数学建模层次分析法旅游景点选址举例

合集下载

数学建模最佳旅游路线地选择模型

数学建模最佳旅游路线地选择模型

数学建模最佳旅游路线地选择模型引言:旅游是人们休闲娱乐、增长见闻的重要方式之一。

然而,选择旅游目的地时常常会面临如何评估不同地点之间的优劣以及如何确定最佳的旅游路线的问题。

为了解决这一难题,我们可以借助数学建模的方法,通过建立旅游路线地选择模型,帮助人们在众多选项中找到最佳的旅游路线。

一、问题描述:我们面临的问题是,在给定的旅游目的地中选择最佳的旅游路线。

假设旅游目的地共有n个,分别用D1、D2、…、Dn表示。

我们需要确定从起始地(称为S)到达终点地(称为E)的最佳路线。

二、模型建立:在建立模型之前,我们需要确定几个关键因素:1.每个旅游目的地之间的距离:我们可以通过地理或交通工具的信息来获取旅游目的地之间的距离。

2.每个旅游目的地的景点质量:我们可以通过用户评价、专家评分等手段来评估每个旅游目的地的景点质量。

3.旅游者的偏好:不同的旅游者对景点的偏好可能存在差异,例如有的人喜欢自然景观,有的人偏好历史文化。

我们可以通过问卷调查等方式了解旅游者的偏好。

基于以上因素,我们可以建立如下的旅游路线地选择模型:1.建立旅游目的地之间的距离矩阵:假设共有n个旅游目的地,则可以建立一个n×n的距离矩阵D,其中D(i,j)表示第i个旅游目的地到第j个旅游目的地的距离。

2.建立旅游目的地的景点质量评分向量:假设共有n个旅游目的地,则可以建立一个n维向量Q,其中Q(i)表示第i个旅游目的地的景点质量评分。

3.建立旅游者的偏好向量:假设共有m个旅游者,则可以建立一个m维向量P,其中P(i)表示第i个旅游者的偏好。

4.确定最佳路线:通过综合考虑旅游目的地之间的距离、景点质量和旅游者的偏好,可以使用数学模型(如线性规划、多目标规划等)来确定最佳路线。

具体的模型则需要根据实际情况进行调整和选择。

三、模型求解:根据建立的数学模型,我们可以通过求解最佳路线问题来得到旅游的最佳路线。

具体的求解方法可以有多种:1.基于算法的求解:可以利用优化算法(如遗传算法、模拟退火算法等)来求解最佳路线问题。

层次分析法实例讲解学习

层次分析法实例讲解学习

层次分析法实例讲解学习生活实际例题:旅游实例,有三个旅游地点供游客们选择,连云港,常州,徐州。

影响游客们决策的因素主要有以下五项:景色、费用、居住、饮食、旅途。

请根据个人偏好选择最佳旅游地点。

分析 : 旅游点是方案层,将它们分别用B1 , B2, B3表示,影响旅游决策的因素为准则层 A1, A2, A3 , A4 , A5;目标层为选择旅游地,即可以建立以下模型:选择旅游地景色费用居住饮食旅途连云港常州徐州建立判断矩阵:准则层判断矩阵(即各种因素在旅客偏好选择中所占有的不同比重):1 1/2 43321755A1/ 41/ 711/ 21/ 31/3 1/5 2111/3 1/5 311方案层判断矩阵建立(针对每一个影响因素来对方案层建立):12511/31/8113B1 1/212B1311/3 B11131/ 51/2 18311/3 1/3 1134111/4B1 1/311B1111/41/411441求准则层判断矩阵 A 的特征值:Matlab 运行程序:[a,b]=eig(A)‘ 矩b ’阵的对角线为准则层判断矩阵 A 的特征值:5.0730 0 0 00.0310 0 b0 0 0.0310 0 0 0 0 0.005 00.005即 1 5.073,20.031,30.031,40.005, 50.005选出最大特征值:max (1, 2, 3, 4,5)1最大特征值的特征向量即为准则层的影响因素所占的权重, 所对应的特征向量为:w 1- 0.4658 - 0.8409 - 0.0951 - 0.1733 - 0.1920归一化(最简 matlab 程序为 w=w1./sum(w1) )w0.2636 0.4759 0.0538 0.0981 0.1087一致性指标的检验:由 max 是否等于 5 来检验判断矩阵 A 是否为一致矩阵。

