太原市2017~2018学年第一学期初二期末考试数学试卷
┃精选3套试卷┃2018届太原市八年级上学期期末考前模拟数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A .∠BOC=2∠AB .∠BOC=90°+∠AC .∠BOC=90°+12∠A D .∠BOC=90°-12∠A 【答案】C 【详解】∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∴∠OBC+∠OCB=12(∠ABC+∠ACB ))=12(180°-∠A )=90°−12∠A ,根据三角形的内角和定理,可得 ∠OBC+∠OCB+∠BOC=180°,∴90°-12∠A+∠BOC=180°, ∴∠BOC=90°+12∠A .故选C . 【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;(2)此题还考查了角平分线的定义,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.2.下列长度的三条线段,能组成三角形的是( )A .12,4cm cm cm ,B .15,9,3cm cm cmC .14135cm cm cm ,,D .4,7,13cm cm cm【答案】C【分析】根据三角形三边关系定理:三角形任意两边之和大于第三边进行分析即可. 【详解】解:A 、1+2<4,不能组成三角形,故此选项错误; B 、3+9<15,不能组成三角形,故此选项错误; C 、13+5>14,能组成三角形,故此选项正确; D 、4+7<13,不能组成三角形,故此选项错误;故选:C.【点睛】此题主要考查了三角形的三边关系,只要两条较短的线段长度之和大于第三条线段的长度即可.3.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为180【答案】A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①②B.③④C.①②③D.②③④【答案】C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.5.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示为10na 的形式,其中n的值为( )A.-6 B.6 C.-5 D.-7【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000065=6.5×10-6,则n=﹣6.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是( )A.1.5 B.2.5 C.83D.3【答案】B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE 中,由勾股定理得出方程,解方程即可.【详解】解:连接DE,如图所示,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴222234AC BC++=5,∵AD=AC=3,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB-AD=2,在△ADE 和△ACE 中,AC AD CE DE AE AE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△ACE (SSS ), ∴∠ADE=∠ACE=90°, ∴∠BDE=90°,设CE=DE=x ,则BE=4-x ,在Rt △BDE 中,由勾股定理得:DE 2+BD 2=BE 2, 即x 2+22=(4-x )2, 解得:x=1.5; ∴CE=1.5; ∴BE=4-1.5=2.5 故选:B . 【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键. 7.下列等式正确的是( ) A .(﹣1)﹣3=1B .(﹣2)3×(﹣2)3=﹣26C .(﹣5)4÷(﹣5)4=﹣52D .(﹣4)0=1【答案】D【分析】分别根据负整数指数幂的运算法则,积的乘方运算法则,同底数幂的除法法则以及任何非零数的零次幂等于1对各个选项逐一判断即可.【详解】A .(﹣1)﹣3=﹣1,故本选项不合题意;B .(﹣2)3×(﹣2)3=[(﹣2)×(﹣2)]3=(22)3=26,故本选项不合题意;C .(﹣5)4÷(﹣5)4=1,故本选项不合题意;D .(﹣4)0=1,正确,故本选项符合题意. 故选:D . 【点睛】本题主要考查了同底数幂的除法,负整数指数幂,幂的乘方与积的乘方以及零指数幂,熟记幂的运算法则是解答本题的关键.8.下列交通标志是轴对称图形的是( )A.B.C.D.【答案】C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.13 2【答案】D【分析】根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+32=22,D能构成直角三角形;故选D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.10.某学校计划挖一条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成.若设原计划每天挖x米,那么下面所列方程正确的是()A.300300105x x-=+B.300300105x x-=-C.300300105x x-=+D.300300105x x-=-【答案】A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:300x;实际所有时间:3005x+.提前10天完成,即300300105x x-=+.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.二、填空题11.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x …﹣2 ﹣1 0 …y …m 2 n …则m+n的值为_____.【答案】1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.12.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.【答案】1【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=1(场).故答案为:1.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.13.二次三项式29x kx -+是一个完全平方式,则k=_______. 【答案】±6【分析】根据完全平方公式的展开式,即可得到答案. 【详解】解:∵29x kx -+是一个完全平方式, ∴2136k =±⨯⨯=±; 故答案为6±. 【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式. 14.分解因式:3m 2﹣6mn+3n 2=_____. 【答案】3(m-n )2【解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n -15.有6个实数:23-,17,0.31313120,______.【分析】先根据无理数的定义,找出这些数中的无理数,再计算所有无理数的和.【详解】无理数有:,∴⎛ ⎝=. 【点睛】本题是对无理数知识的考查,熟练掌握无理数的知识和实数计算是解决本题的关键.16.如图,ABC 中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD 的周长为14cm ,则ABC 的面积是______2cm .【答案】1【解析】根据线段垂直平分线性质得出BD=DC,求出AB+AC=14cm,求出AB,代入12×AB×AC求出即可.【详解】解:∵DE是BC边上的垂直平分线,∴BD=DC,∵△ABD的周长为14cm,∴BD+AD+AB=14cm,∴AB+AD+CD=14cm,∴AB+AC=14cm,∵AC=8cm,∴AB=6cm,∴△ABC的面积是12AB×AC=12×6×8=1(cm2),故答案为:1.【点睛】本题考查了三角形的面积和线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.17.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.【答案】1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积. 【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S △ACF =12×1×1=1(cm 1). 故答案为1. 【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键. 三、解答题18.在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为()()()2,4,0,4,2,1--A B C ,DEF ∆与ABC ∆关于x 轴对称,A 与,D B 与,E C 与F 对应.(1)在平面直角坐标系中画出ABC ∆;(2)在平面直角坐标系中作出DEF ∆,并写出D E F 、、的坐标.