江苏省苏州市2017~2018学年第一学期期末试卷(高一数学)含答案

合集下载

【江苏省苏州市】2017届高三上学期期末数学试卷-答案

【江苏省苏州市】2017届高三上学期期末数学试卷-答案


y
16x 4 x2
2
,且
B -2,1
,则曲线在
B
处的切线斜率为
1 2




2

a
2

2 2 a
1 1
,∴
a

6



1 16


2
∴曲线段 AB 在图纸上对应函数的解析式为 y 1 x 62 -6 x 2 ;
16 (2)设 P 为曲线段 AC 上任意一点.
【分析】由集合 A={x|x>1},B={x|x<3},结合集合交集的定义,可得答案.
【解答】解:∵集合 A={x|x>1},B={x|x<3},
∴A∩B={x|1<x<3},
故答案为:{x|1<x<3}
2.2.复数 z 1 i ,其中 i 是虚数单位,则复数 z 的虚部是__ 1 ___.
要证 x1x2
e2k ,只要证 x2

e2k x1
,即证,
∵ f x 在区间 ek , 上单调递增,

f
x2

f
e2k

x1


f
x1
f
x2 ,即证
f
x1
f
e2k

x1

构造函数 h x
f
x
2 2
,∴
y1

y2

k
x1

x2


4k


y1

y2
k x1

2017学年江苏省苏州市高一上学期期末数学试卷及参考答案

2017学年江苏省苏州市高一上学期期末数学试卷及参考答案

2016-2017学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14个小题,每小题5分,共计70分.1.(5分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.(5分)已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=.3.(5分)若tanα=3,,则tan(α﹣β)等于.4.(5分)已知A(﹣3,4)、B(5,﹣2),则||=.5.(5分)函数y=e2x﹣1的零点是.6.(5分)把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为.7.(5分)若函数f(x)=,则f(log23)=.8.(5分)函数的单调递增区间为.9.(5分)设是两个不共线向量,,,,若A、B、D三点共线,则实数P的值是.10.(5分)若=﹣,则sin2α的值为.11.(5分)f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.12.(5分)如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为.13.(5分)如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.14.(5分)函数是奇函数,且f(﹣2)≤f(x)≤f (2),则a=.二、解答题:本大题共6小题,计90分.15.(14分)已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.16.(14分)已知,,,.(I)求tan2β的值;(II)求α的值.17.(14分)已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.18.(16分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)19.(16分)如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.20.(16分)已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.2016-2017学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分.1.(5分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.2.(5分)已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=2.【解答】解:∵f(x)是偶函数,当x≥0时,f(x)=x+1,∴当x<0时,f(x)=﹣x+1,∴f(﹣1)=﹣(﹣1)+1=2.故答案为:2.3.(5分)若tanα=3,,则tan(α﹣β)等于.【解答】解:tan(α﹣β)===,故答案为.4.(5分)已知A(﹣3,4)、B(5,﹣2),则||=10.【解答】解:由题意A(﹣3,4)、B(5,﹣2),∴||===10故答案为105.(5分)函数y=e2x﹣1的零点是0.【解答】解:令y=0,即e2x=1,解得:x=0,故答案为:0.6.(5分)把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为y=sin (2x﹣).【解答】解:把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sin2x的图象上所有点向右平移个单位,得到y=sin[2(x﹣)]=sin (2x﹣)对图象,∴所求函数的解析式为:y=sin(2x﹣).故答案为:y=sin(2x﹣).7.(5分)若函数f(x)=,则f(log23)=9.【解答】解:∵函数f(x)=,log23>log22=1,∴f(log23)===9.故答案为:9.8.(5分)函数的单调递增区间为.【解答】解:令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数的增区间为故答案为.9.(5分)设是两个不共线向量,,,,若A、B、D三点共线,则实数P的值是﹣1.【解答】解:∵,,∴,∵A、B、D三点共线,∴,∴2=2λ,p=﹣λ∴p=﹣1,故答案为:﹣1.10.(5分)若=﹣,则sin2α的值为﹣.【解答】解:∵=﹣,∵2cos2α=sin(﹣α),∴2(cos2α﹣sin2α)=cosα﹣sinα,∴cosα﹣sinα=0,或cosα+sinα=,平方可得1﹣sin2α=0,或1+sin2α=,∴sin2α=1,或sin2α=﹣,∵若sin2α=1,则cos2α=0,代入原式可知应舍去,故答案为:﹣.11.(5分)f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(﹣∞,﹣]∪[,+∞).【解答】解:f(x)=x2,x∈[t,t+2],不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,即|x+t|≥|x|在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,或x≤(1﹣)t在[t,t+2]恒成立,解得:t≥或t≤﹣,故答案为:(﹣∞,﹣]∪[,+∞).12.(5分)如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为[0.).【解答】解:设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ∈[0,2)的范围为:[0,),故答案为[0,).13.(5分)如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.【解答】解:由已知及对称性知,GF=BF=lcosθ,GE=BE=lsinθ,又∠GEA=∠GFB=2θ,∴AE=GEcos2θ=lsinθcos2θ,又由AE+BE=lsinθcos2θ+lsinθ=6得:l===.故答案为:.14.(5分)函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.【解答】解:∵函数是奇函数且定义域内有0∴f(0)=0解得c=0,故f(x)=.x>0,a>0,f(x)==≤(ax=时取等号)∵f(﹣2)≤f(x)≤f(2),∴2a=,∴a=.故答案为.二、解答题:本大题共6小题,计90分.15.(14分)已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.【解答】解:(Ⅰ)=(1,2)﹣2(﹣3,1)=(1+6,2﹣2)=(7,0).(Ⅱ)=﹣.(Ⅲ)因为向量与互相垂直,所以,()•()=0,即因为=5,,所以,5﹣10k2=0,解得.16.(14分)已知,,,.(I)求tan2β的值;(II)求α的值.【解答】(本题满分为14分)解:(I)∵,,可得:sin=, (2)分∴tan==﹣2,…4分∴tan2β==…7分(II)∵,,∴α+β∈(,),又∵,∴cos(α+β)=﹣=﹣,…9分∴cosα=cos(α+β﹣β)=cos(α+β)cosβ+sin(α+β)sinβ=()×(﹣)+×()=,∵,∴α=.…14分17.(14分)已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.【解答】解:(1)f(x+1)=lg(2+x)﹣lg(﹣x),可令t=x+1,则x=t﹣1,可得f(t)=lg(1+t)﹣lg(1﹣t),即有f(x)=lg(1+x)﹣lg(1﹣x),由1+x>0且1﹣x>0,解得﹣1<x<1,则函数f(x)的定义域为(﹣1,1);(2)由f(x)<1即lg(1+x)﹣lg(1﹣x)<1,即为lg(1+x)<lg10(1﹣x),可得0<1+x<10(1﹣x),解得﹣1<x<,则不等式的解集为(﹣1,);(3)证明:f(x)在(﹣1,1)上为增函数.理由:设﹣1<m<n<1,则f(m)﹣f(n)=lg(1+m)﹣lg(1﹣m)﹣[lg(1+n)﹣lg(1﹣n)]=lg﹣lg=lg•=lg•,由于﹣1<m<n<1,可得1﹣m>1﹣n>0,1+n>1+m>0,可得0<<1,0<<1,则0<•<1,即有lg•<0,则f(m)﹣f(n)<0,即f(m)<f(n),故f(x)在(﹣1,1)上为增函数.18.(16分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)【解答】解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则(个)因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.…(2分)(2 )当0≤x≤100时,p=60;…(3分)当100<x<550时,;…(4分)当x≥550时,p=51.…(5分)所以…(6分)(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则…(9分)当0<x≤100时,L≤2000;…(10分)当x≥500时,L≥6050;…(11分)当100<x<550时,.由,解得x=500.答:当销售商一次订购500个时,该厂获得的利润为6000元.…(13分)19.(16分)如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.【解答】(I)证明:延长AD到A1使得AD=DA1,连接CA1,A1B,∵D是BC的中点,∴四边形ACA1B是平行四边形,∴=+,∵;(II)证明:∵=+,∴•(﹣)=(+)•(﹣)=•+•,∵DE⊥BC,∴•=0,∵•=()=,∴•(﹣)=(III)解:△ABC中,||=2,||=1,cosA=,,∴||==,同理+=2,∴•(+)=•2=||•||,设||=x,则||=﹣x(0),∴•(+)=2x(﹣x)≤2=1,当且仅当x=时取等号,∴•(+)∈(0,1].20.(16分)已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.【解答】解:(1)g(x)=x2﹣2ax+1=(x﹣a)2+1﹣a2在区间[1,3]上的值域[0,4].若1≤a≤3时,g(x)的最小值为g(a)=1﹣a2,由1﹣a2=0,可得a=1(﹣1舍去),g(x)=(x﹣1)2满足在区间[1,3]上的值域[0,4];若a>3时,g(x)在[1,3]递减,g(x)的最小值为g(3),由g(3)=10﹣6a=0,解得a=(舍去);若a<1,则g(x)在[1,3]递增,g(x)的最小值为g(1),由g(1)=2﹣2a=0,解得a=1.综上可得,a=1;(2)由g(2x)﹣k•4x≥0即(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,由x≥1可得0<t≤,则k≤t2﹣2t+1,0<t≤,记h(t)=t2﹣2t+1,0<t≤,由单调递减,可得h(t)的最小值为(﹣1)2=,则k的取值范围是k≤;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,则t>0,由2x﹣1>﹣1,当x<0时,t=|2x﹣1|=1﹣2x,t∈(0,1]且递减,当0<x<1时,t=|2x﹣1|=2x﹣1,t∈(0,1)且递增,当x=1时,t=1.当x>1时,t=|2x﹣1|=2x﹣1,t∈(1,+∞)且递增,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k ,则或,解得k>0或k无实数解,综上可得,k的取值范围是(0,+∞).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