由于特征根连续地依赖于矩阵 A 中的值 ,故 max 比 5 大得越多, A 的非一致性程度也就越严重,max 对应的标准化特征向量也就越不能真实地反映出对因素 A i (i 1, ,5) 的影响中所占的比重。

数学建模第三讲层次分析法

数学建模第三讲层次分析法

数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。

它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。

那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。

比如说,我们要选择一个旅游目的地。

这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。

这些因素就构成了不同的层次。

然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。

为了更清楚地理解层次分析法,我们来看看它的具体步骤。

第一步,建立层次结构模型。

这是层次分析法的基础。

我们需要把问题分解成目标层、准则层和方案层。

目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。

准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。

方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。

第二步,构造判断矩阵。

在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。

比较的结果通常用 1 9 标度法来表示。

比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。

反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。

第三步,计算权重向量并进行一致性检验。

通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。

这个特征向量就是我们所需要的权重向量。

但是,为了确保我们的判断是合理的,还需要进行一致性检验。

如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。

基于层次分析法的旅游景点选择应用(1)

基于层次分析法的旅游景点选择应用(1)

基于层次分析法的旅游景点选择应用层次分析法(AHP)是一种多准则决策方法,可以帮助旅游者选择最适合他们的旅游景点。

该方法可以帮助旅游者根据他们的偏好和需要对不同的景点进行比较和评估,以便做出最佳的选择。

下面我们将介绍如何使用AHP来选择旅游景点。

1.确定标准首先,旅游者需要确定选择旅游景点的标准。

例如,您希望景点具有美丽的风景、历史文化遗产和娱乐设施等等。

您应该根据您的优先级制定一个清晰的标准列表,以便稍后进行比较。

2.创建层次结构接下来,您需要创建一个包含标准和景点的层次结构。

这个层次结构应该先从最高级别开始,然后逐步细化到次级别。

例如:第一层:选择标准第二层:美丽的风景、历史文化遗产、娱乐设施第三层:旅游景点1、旅游景点2、旅游景点33.建立判断矩阵判断矩阵是用来比较标准和景点之间的重要性的。

您需要为每个标准和景点创建一个权重,这个权重是一个百分比,表示该标准或景点在您的选择中的重要性。

例如:您认为美丽的风景比历史文化遗产和娱乐设施更重要,应该赋予它更高的权重。

美丽的风景:0.5历史文化遗产:0.3娱乐设施:0.24.计算一致性比率在AHP中,一致性是一个很重要的概念,因为它可以帮助您检查您的权重是否合理。

为了计算一致性比率,您需要对比每个标准和景点的一对判断,然后计算它们的一致性指数。

接下来,您需要把这些指数加起来,得出一个总体一致性指数CAL。

例如,如果您认为美丽的风景比历史文化遗产更重要,则比较这两个标准的一致性指数如下:美丽的风景比历史文化遗产更重要:1历史文化遗产比美丽的风景更重要:3然后您必须计算这两个一致性指数的比率,以了解它们之间的一致性。