【答案】(1)详见解析;(2)图详见解详, ()()()2,4,0,4,2,1---D E F 【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D 、E 、F 的坐标. 【详解】(1)如图所示:(2)如图所示:()()()2,4,0,4,2,1---D E F【点睛】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x 轴对称的点的坐标的特点.19.某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y 1(单位:元)与用电量x (单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y 2(单位:元)与用电量x (单位:元)之间满足如表所示的一次函数关系.(1)求y 2与x 的函数关系式;并直接写出当0≤x ≤180和x >180时,y 1与x 的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度. 低谷期用电量x 度 … 80 100 140 … 低谷期用电电费y 2元…202535…【答案】(1)y 2与x 的函数关系式为y =1.25x ;()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩;(2)王先生一家在高峰期用电251度,低谷期用电111度.【分析】(1)设y 2与x 的函数关系式为y =k 2x+b 2,代入(81,21)、(111,25)解得y 2与x 的函数关系式;设当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ;当x >181时,设y 1=k 1+b 1 代入(181,91)、(281,151),即可y 1与x 的函数关系式.(2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意列出方程求解即可. 【详解】(1)设y 2与x 的函数关系式为y =k 2x+b 2,根据题意得2222802010025k b k b +=⎧⎨+=⎩, 解得220.250k b =⎧⎨=⎩ ,∴y 2与x 的函数关系式为y =1.25x ;当1≤x ≤181时,y 1与x 的函数关系式为y =1.5x ; 当x >181时,设y 1=k 1+b 1,根据题意得111118090280150k b k b +=⎧⎨+=⎩,解得110.618k b =⎧⎨=-⎩ , ∴y 1与x 的函数关系式为y =1.6x ﹣18;∴()()10.501800.618180x x y x x ⎧≤≤⎪=⎨->⎪⎩; (2)设王先生一家在高峰期用电x 度,低谷期用电y 度,根据题意得3500.5+0.25150x y x y +=⎧⎨=⎩, 解得250100x y =⎧⎨=⎩. 答:王先生一家在高峰期用电251度,低谷期用电111度.【点睛】本题考查了一元一次方程和二元一次方程组的实际应用,掌握一元一次方程和二元一次方程组的性质以及解法是解题的关键.20.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为;(2)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,A 1的坐标为 .【答案】(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y 轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A 、O 、B ,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B 的坐标是(3,3),所以B 关于y 轴对称的点的坐标是(-3,3)(3)将A 向左移三个格得到A 3,O 向左平移三个单位得到O 3,B 向左平移三个单位得到B 3,再连线得到△A 3O 3B 3.(3)因为A 的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A 3是(-3,3).考点:3.关于y 轴对称点坐标规律3.图形平移后点的坐标规律21.(1)式子x yz +y xz +z xy的值能否为0?为什么? (2)式子()()x y y z z x ---+()()y z x y z x ---+()()z x x y y z ---的值能否为0?为什么? 【答案】(1)不能为1,理由见解析;(2)不能为1,理由见解析【分析】(1)将原式通分,相加,根据原式的分母不为1,可得x≠1,y≠1,z≠1,从而分子也不为1,则原式的值不能为1;(2)将原式通分,相加,根据原式的分母不为1,可得y ﹣z≠1,x ﹣y≠1,z ﹣x≠1,从而分子也不为1,则原式的值不能为1.【详解】解:(1)222x y z x y z yz xz xy xyz++++=, 0yz ≠,0xz ≠,0xy ≠0x ∴≠,0y ≠,0z ≠2220x y z ∴++≠∴式子x y z yz xz xy++的值不能为1; (2)222()()()()()()()()()()()()x y y z z x x y y z z x y z z x x y z x x y y z x y y z z x ----+-+-++=--------- ()()0y z z x --≠,()()0x y z x --≠,()()0x y y z --≠0y z ∴-≠,0x y -≠,0z x -≠()()()0x y y z z x ∴---≠,222()()()0x y y z z x -++-≠-∴式子()()()()()()x y y z z x y z z x x y z x x y y z ---++------的值不能为1. 【点睛】本题考查了分式的加减及偶次方的非负性,掌握通分的方法,并明确偶次方的非负性,是解题的关键. 22.解下列分式方程.(1)1212x x=- (2)2115225x x x -+-=-- 【答案】(1)14x =;(2)2x = 【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一般步骤解分式方程即可;【详解】解:(1)1212x x=- 化为整式方程为:122x x -=移项、合并同类项,得41x -=-解得:14x = 经检验:14x =是原方程的解. (2)2115225x x x -+-=-- 化为整式方程为:2152x x -++=-移项、合并同类项,得36x =解得:2x =经检验:2x =是原方程的解.【点睛】此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要注意的是解分式方程要验根.23.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC ∆(即三角形的顶点都在格点上).(1)在图中作出ABC ∆关于直线l 的对称图形111A B C ∆(要求点A 与1A ,B 与1B ,C 与1C 相对应). (2)在直线l 上找一点P ,使得PAC ∆的周长最小.【答案】见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:111A B C ∆ 即为所求;(2)如图所示:点P 即为所求的点.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.24.本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容. (1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点P 是AOB ∠内一点,PD AO ⊥,PE OB ⊥,垂足分别为D 、E ,且PD =______.求证:点P 在AOB ∠的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.【答案】(1)这个角的两边,角平分线上;(2)PE ,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;(2)根据题意结合图形写出已知;(3)作射线OP ,证明Rt △OPD ≌Rt △OPE 即可;(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.角平分线判定定理:到角的两边距离相等的点在角平分线上,故答案为:这个角的两边;角平分线上;(2)已知:如图1,点P 是∠AOB 内一点,PD ⊥AO ,PE ⊥OB ,垂足分别为D 、E ,且PD=PE ,求证:点P 在∠AOB 的平分线上.故答案为:PE ;平分线上;(3)如图:作射线OP ,PD AO ⊥,PE OB ⊥,90PDO PEO ∴∠=∠=︒在Rt OPD △和Rt OPE △中,PD PE OP OP =⎧⎨=⎩∴Rt OPD Rt OPE ≌△△∴DOP EOP ∠=∠∴OP 是AOB ∠的平分线,即点P 在AOB ∠的平分线上.(1)如图2,M 、N 、G 、H 即为所求,故答案为:1.【点睛】本题考查的是角平分线的性质定理和判定定理的应用,掌握角的平分线上的点到角的两边的距离相等、到角的两边距离相等的点在角平分线上是解题的关键.25.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S 的面积; (3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.