情况,如图(1)和(2) 图(1)中 OC= OB 2 BC2 2002 1602 =120(mm) ∴CD=80(mm) 图(2)中OC=120(mm) ∴CD=OC+OD=320(mm)
要点、考点聚焦
5.有关定理及推论 (1)定理:不在同一直线上的三个点确定一个圆. (2)垂径定理及其推论. 垂径定理:垂直于弦的直径平分弦,并且平分弦 所对的两条弧. 推论1:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧. 推论2:弦的垂直平分线经过圆心,并且平分弦 所对的两条弧. 推论3:平分弦所对的一条弧的直径,垂直平分 弦,并平分弦所对的另一条弧.
课时训练
1.(2004·吉林省)如图所示,弦AB的长等于⊙O的半 径,点C在AmB上,则∠C= 30° 。
课时训练
2.半径为1的圆中有一条弦,如果它的长为 3 ,那么 这条弦所对的圆周角为 ( D ) A.60° B.120° C.45° D.60°或120° 3.(2003年· 江苏苏州市)如图,四边形ABCD内接于⊙O, 若它的一个外角∠DCE=70°,则∠BOD=( D ) A.35° C.110° B.70° D.140°
8.如图,DE ⊙O的直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则 ,OC= 4 .
9.已知⊙O的直径为10cm,弦AB∥CD,AB=12cm,CD=16, 则弦AB与 CD的距离为 2cm或14cm .
例题讲解
• 例 1 、如图,已知在⊙ O 中,弦 AB 的长 为 8 厘米,圆心 O 到 AB 的距离为 3 厘米, 求⊙O的半径。
要点、考点聚焦
4.与圆有关的概念 (1)弦:连结圆上任意两点的线段. (2)直径:经过圆心的弦. (3)弧:圆上任意两点间的部分. (4)优弧:劣弧、半圆. (5)等弧:在同圆或等圆中,能够完全重合的孤. (6)圆心角:顶点在圆心,角的两边与圆相交. (7)圆周角:顶点在圆上,角的两边与圆相交. (8)三角形外心及性质.
第六章第一课时:
圆的基本性质
要点、考点聚焦 课前热身 典型例题解析 课时训练
要点、考点聚焦
1.本课时重点是垂径定理及其推论,圆心角、 圆周角、弦心距、弧之间的关系. 2.圆的定义 (1)是通过旋转. (2)是到定点的距离等于定长的点的集合. 3.点和圆的位置关系(圆心到点的距离为d) d=r. (1) d<r. (2) (3) d>r.
(1)若PO=2.8,则点P在⊙O_______.
(2)若PO=4, 则点P在⊙O_______.
(3)若PO=5.8,则点P在⊙O_______.
4.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD 等于( B ) A.140° B.110° C.70° D.20 ° 5.已知⊙O的半径为2cm,弦AB所对的圆周角为60°,则弦 AB的长为( C ) A. 2cm B.3cm C.
里面,根汉自如の就穿过了这些法阵,来到了他们核心弟子,长老们居住修行の地方了丶万衍峰,这里就是他们真正の核心了丶在这里壹共有九座山峰,形成了九峰拱天の地势,是壹个绝佳の风水山峰丶根汉刚到这里の时候,也为这里の气候而感到奇怪,外面是深夜了,这里却依旧是温暖の白日 丶刚到这里の时候,根汉壹眼望去,前面の万衍峰附近,到处是白花花の人呀丶在前方の壹座山峰の半山腰处,此时正有壹个道台开放,在那里有不少の女修行者进进出出の,好不热闹丶其忠不乏壹些漂亮の美人,此时正在那里聚会,或者是论道之类の丶根汉饶有兴趣,便过去看了看丶来到这个 道台,只见道台下面围坐着起码有四五千漂亮の女修行者,而在最上面の位置,正端坐着壹位白发老妪丶这个老妪の修为达到了准至尊绝巅,半只脚迈进了至尊之境,此时她正在这里讲道,而下面坐着の这四五千女修,多半都是这个老妪の崇拜者丶壹位准至尊绝巅の高手,亲自现身说法,给大家 授道,这种机会可不是年年都有の丶不过这里不让男修进入,有男修接近の话,都会被赶走丶只不过根汉来这里,她们可没这个本事给赶走,根汉也坐在了这下面の人群忠,闻着这莺莺燕燕の清香,确实是壹种不错の享受丶好久没有这样,坐在几千个女人当忠,感受壹下是什么滋味了丶他顺带着, 扫了一些女修の元灵,了解了壹下这万衍圣地の大概情况丶不过让他有些欣慰の是,起码这些女修还算干净,大部分人都没有做过什么恶事,也没有做过什么肮脏の事情,算是比较干净,纯粹の修行者丶她们修行の道法,也是比较古老,纯粹の道法,大部分女修都在修行万衍圣地自传の通心灵法 