如果这个比率超过0.1,则意味着您的权重是不一致的。

您需要重新调整它们的权重,直到比率小于0.1。

5.计算最终权重一旦您确定了每个标准和景点的权重,并检查了它们之间的一致性,您就可以计算出每个景点的最终权重。

计算公式为:最终权重=标准权重×景点权重。

基于层次分析法的旅游景点选择应用

基于层次分析法的旅游景点选择应用

基于层次分析法的旅游景点选择应用在旅游出行中,选择合适的旅游景点是至关重要的。

然而,很多时候旅游者会困惑于众多景点之间的选择。

为了帮助旅游者更好地选择旅游景点,我们可以利用层次分析法进行决策分析。

层次分析法是一种经典的多准则决策方法,被广泛应用于各种决策分析问题中。

它的核心思想是将决策问题分解为多个层次,将复杂的决策问题简化成易于理解的层次结构,然后通过对各层次之间的比较来确定最终的决策结果。

在旅游景点的选择问题中,我们可以将决策问题分解为三个层次:目标层、准则层和方案层。

在目标层,我们需要确定自己旅游的目标,比如休闲度假、文化探险、自然风光观赏等等。

在准则层,我们需要确定影响景点选择的各种因素,比如交通便利性、景点知名度、景点口碑等等。

在方案层,我们需要列出各种旅游景点方案。

接下来,我们需要对每个层次进行权重分析,以确定各个准则和方案的重要程度。

可以采用问卷调查、专家咨询等多种方法进行权重分析。

例如,在准则层中,我们可以邀请一些旅游专家或者常常旅游的人士,询问他们对各种准则的看法和评价,并根据他们的意见,确定各个准则的相对重要程度。

在确定了各个层次的权重之后,我们可以利用层次分析法的计算方法,对各个方案进行比较。

具体来说,我们可以采用层次分析法的征求意见矩阵法,将各个方案与准则的比较结果输入到一个矩阵中,通过计算矩阵的特征向量来确定最终权重,进而确定最优的旅游方案。

在结果评价方面,我们可以利用一些数据分析方法,比如聚类分析、主成分分析等等,对各个方案的优劣进行评价和比较。

此外,我们还可以采用一些可视化工具,比如地图、图表等等,为旅游者提供更直观、易懂的决策支持。

总之,基于层次分析法的旅游景点选择应用,可以帮助旅游者更加科学、合理地选择旅游景点,提高旅游的质量和效果。

虽然该方法需要一定的专业知识和数据分析技能,但只要认真学习掌握,就可轻松应对各种旅游决策问题。

层次分析法在商洛市旅游景点选择中的应用

层次分析法在商洛市旅游景点选择中的应用

21 0 2年 8 月
决 策 问题 提供 了有效 的方 法 ,广 泛应 用于 经济 、 军事、 农业等 领域 。 用 A P法 对 商洛旅 游 景点 运 H.
基金项 目:陕西省 社会科学 界重 大理论与现 实问题研 究项 目(0 2 0 9 ;商洛 学院科研基金项 目(0 K 0 8 2 1C 3 ) 1S Y10 ;
lS O KY0 2 2)
作者筒介 : 岳毅蒙, , 男 陕西富平 人, 硕士 , 商洛 学院数学 与计算科学系助教
商洛 学 院 学报
最 为 看重 费用 , 次是 其他 条件 。要解 决这 类 问 其
题 , 次分 析法 提供 了一 定 的理 论 基础 。它 针对 层
自然 资源 丰 富 , 山水 风 景秀 丽 , 史文 化悠 久 , 历 全 市共 有 国家 级森 林 公 园 4家 , 国家 3 以上 旅 游 A 景 区 3家 , 以金 丝峡 、 背 粱 、 牛 天竺 山等为 代表 的
cluae ae njd n emai o s t c s adaent et rt tat n vlae,hn a ltdbs o g gt txcnie yt t trai u s arci sieautd te c d ui h r sn e l n v oi t o s
摘 要 : 商 洛 市三 个旅 游景 点 的最 优 选择 进 行 了研 究 , 据 旅 游 者 的不 同要 求 , 用层 对 根 采 次分析 法构 建各 层 因子 间 的判 断矩 阵 ,在 对判 断矩 阵进 行 一致 性检 验 的基 础 上计 算 出各 因
Байду номын сангаас
子 的权 重 , 以此 为模 型对 可供 选择 的景 点进 行评 价 , 到 了各旅 游者在 景 点 选择 上 的 最优 并 得

4-旅游景点选择的多层次综合评判数学模型

4-旅游景点选择的多层次综合评判数学模型

旅游景点选择的多层次综合评判数学模型丁树江(06级应用数学)一、问题的提出:有一经济水平一般而生活俭朴的人准备在“寒假”期间去旅游,现有五处景点供他选择:风光绮丽的苏杭二州(计为P1),迷人的海南三亚(计为P2),长春净月旅游村(计为P3),美名甲天下的桂林(计为P4),辉煌的布达拉宫(计为P5),请为他选择一处最佳旅游地。

能否选择好一处最佳旅游地对旅客本身非常重要,对此要进行认真决策。

选择时应考虑景色、费用、居住、饮食、旅途五个准则。

首先应确定这些准则在游客心目中的比重各占多大,各方案层对同一个准则层的相互比较,以决定其权值的大小。

下面利用层次分析法对上述准则综合比较以选出旅游地点。

二、决策问题:1 将决策问题分为三个层次,最上层为目标层,即选择旅游地,用A 表示;中间层为准则层,有景色B1、费用B2、居住B3、饮食B4、旅途B5;最下层为方案层,即上述五个景点。