【答案】(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)【分析】(1)根据角平分线的定义即可得出∠BAC=12∠OAB 、∠DBA=12∠EBA ,再根据三角形的外角的性质即可得出∠C=12∠AOB=45°; (2)利用非负数的性质求出a ,b 的值,即可求得OAB S 的面积;(3)作DE ⊥x 轴于E ,DF ⊥y 轴与F ,可得△DEB ≌△DFA ,则BE=AF ,DF=DE ,推出四边形OEDF 是正方形,OE=OF ,设BE=AF=x ,则OA-x=OB+x,求出x 的值,即可得D 的坐标,同理求出点D 1的坐标.【详解】解:(1)∵AC 平分∠OAB ,BD 平分∠EBA ,∴∠BAC=12∠OAB 、∠DBA=12∠EBA , ∵∠EBA=∠OAB+∠AOB , ∴∠DBA=12(∠OAB+∠AOB )=∠C+∠CAB , ∴∠C=12(∠OAB+∠AOB )-∠CAB =12(∠OAB+∠AOB )-12∠OAB =12∠AOB =45°;(2)∵且满足224250a a b b -+-+=,∴2244210a a b b -++-+=()()22210a b -+-= ∴a=2,b=1,∵点A ,B 的坐标分别为()0,a ,(),0b ,∴OA=2,OB=1,∴OAB S =1121122OA OB ⋅=⨯⨯=; (3)作DE ⊥x 轴于E ,DF ⊥y 轴与F ,∵ABD △是以AB 为斜边的等腰直角三角形,∴AD=BD ,∠ADB=90°,∵DE ⊥x 轴于E ,DF ⊥y 轴与F ,∠AOB=90°,∴四边形OEDF 是矩形,∠BED=∠AFD=90°,∴∠EDF=90°,∴∠EDB=∠FDA ,∴△DEB ≌△DFA ,∴BE=AF ,DF=DE ,∴四边形OEDF 是正方形,∴OE=OF ,设BE=AF=x ,则OA-x=OB+x,∵OA=2,OB=1,∴x=0.5,OE=OF=1.5,∴D 的坐标为(1.5,1.5),同理可得PD 1=0.5,OP=1.5-1=0.5,D 1的坐标为(-0.5,0.5),即D 的坐标为(1.5,1.5)或(-0.5,0.5).【点睛】本题考查全等三角形的判定与性质,三角形外角的性质,坐标与图形性质、三角形的面积计算,正方形的判定和性质等知识,熟练掌握基础知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列实数为无理数的是()A.0.101 B.9C.227D.π【答案】D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、9=3是有理数,C、227是有理数,D、π是无限不循环小数即是无理数,故选:D.【点睛】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.2.把分式11361124xx+-的分子与分母各项系数化为整数,得到的正确结果是()A.3243xx+-B.4263xx+-C.2121xx+-D.4163xx+-【答案】B【分析】只要将分子分母要同时乘以12,分式各项的系数就可都化为整数.【详解】解: 不改变分值, 如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时乘以12, 即分式11361124xx+-=4263xx+-故选B.【点睛】解答此类题一定要熟练掌握分式的基本性质, 无论是把分式的分子和分母扩大还是缩小相同的倍数, 分式的值不变.3.如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A .3B .4C .5D .6【答案】D 【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP 为等腰三角形的点P 的个数是6,故选:D .【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P 是解题的关键.4.如图,在ABC ∆中,90ABC ∠=︒,点D 是BC 边上的一点,点P 是AD 的中点,若AC 的垂直平分线经过点D ,8DC =,则BP =( )A .8B .6C .4D .2【答案】C 【分析】根据线段垂直平分线的性质可得8AD DC ==,再根据直角三角形斜边中线定理即可求得答案.【详解】解:∵AC 的垂直平分线经过点D ,∴8AD DC ==,∵90ABC ∠=︒,点P 是AD 的中点, ∴118422BP AD ==⨯=, 故选:C .【点睛】本题考查了线段垂直平分线的性质,直角三角形斜边中线定理.5.已知直线MN EF ∥,一个含30角的直角三角尺()ABC AB BC >如图叠放在直线MN 上,斜边AC 交EF 于点D ,则1∠的度数为( )A .30B .45︒C .50︒D .60︒【答案】D 【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB .【详解】∵含30角的直角三角尺()ABC AB BC >∴∠A=30°,∠ACB=60°∵MN EF ∥∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.6.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,也是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意;C 、是轴对称图形,也是中心对称图形.故C 选项不合题意;D 、不是轴对称图形,也不是中心对称图形,故D 选项符合题意;故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.7.已知点M (a ,﹣2)在一次函数y =3x ﹣1的图象上,则a 的值为( )A .﹣1B .1C .13D .﹣13 【答案】D【分析】直接把点M (a ,﹣2)代入一次函数y =3x ﹣1,求出a 的值即可.【详解】解:∵点M (a ,﹣2)在一次函数y =3x ﹣1的图象上,∴﹣2=3a ﹣1,解得a =﹣13, 故选:D .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.已知:如图,在ABC ∆中,AB AC =,AB 的垂直平分线DE ,分别交AB ,AC 于点D ,E .若3AD =,5BC =,则BEC ∆的周长为( )A .8B .10C .11D .13【答案】C 【分析】先根据线段垂直平分线的定义和性质可得2AB AD =,AE BE =,然后求出ABC ∆周长等于AC BC +,再根据已知条件AB AC =,代入数据计算即可得解.【详解】∵DE 是AB 的垂直平分线∴2AB AD =,AE BE =∴BCE ∆的周长BE CE BC AE CE BC AC BC =++=++=+∵26AC AB AD ===,5BC =∴BCE ∆的周长6511=+=.故选:C【点睛】本题涉及到的知识点主要是线段垂直平分线的定义和性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.9.下列各图中,a ,b ,c 为三角形的边长,则甲,乙,丙三个三角形中和左侧ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙【答案】B 【分析】根据全等三角形的判定定理逐图判定即可.【详解】解:∵甲图为SSA 不能全等;乙图为SAS ;丙图为AAS∴乙、丙两图都可以证明.故答案为B .【点睛】本题考查了全等三角形的判定定理,牢记AAS 、SAS 、ASA 、SSS 可证明三角形全等,AAA 、SSA 不能证明三角形全等是解答本题的关键.10.下列各式不能分解因式的是( )A .224x x -B .214x x ++C .229x y +D .21m - 【答案】C【解析】选项A. 224x x -=2x(x-2) .选项B. 214x x ++=(x+12)2 . 选项C. 229x y + ,不能分.选项D. 21m -=(1-m)(1+m).故选C.二、填空题11.若5x-3y-2=0,则105x ÷103y =_______;【答案】100【分析】由同底数幂除法运算法则,进行计算即可得到答案.【详解】解:∵5320x y --=,∴532x y -=,∴5353210101010100x y x y -÷===;故答案为100.【点睛】本题考查了同底数幂的除法,掌握同底数幂除法法则是解题的关键.12.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.【答案】小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.13.若a+b=3,ab=2,则2()a b -= .【答案】1.【解析】试题分析:将a+b=3平方得:222()29a b a b ab +=++=,把ab=2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为1.考点:完全平方公式.14.若25x y -=,则代数式22288x xy y -+的值为___________.【答案】1【分析】将22288x xy y -+因式分解,然后代入求值即可.【详解】解:22288x xy y -+=()22244x xy y-+ =()222-x y将25x y -=代入,得原式=22550⨯=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键. 15.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.