江苏省苏州市2017-2018学年高一下学期期末考试数学试题解析版

江苏省苏州市2017-2018学年高一下学期期末考试数学试题解析版

江苏省苏州市2017-2018学年高一下学期学业质量阳光指标调研试题一、填空题(本大题共14小题,每题5分,满分70分,将答案填在答题纸上)1. 已知集合,,则__________.【答案】【解析】分析:根据交集的定义,即可求出.详解:集合,,.故答案为.点睛:本题考查了交集运算问题,属于基础题.2. 一组数据1,2,3,4,5,则这组数据的方差等于__________.【答案】2【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间内的汽车有__________辆.【答案】80【解析】试题分析:时速在区间内的汽车有考点:频率分布直方图4. 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于__________.【答案】【解析】分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率. 详解:设3个黑球用A,B,C表示;2个白球用甲,乙表示,摸出2个球的所有情况:(A,B)、(A,C)、(A,甲)、(A,乙)、(B,C)、(B,甲)、(B,乙)、(C,甲)、(C,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,所以,摸出1个黑球和1个白球的概率为.故答案为.点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用.5. 设向量,,.若,则实数的值是__________.【答案】4【解析】试题分析:由题意得考点:向量平行6. 如右图所示的算法流程图中,最后的输出值为__________.【答案】25【解析】分析:由流程图可知,该算法为先判断后计算的当型循环,模拟执行程序,即可得到答案.详解:程序执行如下故不成立时,.故答案为25.点睛:本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键7. 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为__________尺.(1匹=4丈,1丈=10尺)【答案】【解析】,分析:设该女子织布每天增加尺,由等差数列前项和公式求出即可.详解:设该女子织布每天增加尺,由题意知,尺,尺又由等差数列前项和公式得,解得尺故答案为点睛:本题考查等差数列的实际应用,解题时要认真审题,注意等差数列性质的合理运用.8. 如图所示,在的方格中,每个小正方形的边长为1,点,,,均为格点(格点是指每个小正方形的顶点),则__________.【答案】12【解析】分析:设水平向右和竖直向上的单位向量分别为和,用和表示和,再根据公式计算,即可求出答案.详解:设水平向右和竖直向上的单位向量和,则和由图可知,,.故答案为12.点睛:本题考查向量运算在几何中的应用,向量的数量积以及向量的正交分解,考查计算能力以及转化思想,属于中档题.9. 已知角的终边上一点的坐标为,则的值为__________.【答案】【解析】分析:由角的终边上的一点的坐标为,求出的值,利用,将的值代入即可得结果.详解:角的终边上的一点的坐标为,,那么,故答案为.点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式,属于中档题.给值求值问题,求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.10. 已知的三个内角,,所对的边分别是,,,且角,,成等差数列,则的值为__________.【答案】1【解析】分析:由角,,成等差数列,可得,由余弦定理,整理可得:,再将通分化简,即可就得答案.详解:角,,成等差数列,,,由由余弦定理,整理可得:故答案为1.点睛:本题考查了余弦定理和等差数列的性质,属于基本知识的考查.11. 已知关于的方程在上有3个相异实根,则实数的取值范围是__________.【答案】【解析】分析:将方程问题转换为函数与的图象在上有三个不同交点.根据函数图象可以求出答案.详解:方程在上有3个相异实根,函数与的图象在上有三个不同交点,在坐标系中画出函数的图象,由图象可知,在上,函数与有两个不同的交点,在上,函数与有一个交点,联立,整理得,,即,解得实数的取值范围为故答案为点睛:本题主要考查方程的根与函数图象交点的关系,考查数形结合的思想以及分析问题解决问题的能力.12. 已知,,且,则的最小值等于__________.【答案】11【解析】分析:构造基本不等式模型,化简整理,应用基本不等式,即可得出答案.详解:,,,,,,当且仅当时取等号..的最小值等于11.故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用.13. 将关于的方程()的所有正数解从小到大排列构成数列,其,,构成等比数列,则__________.【答案】【解析】分析:根据三角函数图像与性质,建立关于,,的方程组,即可求出的值.详解:方程()的所有正数解,也就是函数与在第一象限交点的横坐标,由函数图象与性质可知,在第一象限内,最小的对称轴为,周期又,,构成等比数列,解得故答案为点评:本题综合考查方程的根与两个函数图象交点的关系,三角函数的图象与性质,等比数列的性质,考查转化思想、数形结合思想和分析解决问题的能力。