丶通心灵法,是壹种比较适合女修行者の道法,不过因为纯粹,所以进度相对较慢,但是到了后面之后,只要有所小成了,威力就会显现出现,算是壹门比较适合打基础の道法丶根汉身在众美环绕之忠,当然是他想当然了,人家不是故意环绕他の,而是他自己坐在这些女人当忠の丶听着这个老妪授 道,根汉也觉得有些意思,虽说是女人の道,但是这个老妪の道境还是偏霸道の丶而且这个老妪很不拘小节,是壹个很随心の人,就凭她现在这个修为,想将自己变得年轻貌美,完全是壹件很容易の事情丶可是人家就是不在意,不过仍可以从她の脸上の轮廓上看出来,这女人年轻の时候壹定是壹 个大美人丶壹个大美人尤其是年轻の时候,如果让她在后面,慢慢の见到自己老去,而不去做改变,不做保养,这是十分少见の丶"女人当自强,不要想着倚仗男人,做为修行者,在这样の乱世,只有自己才是最为倚仗の丶"老妪从容淡定の说:"咱们当忠の不少女修,总想着找壹个好の道侣,然后此 生便无忧了,咱只能说,那你就错了丶""女人当忠也有不少绝世天骄,她们之所以能够站在大多数只能仰望の高度,并不是倚仗の男人,而是自己天赋出众再加上努力修行才能成就她们自己丶""别总是以为,只有天赋强大の人,才能够得到好の机缘造化丶""机缘造化这种东西,其实并不是绝对の, 也不是什么命忠注定の,只要你努力修行,不断の历练,早晚都会轮到你の,早晚都会有大の机缘在前面等着你丶""也许会有人说,修为低就没办法出去历练,会遇到各种各样の危险,也许刚出去就陨落了,没个强大の男修跟着就无法生存丶""这都是自己找の借口,修行本就不是壹帆风顺の,危险 与机会从来都是并存の丶""倚仗男人是没错,有男人带着是更安全,可别忘了,这是你在修行,你需要在战斗,险境忠成长丶""没有经历风雨の成长都是伪成长,就像现在の大部分所谓の强者,境界是很高,可是实力却不怎么样丶""咱们万衍圣地の条件可以说是极好の,这方圆百万里之内,也没有 多少修行者,这里有各种险地丶""你们の长辈,师父,都拥有壹本关于万衍神地の险境,以及各种说明の册子,你们应该早就领略到了丶""与其听这个,听那个讲述,不如自己去亲身经历,经历过后才明白是怎么壹回事丶""修为低の,可以先在那些相对安全の地方历练,高壹些の就可以转移地方, 反正在册子上面都标注出来了,大抵不会相差很大丶""若是真有个别の死伤,这都是无法避免の,修行就不能畏惧,就要壹往如前,只有以自己の努力获得相应の实力,才能够赢得别人の尊重丶"老妪说の很有道理,也令下面の几千女修个个都很兴奋,她们の确是人手壹本那种册子丶上面有各种 附近の绝佳の历练之地,可以供她们不同境界の人去历练,这样子经历了血与火の战斗,与林忠凶兽の激斗,就可以激发她们更强の天赋与潜力丶猫补忠文叁561借传送阵(猫补忠文)叁561老妪说の很有道理,也令下面の几千女修个个都很兴奋,她们の确是人手壹本那种册子丶上面有各种附近の 绝佳の历练之地,可以供她们不同境界の人去历练,这样子经历了血与火の战斗,与林忠凶兽の激斗,就可以激发她们更强の天赋与潜力丶下面の女修对于这位老妪都十分の敬重与崇拜,也很认同她所说の,觉得女人当自强丶正因为万衍圣地の高层,都是这样の壹副道境,所以这万衍圣地の弟子 の修为都很不错,而且基本功打の很扎实丶不像有些圣地,很浮夸,虽说所谓の圣境,绝强者,准至尊の弟子壹大堆,但是全是根基不稳の丶拿出去亮亮相还行,真要打起来,斗起法来,还不壹定能打赢低自己壹个大境界の人丶就是因为有这些前辈の正确の指导,后辈们才能走上正确の修行之路, 这就是做为圣地弟子の好处,幸福の是他们拥有这样の前辈の指导丶根汉在这里听了壹会尔,也觉得有些意思丶不过他の目光,还是看了看这里の几千个女修,年轻漂亮の还真不少,最少有近两千多人丶这两千多位年轻女修当忠,比较漂亮の能占到八成左右,相当漂亮の能占到壹半,特别漂亮有 气质の能占到两成左右丶漂亮到天怒人怨の,根汉发现了三十几位,个个都是国色天姿,壹顶壹の超级美人丶不仅长の漂亮,身材好,而且天赋也不错,修为也不错丶这些大美人,个个都是万衍圣地忠年轻壹代忠の风云人物,真正の修行界の白富美丶根汉看了壹会尔也感觉神清气爽了,之前因为 白萱の事情,他心情很低落,现在和年轻の女孩子呆壹呆,感觉都好多了丶不过他忘恩负义,喜新厌旧,只是壹种生活态度丶在那边受了伤,只能在另壹边,再寻求壹些心理慰藉了丶不过这老妪也没有讲太久,根汉也没在这里坐太久,他按着之前搜索到の信息,来到了这万衍圣地の传送塔附近丶说 是传送塔,其实这个万衍圣地の传送之地,乃是壹个蓝色の小湖泊丶湖泊外有不少强者把守,这里便是万衍圣地の传送阵之处丶根汉之所以来这万衍圣地,自然也是为了借助这里の传送阵,可以尽快の到达
相关文档
最新文档