【答案】90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.16有意义的x 的取值范围为_______.【答案】x ≤12【分析】根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,2-4x≥0,解得x≤12.故答案为:x≤12.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式的被开方数是非负数.17.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________【答案】5×10-7【解析】试题解析:0.0000005=5×10-7三、解答题18.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为125cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;②由全等三角形的性质可得BP=PC=12BC=5cm,BD=CQ=6cm,可求解;(2)设经过x秒,点P与点Q第一次相遇,列出方程可求解.【详解】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s 后,BP=4cm ,CQ=4cm ,∴BP=CQ ,CP=6cm=BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP≠CQ ,∵△BPD 与△CQP 全等,∠B=∠C ,∴BP=PC=12BC=5cm ,BD=CQ=6cm ,∴t=52, ∴点Q 的运动速度=612552=cm/s ,∴当点Q 的运动速度为125cm/s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇,由题意可得:125x ﹣2x=36, 解得:x=90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.19.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,△ADC 和△CEB 全等吗?请说明理由;(2)聪明的小亮发现,当直线MN 绕点C 旋转到图1的位置时,可得DE=AD+BE ,请你说明其中的理由;。
★试卷3套精选★太原市2018届八年级上学期数学期末考前模拟试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组数为边长,不能构成直角三角形的是( )A.3,4,5 B.1,1,2C.8,12,13 D.2、3、5【答案】C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.a cb b【答案】B【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断. 【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴a cb b>,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.4.使分式32xx+有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【答案】A【分析】分式有意义要求分母不等于零.【详解】解:若分式3xx2+有意义,即x+2≠0,解得:x≠﹣2,故选A.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式概念是解题关键.5.若将实数3-,7,11,23这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A.3-B7C11D.3【答案】B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】30,273,311<4,3<234,7,故选:B .【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.6.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<. B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.【答案】C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】A 、逆命题为:如果一元一次方程20ax bx c ++=()0a ≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.7.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB 型血的人数是( )A .16人B .14人C .6人D .4人 【答案】D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P (AB 型)=0.10.10.10.40.350.10.151. ∴本班AB 型血的人数=40×0.1=4名.故选D .【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.8.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个【答案】B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.9.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 5【答案】A 【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt △DBE 中,223110+=故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.如图,在△ABC 中,∠B =∠C =60°,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E .如果AD =1,BC =6,那么CE 等于( )A .5B .4C .3D .2【答案】B 【解析】根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC 中,∠B =∠C =60°,∴∠A =60°,∵DE ⊥AB ,∴∠AED =30°,∵AD =1,∴AE =2,∵BC =6,∴AC =BC =6,∴CE =AC ﹣AE =6﹣2=4,故选:B .【点睛】考查含30°的直角三角形的性质,关键是根据等边三角形的性质和含30°的直角三角形的性质解答.二、填空题11.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.【答案】3+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以=因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.12.函数=y 的自变量x 的取值范围是______. 【答案】x≤3【解析】由题意可得,3-x≥0,解得x≤3.故答案为x≤3.13.点P (2,1)--关于x 轴的对称点坐标为________.【答案】(2,1)-【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P (2,1)--关于x 轴的对称点坐标为(2,1)-;故答案为(2,1)-.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 14.甲、乙二人做某种机械零件,己知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x 个零件,依题意列方程为_________. 【答案】90x =606x - 【分析】设甲每小时做x 个零件,则乙每小时做(x-6)个零件,再根据题中的等量关系即可列出方程.【详解】设甲每小时做x 个零件,则乙每小时做(x-6)个零件,由甲做90个零件所用的时间与乙做60个零件所用的时间相等列出方程为90x=606x.【点睛】此题主要考查分式方程的应用,解题的关键是找出等量关系进行列方程.15.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.【答案】40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.16.面试时,某人的基本知识、表达能力、工作态度的得分分别是80分、70分、85分,若依次按30%、30%、40%的比例确定成绩,则这个人的面试成绩是____________.【答案】79分【分析】根据加权平均数定义解答即可.【详解】这个人的面试成绩是80×30%+70×30%+85×40%=79(分),故答案为:79分.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.17.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.【答案】y=-x+1.【解析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.三、解答题18.