江苏省苏州市2017-2018学年高一下学期期末考试数学试题 Word版含解析

江苏省苏州市2017-2018学年高一下学期期末考试数学试题 Word版含解析

江苏省苏州市2017-2018学年高一下学期学业质量阳光指标调研试题一、填空题(本大题共14小题,每题5分,满分70分,将答案填在答题纸上)1. 已知集合.点睛:本题考查了交集运算问题,属于基础题.2. 一组数据1,2,3,4,5,则这组数据的方差等于__________.【答案】2【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时200辆汽车中,时__________辆.【答案】80考点:频率分布直方图4. 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于__________.【解析】分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率.详解:设3个黑球用A,B,C表示;2个白球用甲,乙表示,摸出2个球的所有情况:(A,B)、(A,C)、(A,甲)、(A,乙)、(B,C)、(B,甲)、(B,乙)、(C,甲)、(C,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,所以,摸出1个黑球和1点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用.5. __________.【答案】4考点:向量平行6. 如右图所示的算法流程图中,最后的输出值为__________.【答案】25【解析】分析:由流程图可知,该算法为先判断后计算的当型循环,模拟执行程序,即可得到答案.详解:程序执行如下故答案为25.点睛:本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键7. 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为__________尺.(1匹=4丈,1丈=10尺)【解析】.项和公式得点睛:本题考查等差数列的实际应用,解题时要认真审题,注意等差数列性质的合理运用.8. 1是指每个小正方形的顶点).【答案】12.故答案为12.点睛:本题考查向量运算在几何中的应用,向量的数量积以及向量的正交分解,考查计算能力以及转化思想,属于中档题.9. __________.【解析】分析:由角的坐标为.详解:角的终边上的一点,故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式,属于中档题.给值求值问题,求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.10.__________.【答案】1成等差数列,可得.成等差数列,故答案为1.点睛:本题考查了余弦定理和等差数列的性质,属于基本知识的考查.11. 已知关于3__________.【解析】分析:将方程问题转换为函数与点.根据函数图象可以求出答案.3个相异实根,的图象在在坐标系中画出函数的图象,由图象可知,在上,函数联立,整理得实数的取值范围为点睛:本题主要考查方程的根与函数图象交点的关系,考查数形结合的思想以及分析问题解决问题的能力.12. __________.【答案】11等式,即可得出答案.,,,,,当且仅当时取等号的最小值等于故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用.13.构成等比数列,则__________.【解析】分析:根据三角函数.)的所有正数解,也就是函数第一象限交点的横坐标,,构成等比数列故答案为点评:本题综合考查方程的根与两个函数图象交点的关系,三角函数的图象与性质,等比数列的性质,考查转化思想、数形结合思想和分析解决问题的能力。

2017-2018学年苏州市高三上学期期末数学试卷(有答案)

2017-2018学年苏州市高三上学期期末数学试卷(有答案)

2017-2018学年苏州市高三上学期期末数学试卷(有答案)1.已知复数 $z=a+\dfrac{33}{22}i$,求其模长。

2.已知集合 $A=\{1,2\}$,$B=\{-1,1,4\}$,且 $A\subseteq B$,求正整数 $a$。

3.在平面直角坐标系 $xOy$ 中,已知抛物线 $y^2=-8x$,求其焦点坐标。

4.苏州轨道交通 1 号线每 5 分钟一班,其中列车在车站停留 0.5 分钟。

假设乘客到达站台的时刻是随机的,求该乘客到达站台立即能乘上车的概率。

5.已知 $4=2$,$\log_a x=2a$,求正实数 $x$。

6.XXX是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。

右边的流程图是秦九韶算法的一个实例。

若输入 $n$,$x$ 的值分别为 $3$,$3$,求输出 $v$ 的值。

7.已知变量 $x,y$ 满足 $x+y\geq 0$,求 $z=2x-3y$ 的最大值。

8.已知等比数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,且$S_6=1519$,$a_4-a_2=-8$,求 $a_3$ 的值。