经过分析建立了递阶层次结构如下图:2 构造判断矩阵、进行一致性检验及层次排序:1)准则层对目标层的判断矩阵、进行一致性检验及层次排序考虑到旅游者经济条件一般,所以费用为最重要的准则,相比费用而言景色稍弱,而次之为居住、饮食、旅途等准则,我们得到如下的准则层对目标层的判断矩阵及其计算。

2)方案层对准则层的判断矩阵、进行一致性检验及层次排序① 在景色方面,P 4与P 5相比,P 5的景点略好一点,而P 3相比P 1又略好,P 2景色最好。

② 在费用方面,P 4和P 5比P 2费用略微少一些,P 2又比P 3略微少,P 1最少。

③ 在居住方面,P 1比P 5略好一点,而P 3比P 1又略好一点,P 4比P 3略好,P 2最好。

④ 在饮食方面,P 5相比P 2和P 1,P 5要略好一点,P 4又比P 5稍微好点,P 3最好。

⑤ 在旅途方面,P 3和P 1相比P 5和P 4,前者稍微好于后者,而P 2与P 3和P 1相比,P 2稍微好于P 3和P 1。

数学建模层次分析法旅游景点选址举例

数学建模层次分析法旅游景点选址举例

假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点。

正文:1、利用层次分析法构造层次分析模型:图1-12、利用成对比较法对准则层、方案层进行列表费用对比(表2-3)(表2-4)(表2-5)旅游条件对比2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵153931/511/221/21/321311/91/21/311/31/32131A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2) 建立方案层对准则层的成对比较判断矩阵111/31/51/7311/21/45211/21/7421B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭211/24321551/41/5111/31/511B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭316581/61121/51171/81/21/71B ⎛⎫⎪⎪= ⎪⎪⎝⎭ 4111/31/3111/21/532113511B ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭ 512121/211/2112121/211/21B ⎛⎫⎪⎪= ⎪ ⎪⎝⎭3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}} T=Eigensystem[j]//Chop 输出{{5.00974,-0.0048699+0.22084™,-0.0048699-0.22084™,0,0}, {{0.88126,0.167913,0.304926,0.0960557,0.304926},{0.742882,-0.223286-0.278709™,-0.165421+0.346134™,0.151384-0.057689™,-0.165421+0.346134™},{0.742882,-0.223286+0.278709™,-0.165421-0.346134™,0.151384+0.057689™,-0.165421-0.346134™},{-0.993367,0,0.0719207,0.0662245,0.0605282}, {0.884443,0,-0.380934,-0.0589629,0.263009}}}得出A 的最大特征值为max λ=5.00974,及其对应的特征向量x={0.88126,0.167913,0.304926,0.0960557,0.304926}T输入Clear[x]; x=T[[2,1]];W1=x/Apply[Plus,x]得到归一化之后的的特征向量()1w ={0.502119,0.0956728,0.173739,0.0547301,0.173739}T计算一致性指标max 1nCI n λ-=-, ,00974.5,5m ax ==λn 故.002435.0=CI查表(见表3-1)得到相应的随机一致性指标 1.12RI =所以 002174.0)2(==RICICR ()20.1CR <通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一化后的特征向量()1w 作为排序权重向量.下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量 输入B1={{1.0,1/3,1/5,1/7},{3,1,1/2,1/4},{5,2,1,1/2},{1/7,4,2,1}} B2={{1,1/2,4,3},{2,1,5,5},{1/4,1/5,1,1},{1/3,1/5,1,1}} B3={{1,6,5,8},{1/6,1,1,2},{1/5,1,1,7},{1/8,1/2,1/7,1}} B4={{1,1,1/3,1/3},{1,1,1/2,1/5},{3,2,1,1},{3,5,1,1}} B5={{1,2,1,2},{1/2,1,1/2,1},{1,2,1,2},{1/2,1,1/2,1}} T1=Eigensystem[B1]//Chop T2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop 输出{{3.82325,0.0883772+0.544064™,0.0883772-0.544064™,0}, {{0.111267,0.283002,0.536902,0.786934},{-0.0248134-0.0681165™,-0.141793+0.0729826™,-0.154388+0.121345™,0.964755}, {-0.0248134+0.0681165™,-0.141793-0.0729826™,-0.154388-0.121345 ™,0.964755}, {0,0.299667,-0.832409,0.466149}}}{{4.02113,-0.0105652+0.291301™,-0.0105652-0.291301™,0}, {{0.495852,0.84036,0.149575,0.159851},{-0.234515+0.517899™,0.805208,-0.109665-0.110941™,0.0407277 -0.0493071 ™}, {-0.234515-0.517899 ™,0.805208,-0.109665+0.110941 ™,0.0407277 +0.0493071 ™}, {0,-0.953463,-0.0953463,0.286039}}}{{4.25551,-0.110262+1.03317™,-0.110262-1.03317™,-0.0349818}, {{0.941183,0.179553,0.276018,0.0758271},{0.898054,0.136097 +0.0728034 ™,-0.309669+0.2519 ™,-0.0331642-0.0960598™}, {0.898054,0.136097-0.0728034™,-0.309669-0.2519™,-0.0331642+0.0960598™}, {0.958653,-0.256222,0.123505,-0.00904772}}}{{4.08009,-0.0400469+0.570251™,-0.0400469-0.570251™,0}, {{0.214349,0.214031,0.59059,0.747963},{0.00228339-0.0861419™,-0.0895045+0.220107™,-0.388206-0.387638™,0.796962}, {0.00228339+0.0861419™,-0.0895045-0.220107™,-0.388206+0.387638 ™,0.796962}, {-0.424264,0,0.565685,0.707107}}}{{4.,0,0,0},{{0.632456,0.316228,0.632456,0.316228}, {0.116296,0.629208,-0.687356,-0.343678}, {-0.92582,0.154303,0.308607,0.154303}, {-0.92582,0.154303,0.308607,0.154303}}}分别得出其最大特征值1B λ=3.82325,2B λ= 4.02113,3B λ= 4.25551,4B λ= 4.08009,5λ= 4, 以及其特征向量如下:B1=({0.111267,0.283002,0.536902,0.786934})T B2=({0.495852,0.84036,0.149575,0.159851})T B3=({0.941183,0.179553,0.276018,0.0758271})T B4=({0.214349,0.214031,0.59059,0.747963})T B5=({0.632456,0.316228,0.632456,0.316228})T其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[B1,B2,B3,B4,B5]; B1=T1[[2,1]];w1=B1/Apply[Plus,B1] B2=T2[[2,1]];w2=B2/Apply[Plus,B2] B3=T3[[2,1]];w3=B3/Apply[Plus,B3] B4=T4[[2,1]];w4=B4/Apply[Plus,B4] B5=T5[[2,1]];w5=B5/Apply[Plus,B5] 输出{{4.,0,0,0},{{0.632456,0.316228,0.632456,0.316228}, {0.116296,0.629208,-0.687356,-0.343678}, {-0.92582,0.154303,0.308607,0.154303}, {-0.92582,0.154303,0.308607,0.154303}}}w1= {0.0647614,0.164718,0.312497,0.458024}Tw2={0.301313,0.510659,0.0908919,0.0971363}Tw3= {0.639138,0.121931,0.187438,0.0514926}Tw4= {0.121311,0.121132,0.334246,0.423311}Tw5= {0.333333,0.166667,0.333333,0.166667}T计算一致性指标(1,2,3,4,5)1i i nCI i n λ-==-,其中4n =,输入 lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]}CI=(lamda-4)/(4-1)//Chop 则可以得到1CI =-0.0589181,2CI = 0.00704344,3CI =0.0851688,4CI =0.0266979,5CI =0查表(见表3-1)得到相应的随机一致性指标0.90(1,25)i RI i ==计算一致性比率(),1,2,,5ii iCI CR i RI ==,输入CR=CI/0.90 相应可得到12345-0.0654646,0.00782605,0.094632,0.0296643,0CR CR CR CR CR =====因0.1,(1,2,,5)i CR i <=通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4、计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表4-1(表4-1)以矩阵表示第三层对第二层的排序权重计算结果为()30.06476140.3013130.6391380.1213110.3333330.1647180.5106590.1219310.1211320.1666670.3124970.09089190.1874380.3342460.3333330.4580240.09713630.05149260.4233110.166667w ⎛⎫⎪⎪= ⎪⎪⎝⎭)3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为()()231w w W =为了计算上式, 输入W2=Transpose[{w1,w2,w3,w4,w5}]; W3=W2.W1则从输出结果得到W3={0.236941,0.188335,0.274378,0.300347}为了对总排序权向量进行一致性检验, 计算(3)(1)125(.,.,,.)CI C I C I C I w =输入 CI.W1 输出(3)CI = -0.0126517再计算(3)15[,,]1RIRI RI W =输入RI=Table[0.90,{j,5}]; RI.W1则从输出结果得到(3)0.90RI =最后计算(3)(2)(3)(3)/CR CR CI RI =+可得(3)CR = -0.0118834因为,1.0.)3(<RC 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值,旅游点4的电脑是建模者对这三种品牌机的首选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点。