现有一长方形纸片ABCD,如图所示,将△ADE沿AE折叠,使点D恰好落在BC边上的点F,已知AB =6,BC=10,求EC的长.【答案】8 3【分析】由勾股定理求出BF=8,得出FC=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得x=103,即可得出答案.【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,AD=BC=10,∠B=∠C=90°,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10,DE=EF,在Rt△ABF中,AB=6,AF=10,∴22221068-=-=AF AB,∴FC=10﹣8=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得103x=,∴EC=6﹣x=83,即EC的长为83.【点睛】本题考查了折叠的性质、矩形的性质和勾股定理,利用折叠的性质和矩形的性质得出线段长及未知线段的数量关系,再由勾股定理得出方程是解题的关键.19.学校到- -家文具店给九年级学生购买考试用文具包,该文具店规一次购买300个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款2520元;若再多买70个就可享受八折优惠,并且同样只需付款2520元.求该校九年级学生的总人数. (列分式方程解答)【答案】该校九年级学生的总人数是280人.【分析】首先设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是2520x元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是252070x +元,根据题意可得方程即可 【详解】解:设该校九年级学生的总人数是x 人, 由题意得,252025200.870x x ⨯=+ 解得: 280x =,经检验: 280x =是原分式方程的解,且符合题意.答:该校九年级学生的总人数是280人.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.20.陈史李农场2012年某特产种植园面积为y 亩,总产量为m 吨,由于工业发展和技术进步,2013年时终止面积减少了10%,平均每亩产量增加了20%,故当年特产的总产量增加了20吨.(1)求2013年这种特产的总产量;(2)该农场2012年有职工a 人.2013年时,由于多种原因较少了30人,故这种特产的人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩.求2012年的职工人数a 与种植面积y .【答案】 (1) 2013年的总产量270吨;(2)农场2012年有职工570人,种植面积为5700亩.【分析】(1)根据平均每亩产量增加了20%,故当年特产的总产量增加了20吨,列出方程()()20120%110%m m y y ++=-,解方程求出m 的值;(2)根据人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩,列出方程组()()270250114%30110%1302a a y y a a ⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②,解方程组求出结果. 【详解】(1)根据题意得:()()20120%110%m m y y ++=-解得,m=250.∴m +20=270答:2013年的总产量270吨.(2)根据题意得:() ()270250114%30110%1302a ay ya a⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②解①得a=570.检验:当a=570时,a(a-30)≠0,所以a=570是原分式方程的解,且有实际意义.答:该农场2012年有职工570人;将a=570代入②式得,()110%15405702y y-=-,解得,y =5700.答:2012年的种植面积为5700亩.考点:分式方程的应用21.已知:如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PEF的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)以上(2)中的函数图象是一条直线吗?请尝试作图验证.【答案】(1)A(1,0);(2)S△PET=-m2+1m,(0<m<1);(3)见解析【分析】(1)根据坐标轴上点的特点直接求值,(2)由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;(3)列表,描点、连线即可.【详解】(1)解:令x=0,则y=8,∴B(0、8)令y=0,则2x+8=0x=1A(1,0),(2)解:点P(m,n)为线段AB上的一个动点,-2m+8=n,∵A(1.0)OA=1∴0<m<1∴S △PEF = 12 PF×PE= 12×m×(-2m+8)=2(-2m+8)=-m 2+1m ,(0<m<1); (3)S 关于m 的函数图象不是一条直线,简图如下:①列表x0 0.5 1 1.5 12 2.5 3 3.5 1 y 0 0.75 3 3.75 1 3.75 3 0.75 0 ②描点,连线(如图)【点睛】此题考查一次函数综合题,坐标轴上点的特点,三角形的面积公式,极值的确定,解题的关键是求出三角形PEF 的面积.22.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为11A (,),4(3)B ,,42C (,).(1)在图中画出ABC ∆关于x 轴对称的111A B C ∆;(2)通过平移,使1C 移动到原点O 的位置,画出平移后的222A B C ∆.(3)在ABC ∆中有一点P m n (,),则经过以上两次变换后点P 的对应点2P 的坐标为 .【答案】(1)图见解析;(2)图见解析;(3)()4,2m n --+【分析】(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C 即可; (2)先判断1C 移动到原点O 的位置时的平移规律,然后分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C 即可;(3)根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到1P ,然后根据(2)中的平移规律即可得到2P 的坐标.【详解】解:(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C ,如下图所示:111A B C ∆即为所求(2)∵42C (,)∴()142C ,-∴()142C ,-到点O (0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C ,如图所示,222A B C ∆即为所求;(3)由(1)可知,()P m n ,经过第一次变化后为()1,P m n -然后根据(2)的平移规律,经过第二次变化后为()24,2P m n --+故答案为:()4,2m n --+.【点睛】此题考查的是画已知图形关于x 轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x 轴对称图形画法、平移后的图形画法、关于x 轴对称两点坐标规律和坐标的平移规律是解决此题的关键. 23.如图所示,四边形ABCD 中AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有无和△ABE 全等的三角形?请说明理由【答案】证△ABE ≌△ADF (AD=AB 、AE=AF )【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.24.一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.【答案】(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4)23.【分析】(1)利用待定系数法即可求得;(2)利用两点法画出直线即可;(3)把x=﹣5代入解析式,即可判断;(4)求得直线与坐标轴的交点,即可求得.【详解】解:(1)设一次函数的解析式为y=kx+b∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点∴245 k bk b+=⎧⎨-+=-⎩,解得:k3 b2=⎧⎨=-⎩∴一次函数的表达式为y=3x﹣2;(2)描出A、B点,作出一次函数的图象如图:(3)由(1)知,一次函数的表达式为y=3x﹣2将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4 ∴(﹣5,﹣4)不在这个函数的图象上;(4)由(1)知,一次函数的表达式为y=3x﹣2令x=0,则y=﹣2,令y=0,则3x﹣2=0,∴x=23,∴该函数图象与坐标轴围成的三角形面积为:12×2×23=23.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.25.为全面打赢脱贫攻坚战,顺利完成古蔺县2019年脱贫摘帽任务,我县某乡镇决定对辖区内一段公路进行改造,根据脱贫攻坚时间安排,需在28天内完成该段公路改造任务.