9.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构。

它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经$90^\circ$ 榫卯起来。

若正四棱柱体的高为 $5$,底面正方形的边长为 $1$,现将该鲁班锁放进一个球形内,求该球形的表面积至少为多少(壁的厚度忽略不计,结果保留 $\pi$)。

10.如图,两座建筑物 $AB$,$CD$ 的高度分别是$9\text{ m}$ 和 $15\text{ m}$,从建筑物 $AB$ 的顶部 $A$ 看建筑物 $CD$ 的张角 $\angle CAD=45^\circ$,求这两座建筑物$AB$ 和 $CD$ 底部之间的距离 $BD$。

2017-2018学年江苏省苏州市高一(上)期末数学试卷及参考答案与解析

2017-2018学年江苏省苏州市高一(上)期末数学试卷及参考答案与解析

,2017-2018学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B=.2.(5分)函数y=lg(2﹣x)的定义域是.3.(5分)若α=240°,则sin(150°﹣α)的值等于.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为.6.(5分)已知函数f(x)=,则f(f(2))的值为.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为平方米.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为.10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.12.(5分)已知tan()=2,则sin(2)的值等于.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为.14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).,2017-2018学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.(5分)已知集合A={0,1,2},B={0,2,4},则A∩B={0,2} .【解答】解:∵集合A={0,1,2},B={0,2,4},∴A∩B={0,2}.故答案为:{0,2}.2.(5分)函数y=lg(2﹣x)的定义域是(﹣∞,2).【解答】解:由2﹣x>0,得x<2.∴函数y=lg(2﹣x)的定义域是(﹣∞,2).故答案为:(﹣∞,2).3.(5分)若α=240°,则sin(150°﹣α)的值等于﹣1.【解答】解:∵α=240°,则sin(150°﹣α)=sin(﹣90°)=﹣sin90°=﹣1,故答案为:﹣1.4.(5分)已知角α的终边经过点P(﹣2,4),则sinα﹣cosα的值等于.【解答】解:∵角α的终边经过点P(﹣2,4),∴x=﹣2,y=4,r=|OP|=2,∴sinα==,cosα==﹣,则sinα﹣cosα=,故答案为:.5.(5分)已知向量=(m,5),=(4,n),=(7,6),则m+n的值为8.【解答】解:∵向量=(m,5),=(4,n),=(7,6),∴,即(7,6)=(4﹣m,n﹣5),∴,解得m=﹣3,n=11,∴m+n=8.故答案为:8.6.(5分)已知函数f(x)=,则f(f(2))的值为2.【解答】解:∵函数f(x)=,∴f(2)==1,f(f(2))=f(1)=2e1﹣1=2.故答案为:2.7.(5分)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为120平方米.【解答】解:由题意可得:弧长l=20,半径r=12,扇形面积S=lr=×20×12=120(平方米),故答案为:120.8.(5分)已知函数f(x)=,则函数g(x)=f(x)﹣2的零点个数为2.【解答】解:根据题意,函数f(x)=,g(x)=f(x)﹣2=0,即f(x)=2,当x≤1时,f(x)=3﹣2x=2,解可得x=,即是函数g(x)的1个零点;当x>1时,f(x)=x2=2,解可得x=或﹣(舍),即是函数g(x)的1个零点;综合可得:函数g(x)共有2个零点,即和;故答案为:2.9.(5分)已知函数f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值等于8,则函数y =f(x)(x∈[﹣2,1])的值域为[,4] .【解答】解:∵数f(x)=x2+ax+2(a>0)的开口向上,∴f(x)=x2+ax+2(a>0)在区间[0,2]上的最大值为max{f(0,f(2)},∵f(0)=2,f(2)=6+2a,且f(x)区间[0,2]上的最大值等于8,∴f(2)=6+2a=8,解得a=1,∴f(x)=x2+x+2=(x+)2+,当x=﹣时,f(x)有最小值,最小值为,当x=﹣2时,f(x)有最大值,最小值为4,∴函数y=f(x)(x∈[﹣2,1])的值域为[,4],故答案为:[[,4].10.(5分)已知函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,则实数m的值等于﹣1.【解答】解:函数f(x)=x2+2x﹣m•2﹣x是定义在R上的偶函数,可得f(﹣x)=f(x),即为x2+2﹣x﹣m•2x=x2+2x﹣m•2﹣x,即有(m+1)(2x﹣2﹣x)=0,由x∈R,可得m+1=0,即m=﹣1,故答案为:﹣1.11.(5分)如图,在梯形ABCD中,=2,P为线段CD上一点,且=3,E为BC的中点,若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为.【解答】解:===﹣.∴,λ1+λ2=.故答案为:.12.(5分)已知tan()=2,则sin(2)的值等于.【解答】解:由tan()=2,得,即,解得tanα=﹣3.∴sin(2)=sin2αcos cos2αsin====.故答案为:.13.(5分)将函数y=sinx的图象向左平移个单位长度,再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,则ω的取值范围为(,] .【解答】解:将函数y=sinx的图象向左平移个单位长度,可得y=sin(x+)的图象;再将图象上每个点的横坐标变为原来的(ω>0)倍(纵坐标不变),得到函数y=f(x)=sin(ωx+)的图象,若函数y=f(x)在区间(0,)上有且仅有一个零点,∵ω•0+=,∴ω•+∈( π,2π],∴ω∈(,],故答案为:(,].14.