正文:1、利用层次分析法构造层次分析模型:图1-12、利用成对比较法对准则层、方案层进行列表费用对比(表2-3)(表2-4)(表2-5)旅游条件对比2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵153931/511/221/21/321311/91/21/311/31/32131A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2) 建立方案层对准则层的成对比较判断矩阵111/31/51/7311/21/45211/21/7421B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭211/24321551/41/5111/31/511B ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭316581/61121/51171/81/21/71B ⎛⎫⎪⎪= ⎪⎪⎝⎭ 4111/31/3111/21/532113511B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 512121/211/2112121/211/21B ⎛⎫⎪⎪= ⎪ ⎪⎝⎭3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}} T=Eigensystem[j]//Chop 输出{{5.00974,-0.0048699+0.22084™,-0.0048699-0.22084™,0,0}, {{0.88126,0.167913,0.304926,0.0960557,0.304926},{0.742882,-0.223286-0.278709™,-0.165421+0.346134™,0.151384-0.057689™,-0.165421+0.346134™},{0.742882,-0.223286+0.278709™,-0.165421-0.346134™,0.151384+0.057689™,-0.165421-0.346134™},{-0.993367,0,0.0719207,0.0662245,0.0605282}, {0.884443,0,-0.380934,-0.0589629,0.263009}}}得出A 的最大特征值为max λ=5.00974,及其对应的特征向量x={0.88126,0.167913,0.304926,0.0960557,0.304926}T输入Clear[x]; x=T[[2,1]];W1=x/Apply[Plus,x]得到归一化之后的的特征向量()1w ={0.502119,0.0956728,0.173739,0.0547301,0.173739}T计算一致性指标max 1nCI n λ-=-, ,00974.5,5max ==λn 故.002435.0=C I查表(见表3-1)得到相应的随机一致性指标 1.12RI =所以 002174.0)2(==RICICR ()20.1CR <通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一化后的特征向量()1w 作为排序权重向量.下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量 输入B1={{1.0,1/3,1/5,1/7},{3,1,1/2,1/4},{5,2,1,1/2},{1/7,4,2,1}} B2={{1,1/2,4,3},{2,1,5,5},{1/4,1/5,1,1},{1/3,1/5,1,1}} B3={{1,6,5,8},{1/6,1,1,2},{1/5,1,1,7},{1/8,1/2,1/7,1}} B4={{1,1,1/3,1/3},{1,1,1/2,1/5},{3,2,1,1},{3,5,1,1}} B5={{1,2,1,2},{1/2,1,1/2,1},{1,2,1,2},{1/2,1,1/2,1}} T1=Eigensystem[B1]//Chop T2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop 输出{{3.82325,0.0883772+0.544064™,0.0883772-0.544064™,0}, {{0.111267,0.283002,0.536902,0.786934},{-0.0248134-0.0681165™,-0.141793+0.0729826™,-0.154388+0.121345™,0.964755}, {-0.0248134+0.0681165™,-0.141793-0.0729826™,-0.154388-0.121345 ™,0.964755}, {0,0.299667,-0.832409,0.466149}}}{{4.02113,-0.0105652+0.291301™,-0.0105652-0.291301™,0}, {{0.495852,0.84036,0.149575,0.159851},{-0.234515+0.517899™,0.805208,-0.109665-0.110941™,0.0407277 -0.0493071 ™}, {-0.234515-0.517899 ™,0.805208,-0.109665+0.110941 ™,0.0407277 +0.0493071 ™}, {0,-0.953463,-0.0953463,0.286039}}}{{4.25551,-0.110262+1.03317™,-0.110262-1.03317™,-0.0349818}, {{0.941183,0.179553,0.276018,0.0758271},{0.898054,0.136097 +0.0728034 ™,-0.309669+0.2519 ™,-0.0331642-0.0960598™}, {0.898054,0.136097-0.0728034™,-0.309669-0.2519™,-0.0331642+0.0960598™}, {0.958653,-0.256222,0.123505,-0.00904772}}}{{4.08009,-0.0400469+0.570251™,-0.0400469-0.570251™,0}, {{0.214349,0.214031,0.59059,0.747963},{0.00228339-0.0861419™,-0.0895045+0.220107™,-0.388206-0.387638™,0.796962}, {0.00228339+0.0861419™,-0.0895045-0.220107™,-0.388206+0.387638 ™,0.796962}, {-0.424264,0,0.565685,0.707107}}}{{4.,0,0,0},{{0.632456,0.316228,0.632456,0.316228}, {0.116296,0.629208,-0.687356,-0.343678}, {-0.92582,0.154303,0.308607,0.154303}, {-0.92582,0.154303,0.308607,0.154303}}}分别得出其最大特征值1B λ=3.82325,2B λ= 4.02113,3B λ= 4.25551,4B λ= 4.08009,5λ= 4, 以及其特征向量如下:B1=({0.111267,0.283002,0.536902,0.786934})TB2=({0.495852,0.84036,0.149575,0.159851})T B3=({0.941183,0.179553,0.276018,0.0758271})T B4=({0.214349,0.214031,0.59059,0.747963})T B5=({0.632456,0.316228,0.632456,0.316228})T其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[B1,B2,B3,B4,B5]; B1=T1[[2,1]];w1=B1/Apply[Plus,B1] B2=T2[[2,1]];w2=B2/Apply[Plus,B2] B3=T3[[2,1]];w3=B3/Apply[Plus,B3] B4=T4[[2,1]];w4=B4/Apply[Plus,B4] B5=T5[[2,1]];w5=B5/Apply[Plus,B5] 输出{{4.,0,0,0},{{0.632456,0.316228,0.632456,0.316228}, {0.116296,0.629208,-0.687356,-0.343678}, {-0.92582,0.154303,0.308607,0.154303}, {-0.92582,0.154303,0.308607,0.154303}}}w1= {0.0647614,0.164718,0.312497,0.458024}Tw2={0.301313,0.510659,0.0908919,0.0971363}Tw3= {0.639138,0.121931,0.187438,0.0514926}Tw4= {0.121311,0.121132,0.334246,0.423311}Tw5= {0.333333,0.166667,0.333333,0.166667}T计算一致性指标(1,2,3,4,5)1i i nCI i n λ-==-,其中4n =,输入 lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]}CI=(lamda-4)/(4-1)//Chop 则可以得到1CI =-0.0589181,2CI = 0.00704344,3CI =0.0851688,4CI =0.0266979,5CI =0查表(见表3-1)得到相应的随机一致性指标0.90(1,25)i RI i ==计算一致性比率(),1,2,,5ii iCI CR i RI ==,输入CR=CI/0.90 相应可得到12345-0.0654646,0.00782605,0.094632,0.0296643,0CR CR CR CR CR =====因0.1,(1,2,,5)i CR i <=通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4、计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表4-1(表4-1)以矩阵表示第三层对第二层的排序权重计算结果为()30.06476140.3013130.6391380.1213110.3333330.1647180.5106590.1219310.1211320.1666670.3124970.09089190.1874380.3342460.3333330.4580240.09713630.05149260.4233110.166667w ⎛⎫⎪⎪= ⎪⎪⎝⎭)3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为()()231w w W =为了计算上式, 输入W2=Transpose[{w1,w2,w3,w4,w5}]; W3=W2.W1则从输出结果得到W3={0.236941,0.188335,0.274378,0.300347}为了对总排序权向量进行一致性检验, 计算(3)(1)125(.,.,,.)CI C I C I C I w =输入 CI.W1 输出(3)CI = -0.0126517再计算(3)15[,,]1RI RI RI W =输入RI=Table[0.90,{j,5}]; RI.W1则从输出结果得到(3)0.90RI =最后计算(3)(2)(3)(3)/CR CR CI RI =+可得(3)CR = -0.0118834因为,1.0.)3(<RC 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值,旅游点4的电脑是建模者对这三种品牌机的首选。

相关文档
最新文档