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【答案】(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队单独承包该项工程,理由见解析【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,根据题意列出分式方程即可求出答案;(2)因为甲乙两工程队均能在规定的28天内单独完成,所以有二种方案,根据条件列出算式即可求出答案.【详解】解:(1)设甲工程队单独完成该工程需经x天,则乙工程队单独完成该工程需2x天.根据题意得:101012x x+=, 解得:15x =,经检验,15x =是原方程的解,∴当15x =时,230x =,答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为乙工程队单独完成该工程需30天,超过了预定工期,所以有如下二种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵70>67.5,∴应该选择甲工程队承包该项工程.【点睛】本题考查了分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是2 【答案】D【解析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 、164=,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义. 2.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是( )A .众数是3B .中位数是0C .平均数3D .方差是2.8 【答案】B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A. 3,3,0,4,1众数是3,此选项正确;B. 0,3,3,4,1中位数是3,此选项错误;C. 平均数=(3+3+4+1)÷1=3,此选项正确;D. 方差S 2=15[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确; 故选B【点睛】本题考查了方差, 加权平均数, 中位数, 众数,熟练掌握他们的概念是解决问题的关键 3.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .6【答案】B 【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===,∴ABC 是直角三角形,且∠A=90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD ,∴B 、E 、C 三点共线,AD=ED ,CA=CE ,∴BE=BC -CE=15-1=3,∴BDE 的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B .【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键. 4.将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯【答案】D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.0000025 2.510-=⨯.故选:D .【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.5.下列计算正确的是( )A .(﹣1)0=1B .(x+2)2=x 2+4C .(ab 3)2=a 2b 5D .2a+3b =5ab 【答案】A【分析】根据零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则逐个判断即可【详解】解:A 、(﹣1)0=1,故本选项正确;B 、应为(x+2)2=x 2+4x+4,故本选项错误;C 、应为(ab 3)2=a 2b 6,故本选项错误;D 、2a 与3b ,不是同类项,不能合并,故本选项错误.故选:A .【点睛】本题考查了零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则,熟练掌握运算法则及乘法公式是解题的关键.6.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯【答案】C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213【答案】A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221012x x -=-- ∴8x =∴6AD ===∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.8.(1232020)(232021)(1232021)(232020)---⋯-⨯++⋯+----⋯-⨯++⋯+=( ) A .2019B .2020C .2021D .2019×2020 【答案】C【分析】首先令232020t =++⋯+,进行整体代换,然后进行整式混合运算即可得解.【详解】令232020t =++⋯+原式=()()()1202112021t t t t -+---⋅=22202120212020t t t t t -+-++=2021故选:C.【点睛】此题主要考查利用整体代换求解整式混合运算,熟练掌握,即可解题.9.k 、m 、n ===k 、m 、n 的大小关系正确的是( )A .k <m=nB .m=n <kC .m <n <kD .m <k <n 【答案】A【分析】先化简二次根式,再分别求出k 、m 、n 的值,由此即可得出答案.==2k ===5m ===5n =则k m n <=故选:A .【点睛】本题考查了二次根式的化简,掌握化简方法是解题关键. 10.一次函数y =﹣2x+2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论. 【详解】解:∵一次函数y =﹣2x+2中,k =﹣2<0,b =2>0, ∴此函数的图象经过一、二、四象限,不经过第三象限. 故选:C . 【点睛】本题考查一次函数的图象与系数的关系,熟知当k <0,b >0时,一次函数y=kx+b 的图象在一、二、四象限是解题关键. 二、填空题11.直角三角形两直角边长分别为5和12,则它斜边上的高为____________ 【答案】6013【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可. 【详解】∵直角三角形的两直角边长分别为5和12,13= ∵直角三角形面积S =12×5×12=12×13×斜边的高, ∴斜边的高=512601313⨯=. 故答案为:6013.【点睛】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.我国首艘国产航母山东舰于2019年12月17日下午4时交付海军,山东舰的排水量达到65000吨,请将65000精确到万位,并用科学记数法表示______. 【答案】4710⨯【分析】首先把65000精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,判断出用科学记数法表示是多少即可. 【详解】65000≈70000, 70000=7×1. 故答案为:7×1.【点睛】本题主要考查了用科学记数法和近似数.一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13.已知空气的密度是0.0012393/g cm ,用科学记数法表示为________3/g cm 【答案】1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.001239=1.239×10-3 故答案为:1.239×10-3. 【点睛】本题考查了科学记数法的表示,熟练掌握n 的值是解题的关键.14.化简:222(1)169x xx x x --•--+的结果是_______. 【答案】3-x x 【分析】根据分式混合运算的法则计算即可【详解】解:()()222123(1)==169133----•--+---x x x x x x x x x x x x故答案为:3-x x 【点睛】本题考查了分式混合运算,熟练掌握分式混合运算的法则是解题的关键15.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,46ABG ∠=︒,则FAE ∠的度数是 ________ .【答案】26︒【分析】根据正五边形的性质与平行线的性质,即可求解. 【详解】∵在正五边形ABCDE 中, ∴∠BAE=180(52)1085︒⨯-=︒ ,∵FA ∥GB ,∴∠BAF+∠ABG=180°,∴FAE ∠=180°-108°-46°=26︒. 故答案为:26︒. 【点睛】本题主要考查正五边形的性质与平行线的性质,掌握正五边形的每个内角等于108°以及两直线平行,同旁内角互补,是解题的关键.16.如图,已知函数y =x+1和y =ax+3图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是_____.【答案】12x y =⎧⎨=⎩【分析】先把x =1代入y =x+1,得出y =2,则两个一次函数的交点P 的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把1x =代入1y x =+,得出2y =, 函数1y x =+和3y ax =+的图象交于点(1,2)P , 即1x =,2y =同时满足两个一次函数的解析式,所以关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.故答案为12x y =⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.已知正数x 的两个不同的平方根是2a ﹣3和5﹣a ,则x 的值为______. 【答案】49【解析】因为一个正数的平方根有两个,它们互为相反数,所以2a ﹣3+5﹣a=0,解得: a=﹣2,。