(5分)已知x,y为非零实数,θ∈(),且同时满足:①=,②=,则cosθ的值等于.【解答】解:由=,得,由=,得,即,则,即,解得tanθ=3或tanθ=.∵θ∈(),∴tanθ=3.联立,解得cosθ=.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知全集U=R,集合A={x|x2﹣4x≤0},B={x|m≤x≤m+2}.(1)若m=3,求∁U B和A∪B;(2)若B⊆A,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.【解答】解:(1)当m=3时,B={x|3≤x≤5},集合A={x|x2﹣4x≤0}={x|0≤x≤4},…(2分)∴C U B={x|x<3或x>5},…(4分)A∪B={x|0≤x≤5}.…(6分)(2)∵集合A{x|0≤x≤4},B={x|m≤x≤m+2},B⊆A,∴,…(8分)解得0≤m≤2.∴实数m的取值范围[0,2].…(10分)(3)∵集合A={x|0≤x≤4},B={x|m≤x≤m+2}.A∩B=∅,∴m+2<0或m>4,…(12分)解得m<﹣2或m>4.∴实数m的取值范围(﹣∞,﹣2)∪(4,+∞).…(14分) 16.(14分)已知函数f(x)=a+的图象过点(1,).(1)判断函数f(x)的奇偶性,并说明理由;(2)若,求实数x的取值范围.【解答】解:(1)因为f(x)的图象过点(1,),所以a+=﹣,解得a=﹣,所以f(x)=﹣=,f(x)的定义域为R.因为f(﹣x)===﹣f(x),所以f(x)是奇函数.(2)因为,所以﹣≤﹣≤0,即≤≤,可得2≤4x+1≤3,即1≤4x≤2,解得0≤x≤.17.(14分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求;(2)若AC=AB,cos,=,求||.【解答】解:(1)因为△ABC为等边三角形,且AD∥BC,所以∠DAB=120°.又AD=2AB,所以AD=2BC,因为E是CD的中点,所以:=,=.又,所以,=.=,=11.(2)因为AB=AC,AB=2,所以:AC=2.因为:,所以:.所以:.又=4.所以:.所以:=.故:.18.(16分)某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60°,点Q在OA上,点M,N在OB上,点P在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⊥OA,PT⊥OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT最长,试问:此时点P应在何处?说明你的理由.【解答】(本题满分为14分)解:(1)在Rt△PON中,PN=200sinθ,ON=200cosθ,在Rt△OQM中,QM=PN=200sinθ,…(2分)OM===,所以MN=0N﹣OM=200cosθ﹣,…(4分)因为矩形MNPQ是正方形,∴MN=PN,所以200cosθ﹣=200sinθ,…(6分)所以(200+)sinθ=200cosθ,所以tanθ===. …(8分)(2)因为∠POM=θ,所以∠POQ=60°﹣θ,∴PS+PT=200sinθ+200sin(60°﹣θ)=200(sinθ+cosθsinθ) …(10分)=200(sinθ+cosθ)=200sin(θ+60°),0°<θ<60°. …(12分)所以θ+60°=90°,即θ=30°时,PS+PT最大,此时P是的中点. …(14分)19.(16分)已知=(2cosx,1),=(sinx+cosx,﹣1),函数f(x)=.(1)求f(x)在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[],求cos2x0的值;(3)若函数y=f(ωx)在区间()上是单调递增函数,求正数ω的取值范围.【解答】解:(1)f(x)==2cosx(sinx+cosx)﹣1=sin2x+cos2x=2sin(2x+)因为x∈[0,],所以≤2x+≤,所以≤2sin(2x+)≤1,所以f(x)max=2,f(x)min=1.(2)因为f(x0)=,所以2sin(2x0+)=,所以sin(2x0+)=,因为x0∈[],所以≤2x0+≤,所以cos(2x0+)=﹣=﹣,所以cos2x0=cos[(2x0+)﹣]=cos(2x0+)+sin(2x0+)=×(﹣)+×=.(3)f(ωx)=sin(2ωx+)令2kπ≤2ωx+≤2kπ+,k∈Z,得﹣≤x≤+,因为函数函数y=f(ωx)在区间()上是单调递增函数,所以存在k0∈Z,使得()⊆(﹣,+)所以有即,因为ω>0所以k0>﹣又因为﹣≤﹣,所以0<ω≤,所以k0,从而有﹣<k0≤,所以k0=0,所以0<ω≤.20.(16分)已知函数f(x)=x|x﹣a|+bx(a,b∈R).(1)当b=﹣1时,函数f(x)恰有两个不同的零点,求实数a的值;(2)当b=1时,①若对于任意x∈[1,3],恒有,求a的取值范围;②若a>0,求函数f(x)在区间[0,2]上的最大值g(a).【解答】解:(1)当b=﹣1时,f(x)=x|x﹣a|﹣x=x(|x﹣a|﹣1),由f(x)=0,解得x=0或|x﹣a|=1,由|x﹣a|=1,解得x=a+1或x=a﹣1.∵f(x)恰有两个不同的零点且a+1≠a﹣1,∴a+1=0或a﹣1=0,得a=±1;(2)当b=1时,f(x)=x|x﹣a|+x,①∵对于任意x∈[1,3],恒有,即,即|x﹣a|,∵x∈[1,3]时,,∴,即恒有,令t=,当x∈[1,3]时,t∈[],x=t2﹣1.∴,∴,综上,a的取值范围是[0,];②=.当0<a≤1时,,,这时y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=6﹣2a;当1<a<2时,0<<a<2,f=f(x)在[0,]上单调递增,在[,a]上单调递减,在[a,2]上单调递增,∴g(a)=max{f(),f(2)},,f(2)=6﹣2a,而,当1<a<时,g(a)=f(2)=6﹣2a;当≤a<2时,g(a)=f()=;当2≤a<3时,<2≤a,这时y=f(x)在[0,]上单调递增,在[,2]上单调递减,此时g(a)=f()=;当a≥3时,≥2,y=f(x)在[0,2]上单调递增,此时g(a)=f(2)=2a﹣2.综上所述,x∈[0,2]时,.。

江苏省苏州市-2017学年高一(上)期末数学试卷(解析版)

江苏省苏州市-2017学年高一(上)期末数学试卷(解析版)

2016-2017学年江苏省苏州市高一(上)期末数学试卷一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=.3.若tanα=3,,则tan(α﹣β)等于.4.已知A(﹣3,4)、B(5,﹣2),则||=.5.函数y=e2x﹣1的零点是.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为.7.若函数f(x)=,则f(log23)=.8.函数的单调递增区间为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是.10.若=﹣,则sin2α的值为.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为.13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.16.已知,,,.(I)求tan2β的值;(II)求α的值.17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.2016-2017学年江苏省苏州市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分.1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【考点】交集及其运算.【分析】利用交集的性质求解.【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.2.已知f(x)是偶函数,当x≥0时,f(x)=x+1,则f(﹣1)=2.【考点】函数的值.【分析】由题意得当x<0时,f(x)=﹣x+1,由此能求出f(﹣1).【解答】解:∵f(x)是偶函数,当x≥0时,f(x)=x+1,∴当x<0时,f(x)=﹣x+1,∴f(﹣1)=﹣(﹣1)+1=2.故答案为:2.3.若tanα=3,,则tan(α﹣β)等于.【考点】两角和与差的正切函数.【分析】由正切的差角公式tan(α﹣β)=解之即可.【解答】解:tan(α﹣β)===,故答案为.4.已知A(﹣3,4)、B(5,﹣2),则||=10.【考点】平面向量坐标表示的应用.【分析】由题意,已知A(﹣3,4)、B(5,﹣2),将此两点坐标代入向量求模的公式,计算即可得到||的值【解答】解:由题意A(﹣3,4)、B(5,﹣2),∴||===10故答案为105.函数y=e2x﹣1的零点是0.【考点】函数的零点.【分析】令y=0,求出x的值,即函的零点即可.【解答】解:令y=0,即e2x=1,解得:x=0,故答案为:0.6.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为y=sin(2x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sinx的图象上所有点向右平移个单位,得到y=sin[2(x﹣)],写出要求的结果.【解答】解:把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sin2x的图象上所有点向右平移个单位,得到y=sin[2(x﹣)]=sin(2x﹣)对图象,∴所求函数的解析式为:y=sin(2x﹣).故答案为:y=sin(2x﹣).7.若函数f(x)=,则f(log23)=9.【考点】函数的值.【分析】由log23>log22=1,得到f(log23)=,由此利用对数性质及运算法则能求出结果.【解答】解:∵函数f(x)=,log23>log22=1,∴f(log23)===9.故答案为:9.8.函数的单调递增区间为.【考点】复合三角函数的单调性.【分析】令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间.【解答】解:令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数的增区间为故答案为.9.设是两个不共线向量,,,,若A、B、D 三点共线,则实数P的值是﹣1.【考点】向量加减混合运算及其几何意义.【分析】要求三点共线问题,先求每两点对应的向量,然后再按两向量共线进行判断,本题知道,要根据和算出,再用向量共线的充要条件.【解答】解:∵,,∴,∵A、B、D三点共线,∴,∴2=2λ,p=﹣λ∴p=﹣1,故答案为:﹣1.10.若=﹣,则sin2α的值为﹣.【考点】两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.【分析】由三角函数公式化简已知式子可得cosα﹣sinα=0或cosα+sinα=,平方可得答案.【解答】解:∵=﹣,∵2cos2α=sin(﹣α),∴2(cos2α﹣sin2α)=cosα﹣sinα,∴cosα﹣sinα=0,或cosα+sinα=,平方可得1﹣sin2α=0,或1+sin2α=,∴sin2α=1,或sin2α=﹣,∵若sin2α=1,则cos2α=0,代入原式可知应舍去,故答案为:﹣.11.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(﹣∞,﹣]∪[,+∞).【考点】函数恒成立问题.【分析】问题转化为|x+t|≥|x|在[t,t+2]恒成立,去掉绝对值,得到关于t 的不等式,求出t的范围即可.【解答】解:f(x)=x2,x∈[t,t+2],不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,即|x+t|≥|x|在[t,t+2]恒成立,即:x≤(1+)t在[t,t+2]恒成立,或x≤(1﹣)t在[t,t+2]恒成立,解得:t≥或t≤﹣,故答案为:(﹣∞,﹣]∪[,+∞).12.如图,O是坐标原点,M、N是单位圆上的两点,且分别在第一和第三象限,则的范围为[0.).【考点】向量在几何中的应用.【分析】设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ即可.【解答】解:设的夹角为θ,,则cosθ∈[﹣1,0),2==2+2cosθ∈[0,2)的范围为:[0,),故答案为[0,).13.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若,则折痕l的长度=cm.【考点】三角形中的几何计算.【分析】根据图形判断直角三角形,利用直角三角形求解AE=GEcos2θ=lsinθcos2θ,由AE+BE=lsinθcos2θ+lsinθ=6,求解即可.【解答】解:由已知及对称性知,GF=BF=lcosθ,GE=BE=lsinθ,又∠GEA=∠GFB=2θ,∴AE=GEcos2θ=lsinθcos2θ,又由AE+BE=lsinθcos2θ+lsinθ=6得:l===.故答案为:.14.函数是奇函数,且f(﹣2)≤f(x)≤f(2),则a=.【考点】函数奇偶性的性质.【分析】由f(0)=0可求c,根据f(﹣2)≤f(x)≤f(2),利用基本不等式,即可得出结论.【解答】解:∵函数是奇函数且定义域内有0∴f(0)=0解得c=0,故f(x)=.x>0,a>0,f(x)==≤(ax=时取等号)∵f(﹣2)≤f(x)≤f(2),∴2a=,∴a=.故答案为.二、解答题:本大题共6小题,计90分.15.已知=(1,2),=(﹣3,1).(Ⅰ)求;(Ⅱ)设的夹角为θ,求cosθ的值;(Ⅲ)若向量与互相垂直,求k的值.【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.【分析】(Ⅰ)利用两个向量坐标形式的加减运算法则,进行运算.(Ⅱ)把两个向量的坐标直接代入两个向量的夹角公式进行运算.