太原市2017-2018学年第一学期八年级阶段性评测数学试卷

太原市2017-2018学年第一学期八年级阶段性评测数学试卷一、选择题(本大题含10个小题,每题3分,共30分)1、实数6的相反数是().6A -.6B .6C -.6D -2、下列各组数中,能作为直角三角形三边长的是().4,5,6A .5,7,12B .1,1,2C .1,2,3D 3、下列计算正确的是().93A =±3.82B -=-()2.33C -=-.235D +=4、如图是用雷达探测器测得的六个目标,,,,,A B C DEF .其中,E F 的位置表示为()()300,3,210,5E F ,按照此方法表示目标,,,A B C D 的位置,不正确的是()().30,4A A ().90,2B B ().120,6C C ().240,3D D 5、一次函数25y x =--的图象经过坐标系的().A 第一、二、三象限.B 第一、二、四象限.C 第二、三、四象限.D 第一、三、四象限6、下列实数中的无理数为().0.53A3.27B -()2.6C .2D π7、已知平面直角坐标系中点A 的坐标为()4,3-,则下列结论正确的是().A 点A 到x 轴的距离为4.B 点A 到y 轴的距离为3.C 点A 到原点的距离为5.D 点A 关于x 轴对称的点的坐标为()4,3-8、若点()1,A a 和点()4,B b 在直线2y x m =-+上,则a 与b 的大小关系是().A a b >.B a b <.C a b =.D 与m 的值有关9、如图,数轴上的,,,A B C D 四点对应的数分别是3,2,1,2---,其中与表示3-的点距离最近的点是().A 点A.B 点B.C 点C.D 点D10、如图是放在地面上的一个长方体盒子,其中18,12,10AB cm BC cm BF cm ===,点M 在棱AB 上,且6AM cm =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为().A 20cm .B 2106cm.C ()12234cm+.D 18cm二、填空题(本大题含5个小题,每小题2分,共10分)11、计算()()3131-+的结果为_____________.12、已知正比例函数y kx =的图象经过点()3,6P ,则k 的值等于__________.13、已知等边ABC ∆的边长为2cm ,它的高为_________cm .14、比较大小:551________82-.(填“>”,“<”,“=”)15、如图,Rt ABC ∆中,90,4,3ACB AC BC ∠===,以,,AB BC AC 为边在AB 同侧作正方形ABMN ,正方形ACDE 和正方形BCFG ,其中线段DE 经过点N ,CF 与BM 交于点P ,CD 与MN 交于点Q ,图中阴影部分的面积为____________.三、解答题(本大题含8个小题,共80分)16、计算:(每题3分,共12分)(1)1233+;(2)181052-+;(3)()2236+;(4)11181084553+-+.17、(本题6分)如图,在平面直角坐标系中,ABC ∆的顶点坐标为()()3,2,1,4A B --,()0,2C .(1)在如图的平面直角坐标系中画出ABC ∆关于y 轴对称的111A B C ∆,并直接写出111,,A B C 的坐标;(2)若将ABC ∆三个顶点的纵坐标分别乘1-,横坐标不变,将所得的三个点用线段顺次连接,得到的三角形与ABC ∆的位置关系是_______________.18、(本题4分)物体自由下落的高度h (单位:m )与下落时间t (单位:s )之间的关系为24.9h t =.如图,有一个物体从78.4m 高的建筑物上自由下落,到达地面需要多长时间?19、(本题5分)已知一次函数122y x =+的图象与x 轴相交于点A ,与y 轴相交于点B .(1)求点,A B 的坐标,并在如图的坐标系中画出函数122y x =+的图象;(2)若点()2,C m 在函数122y x =+的图象上,求点C 到x 轴的距离.20、(本题6分)如图,某小区的两个喷泉,A B 位于小路AC 的同侧,两个喷泉的距离AB 的长为250m .现要为喷泉铺设供水道,AM BM ,供水点M 在小路AC 上,供水点M 到AB 的距离MN 的长为120m ,BM 的长为150m .(1)求供水点M 到喷泉,A B 需要铺设的管道总长;(2)直接写出喷泉B 到小路AC 的最短路径.21、(本题6分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元.该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二,按总价的九折付款.购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x (个),付款金额为y (元).(1)分别写出两种优惠方案中y 与x 之间的关系式:方案一:1____________y =;方案二:2_________y =;(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到________个文具盒(直接回答即可).22、(本题8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动.小颖想到借助正方形网格解决问题.下列图1、图2都是88⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出ABC ∆,其顶点,,A B C 都是格点,同时构造正方形BDEF ,使它的顶点都在格点上,且它的边,DE EF 分别经过点,C A ,她借助此图形求出了ABC ∆的面积.(1)在图1中,小颖所画的ABC ∆的三边长分别是____,____,_____AB BC AC ===;ABC ∆的面积为___________;解决问题:(2)已知ABC ∆中,AB BC AC ===.请你根据小颖的思路,在图2的正方形网格中画出ABC ∆,并直接写出ABC ∆的面积.23、(本题13分)如图1,在平面直角坐标系中,一次函数28y x =-+的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB x ⊥轴,垂足为点A ,过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段,,AB BC AC 的长分别为____,____,____AB BC AC ===;(2)折叠图1中的ABC ∆,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2.请从下列,A B 两题中任选一题作答,我选择_______题..A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得APD ∆为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由..B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点,,A P C 为顶点的三角形与ABC ∆全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.。
┃精选3套试卷┃2018届太原市八年级上学期数学期末考前验收试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在1x,12,212x+,3xyπ,3x y+中,分式的个数是()A.2 B.3 C.4 D.5 【答案】A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:1x、3x y+共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如AB的式子,A、B都是整式,且B中含有字母.2.下列大学校徽主体图案中,是轴对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等【答案】A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B 、符合判定ASA 或AAS ,故本选项正确,不符合题意;C 、符合判定SAS ,故本选项不符合题意;D 、符合判定HL ,故本选项不符合题意.故选:A .【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.