(Ⅲ)因为向量与互相垂直,所以,它们的数量积等于0,解方程求得k的值.【解答】解:(Ⅰ)=(1,2)﹣2(﹣3,1)=(1+6,2﹣2)=(7,0).(Ⅱ)=﹣.(Ⅲ)因为向量与互相垂直,所以,()•()=0,即因为=5,,所以,5﹣10k2=0,解得.16.已知,,,.(I)求tan2β的值;(II)求α的值.【考点】两角和与差的正切函数.【分析】(I)由已知利用同角三角函数基本关系式可求sinβ,tanβ,进而利用二倍角的正切函数公式即可求得tan2β.(II)由已知可求范围α+β∈(,),利用同角三角函数基本关系式可求cos (α+β)的值,进而利用两角差的余弦函数公式即可计算得解cosα的值,结合范围,可求α=.【解答】(本题满分为14分)解:(I)∵,,可得:sin=, (2)分∴tan==﹣2,…4分∴tan2β==…7分(II)∵,,∴α+β∈(,),又∵,∴cos(α+β)=﹣=﹣,…9分∴cosα=cos(α+β﹣β)=cos(α+β)cosβ+sin(α+β)sinβ=()×(﹣)+×()=,∵,∴α=.…14分17.已知函数f(x)满足f(x+1)=lg(2+x)﹣lg(﹣x).(1)求函数f(x)的解析式及定义域;(2)解不等式f(x)<1;(3)判断并证明f(x)的单调性.【考点】指、对数不等式的解法;函数解析式的求解及常用方法.【分析】(1)可令t=x+1,则x=t﹣1,代入可得f(t),即f(x)的解析式;再由对数的真数大于0,可得函数的定义域;(2)运用对数的运算性质和对数函数的单调性,可得不等式,解不等式可得解集;(3)f(x)在(﹣1,1)上为增函数.由单调性定义,分设值、作差、变形和定符号、下结论,注意运用对数函数的性质,即可得证.【解答】解:(1)f(x+1)=lg(2+x)﹣lg(﹣x),可令t=x+1,则x=t﹣1,可得f(t)=lg(1+t)﹣lg(1﹣t),即有f(x)=lg(1+x)﹣lg(1﹣x),由1+x>0且1﹣x>0,解得﹣1<x<1,则函数f(x)的定义域为(﹣1,1);(2)由f(x)<1即lg(1+x)﹣lg(1﹣x)<1,即为lg(1+x)<lg10(1﹣x),可得0<1+x<10(1﹣x),解得﹣1<x<,则不等式的解集为(﹣1,);(3)证明:f(x)在(﹣1,1)上为增函数.理由:设﹣1<m<n<1,则f(m)﹣f(n)=lg(1+m)﹣lg(1﹣m)﹣[lg(1+n)﹣lg(1﹣n)]=lg﹣lg=lg•=lg•,由于﹣1<m<n<1,可得1﹣m>1﹣n>0,1+n>1+m>0,可得0<<1,0<<1,则0<•<1,即有lg•<0,则f(m)﹣f(n)<0,即f(m)<f(n),故f(x)在(﹣1,1)上为增函数.18.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)【考点】函数模型的选择与应用;分段函数的应用.【分析】(1)根据当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,可求得一次订购量为550个时,每个零件的实际出厂价格恰好降为51元;(2)函数为分段函数,当0≤x≤100时,p为出厂单价;当100<x<550时,;当x≥550时,p=51,故可得结论;(3)根据工厂售出一个零件的利润=实际出厂单价﹣成本,求出利润函数,利用利润为6000元,可求得结论.【解答】解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则(个)因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.…(2 )当0≤x≤100时,p=60;…当100<x<550时,;…当x≥550时,p=51.…所以…(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则…当0<x≤100时,L≤2000;…当x≥500时,L≥6050;…当100<x<550时,.由,解得x=500.答:当销售商一次订购500个时,该厂获得的利润为6000元.…19.如图1,在△ABC中,,,点D是BC的中点.(I)求证:;(II)直线l过点D且垂直于BC,E为l上任意一点,求证:为常数,并求该常数;(III)如图2,若,F为线段AD上的任意一点,求的范围.【考点】向量在几何中的应用.【分析】(I)延长AD到A1使得AD=DA1,连接CA1,A1B,证明四边形ACA1B是平行四边形,即可证明:;(II)证明•(﹣)=(+)•(﹣)=•+•,即可得出:为常数,并求该常数;(III)确定•(+)=2x(﹣x),利用基本不等式,求的范围.【解答】(I)证明:延长AD到A1使得AD=DA1,连接CA1,A1B,∵D是BC的中点,∴四边形ACA1B是平行四边形,∴=+,∵;(II)证明:∵=+,∴•(﹣)=(+)•(﹣)=•+•,∵DE⊥BC,∴•=0,∵•=()=,∴•(﹣)=(III)解:△ABC中,||=2,||=1,cosA=,,∴||==,同理+=2,∴•(+)=•2=||•||,设||=x,则||=﹣x(0),∴•(+)=2x(﹣x)≤2=1,当且仅当x=时取等号,∴•(+)∈(0,1].20.已知g(x)=x2﹣2ax+1在区间[1,3]上的值域[0,4].(1)求a的值;(2)若不等式g(2x)﹣k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;(3)若函数有三个零点,求实数k的取值范围.【考点】函数恒成立问题;根的存在性及根的个数判断.【分析】(1)对g(x)配方,求出对称轴x=a,讨论若1≤a≤3时,若a>3时,若a<1,由单调性可得最小值,解方程,即可得到所求a的值;(2)由题意可得(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,求出t的范围,求得右边函数的最小值即可得到k的范围;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,讨论t的范围和单调性,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,由二次函数图象可得不等式组,解不等式可得k的范围.【解答】解:(1)g(x)=x2﹣2ax+1=(x﹣a)2+1﹣a2在区间[1,3]上的值域[0,4].若1≤a≤3时,g(x)的最小值为g(a)=1﹣a2,由1﹣a2=0,可得a=1(﹣1舍去),g(x)=(x﹣1)2满足在区间[1,3]上的值域[0,4];若a>3时,g(x)在[1,3]递减,g(x)的最小值为g(3),由g(3)=10﹣6a=0,解得a=(舍去);若a<1,则g(x)在[1,3]递增,g(x)的最小值为g(1),由g(1)=2﹣2a=0,解得a=1.综上可得,a=1;(2)由g(2x)﹣k•4x≥0即(2x)2﹣2•2x+1﹣k•4x≥0,化为k≤(2﹣x)2﹣2•2﹣x+1,令t=2﹣x,由x≥1可得0<t≤,则k≤t2﹣2t+1,0<t≤,记h(t)=t2﹣2t+1,0<t≤,由单调递减,可得h(t)的最小值为(﹣1)2=,则k的取值范围是k≤;(3)令y=0,可化为|2x﹣1|2﹣2•|2x﹣1|+1+2k﹣3k•|2x﹣1|=0(|2x﹣1|≠0)有3个不同的实根.令t=|2x﹣1|,则t>0,由2x﹣1>﹣1,当x<0时,t=|2x﹣1|=1﹣2x,t∈(0,1]且递减,当0<x<1时,t=|2x﹣1|=2x﹣1,t∈(0,1)且递增,当x=1时,t=1.当x>1时,t=|2x﹣1|=2x﹣1,t∈(1,+∞)且递增,t2﹣(3k+2)t+1+2k=0有两个不同的实数解t1,t2,已知函数有3个零点等价为0<t1<1,t2>1或0<t1<1,t2=1,记m(t)=t2﹣(3k+2)t+1+2k,则或,解得k>0或k无实数解,综上可得,k的取值范围是(0,+∞).2017年2月28日。

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


6.已知函数
f
(x)
=
⎧⎨⎪⎩⎪2loegx5−1(,xx2
< −
2 1),
x

2
,则
f
(
f
(2))
的值为

7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现
代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为 20
米,径长(两端半径的和)为 24 米,则该扇形田的面积为
平方米.
8.已知函数
f (x)
=
⎧3 − 2x, x
⎨ ⎩
x
2,
x)
=
f (x) − 2 的零点个数为

9.已知函数 f (x) = x2 + ax + 2(a > 0) 在区间[0,2]上的最大值等于 8,则函数 y = f (x) (x
∈[﹣2,1])的值域为

10.已知函数 f (x) = x2 + 2x − m ⋅ 2−x 是定义在 R 上的偶函数,则实数 m 的值等于
3 sin
x
+
cos
x

−1)
,函数
f
(x)
=
! a

! b

π (1)求 f (x) 在区间[0, ]上的最大值和最小值;
4
(2)若
f
(x0 )
=
6 5

x0
∈[ π 4

π 2
] ,求 cos 2x0
的值;
(3)若函数 y = f (ω x) 在区间( π , 2π )上是单调递增函数,求正数ω 的取值范围. 33
2
17.(本题满分 14 分)
如图,在四边形 ABCD 中,AD=4,AB=2.
!!!" !!!" (1)若△ABC 为等边三角形,且 AD∥BC,E 为 CD 的中点,求 AE ⋅ BD ;
(2)若
AC=AB,cos∠CAB=
3
!!!" !!!" , AC ⋅ BD
=
4
,求
!!!" DC

5
5
18.(本题满分 16 分) 某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福
(1)若 m=3,求 CU B 和 A∪B; (2)若 B ⊆ A ,求实数 m 的取值范围; (3)若 A∩B= ∅ ,求实数 m 的取值范围.
16.(本题满分 14 分)
已知函数
f
(x)
=
a
+
1 4x +1
的图象过点(1,
−3 10
).
(1)判断函数 f (x) 的奇偶性,并说明理由;
(2)若 − 1 ≤ f (x) ≤ 0 ,求实数 x 的取值范围. 6
20.(本题满分 16 分)
已知函数 f (x) = x x − a + bx(a , b ∈R) . (1)当 b = −1 时,函数 f (x) 恰有两个不同的零点,求实数 a 的值; (2)当 b = 1 时:①若对于任意 x ∈[1 ,3] ,恒有 f (x) ≤ 2 x + 1 ,求 a 的取值范围;
于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形 区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知 该扇形 OAB 的半径为 200 米,圆心角∠AOB=60°,点 Q 在 OA 上,点 M、N 在 OB 上,
点 P 在弧 AB 上,设∠POB=θ . (1)若矩形 MNPQ 是正方形,求 tanθ 的值;
π
(
4
π

2
),且同时满足:①
y sinθ
=
x cosθ
,②
10 x2 +
y2
=
3

xy
则 cosθ 的值等于

二、解答题(本大题共 6 小题,共计 90 分.请在答.题.纸.指.定.区.域.内作答,解答应写出文字
说明,证明过程或演算步骤.)
15.(本题满分 14 分)
已知全集 U=R,集合 A= {x x2 − 4x ≤ 0} ,B= {x m ≤ x ≤ m + 2} .

!!!" !!!" 11.如图,在梯形 ABCD 中, DC = 2AB ,P 为线段
!!!" !!!"
CD 上一点,且 DC = 3PC ,E 为 BC 的中点,若
!!!" EP
=
λ1
!!!" AB
+
λ2
!!!" AD
(
λ1

λ2
∈R
),则
λ1
+
λ2

值为

第 11 题
1
12.已知 tan(α − π ) = 2 ,则 sin(2α − π ) 的值等于
(2)为方便市民观赏绿地景观,从 P 点处向 OA,OB 修建两条观赏通道 PS 和 PT(宽 度不计),使 PS⊥OA,PT⊥OB,其中 PT 依 PN 而建,为让市民有更多时间观赏,希望 PS +PT 最长,试问:此时点 P 应在何处?说明你的理由.
3
19.(本题满分 16 分)
!
!
已知 a = (2 cos x ,1) , b = (

4
4
13.将函数 y = sin x 的图象向左平移 π 个单位长度,再将图象上每个点的横坐标变为原来 3
1 的ω

>
0) 倍(纵坐标不变),得到函数
y
=
f (x) 的图象,若函数
y
=
f (x)
在区间(0,
π )上有且仅有一个零点,则 ω 的取值范围为

2
14.已知 x ,y 为非零实数,θ ∈
x ②若 a > 0 ,求函数 f (x) 在区间[0,2]上的最大值 g(a) .
4
5

3.若α =240°,则 sin(150° − α ) 的值等于

4.已知角 α 的终边经过点 P(﹣2,4),则 sinα − cosα 的值等于

!!!"
!!!"
!!!"
5.已知向量 AB = (m , 5) , AC = (4 , n) , BC = (7 , 6) ,则 m + n 的值为
江苏省苏州市 2017~2018 学年第一学期期末试卷
高一数学
2018.1
一、填空题(本大题共 14 小题,每小题 5 分,共计 70 分.不需要写出解答过程,请将答案
填写在答.题.卡.相.应.的.位.置.上..)
1.已知集合 A={0,1,2},B={0,2,4},则 A∩B=

2.函数 y = lg(2 − x) 的定义域是
相关文档
最新文档