具备下列条件的ABC ∆中,不是直角三角形的是( )A .ABC ∠+∠=∠B .A BC ∠-∠=∠ C .::1:2:3A B C ∠∠∠=D .3A B C ∠=∠=∠ 【答案】D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【详解】A 、由180A B C ∠+∠+∠=和A B C ∠+∠=∠可得:∠C=90°,是直角三角形,此选项不符合题意;B 、由A BC ∠-∠=∠得A B C =+∠∠∠,又180A B C ∠+∠+∠=,则∠A=90°,是直角三角形,此选项不符合题意;C 、由题意,318090123C ∠=⨯=++,是直角三角形,此选项不符合题意;D 、由180A B C ∠+∠+∠=得3∠C+3∠C+∠C=180°,解得:1807C ∠=,则∠A=∠B=5407≠90°,不是直角三角形,此选项符合题意,故选:D .【点睛】 本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键. 5.如图,在Rt△ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .4【答案】A 【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC , ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质6.下面是一名学生所做的4道练习题:①0(2)1-=;②()3236xy x y -=;③222()x y x y +=+,④21(3)9--=,他做对的个数是( ) A .1B .2C .3D .4 【答案】B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①0(2)1-=,正确;②()3236xy x y -=-,错误;③222()2x y x y xy +=++,错误; ④21(3)9--=,正确. 故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.7.已知点P 关于x 轴对称点的坐标是(-1,2),则点P 的坐标为( )A .(1,2)B .(1,-2)C .(2,-1)D .(-1,-2)【答案】D【解析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数.【详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点P 关于x 轴对称点的坐标是(-1,2),则点P 的坐标为(-1,-2).故选:D .【点睛】解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数. 8.以下列各组线段为边,能组成三角形的是().A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm 【答案】B【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A .∵2+3=5,∴不能组成三角形,故本选项错误;B.∵5+6=11>10,∴能组成三角形,故本选项正确;C.∵1+1=2<3,∴不能组成三角形,故本选项错误;D.∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B.【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.19【答案】C【解析】因为等腰三角形的两边分别为6和13,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;当6为腰时,其它两边为6和13,6、6、13不可以构成三角形.故选C.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10.下列各式中,是最简二次根式的是()A B C D【答案】A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A. 不能继续化简,故正确;B. 故错误;C. 故错误;D. .故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.二、填空题11.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.【答案】(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,-1),故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.12.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,那么需要A类、B类和C类卡片的张数分别为______.【答案】2,2,1【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【详解】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+1ab+2b2,∴需要A 类卡片2张,B 类卡片2张,C 类卡片1张.故答案为2,2,1.【点睛】此题考查了多项式乘多项式,弄清题意是解本题的关键.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.14.已知:如图,,AB AD BC DC == ,点P 在AC 上,则本题中全等三角形有___________对.【答案】1【分析】由AB=AD ,BC=DC ,AC 为公共边可以证明△ABC ≌△ADC ,再由全等三角形的性质可得∠BAC=∠DAC ,∠BCA=∠DCA ,进而可推得△ABP ≌△ADP ,△CBP ≌△CDP .【详解】在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ;∴∠BAC=∠DAC ,∠BCA=∠DCA ,在△ABP 和△ADP 中,AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP ,在△CBP 和△CDP 中,BC DC BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩,△CBP ≌△CDP .综上,共有1对全等三角形.故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.腰长为5,高为4的等腰三角形的底边长为_____.【答案】6或25或45.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图1.当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD -=,∴8BD =,∴45BC =∴此时底边长为5故答案为6或【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.16.点(13)M x﹣,﹣在第四象限,则x 的取值范围是_______. 【答案】1x >【分析】根据第四象限的点的横坐标是正数,列出不等式,即可求解.【详解】解:∵点13M x (﹣,﹣)在第四象限,10x ∴﹣>解得1x >,即x 的取值范围是1x >故答案为1x >.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17有意义,则x 的取值范围是__________【答案】3x ≥【分析】根据二次根式的性质(被开方数大于等于0)解答.【详解】解:根据题意得:30x -≥,解得:3x ≥.故答案为:3x ≥.【点睛】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.三、解答题18.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?【答案】(1)15天;(2)甲工程队做了5天,乙工程队做了20天【分析】(1)设规定时间是x 天,那么甲单独完成的时间就是x 天,乙单独完成的时间为2x ,根据题意可列出方程;(2)设甲工程队做了m 天,乙工程队做了n 天,则可列出方程组得解.【详解】解:(1)设规定时间是x 天, 根据题意得,113812x x x⎛⎫++=⎪⎝⎭, 解得x =15,经检验:x =15是原方程的解.答:我市要求完成这项工程规定的时间是15天;(2)由(1)知,由甲工程队单独做需15天,乙工程队单独做需30天,由题意得, 11115305265m n m n ⎧+=⎪⎨⎪+=⎩. 解得m 5n 20=⎧⎨=⎩. 答:该工程甲工程队做了5天,乙工程队做了20天【点睛】本题主要考查了分式方程的应用及二元一次方程组的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤.19.先化简,再求值:22144(1)11x x x x -+-÷--,从1-,1,2,3中选择一个合适的数代入并求值. 【答案】12x x +-,1. 【分析】根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可. 【详解】原式()()()2211=1111x x x x x x --⎛⎫-÷ ⎪---+⎝⎭ ()()()21121212x x x x x x x -+-⎛⎫=⨯ ⎪-⎝⎭-+=-. ∵x 2﹣1≠0,x ﹣2≠0,∴取x =3,原式=3132+-=1. 【点睛】本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.20.△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上.(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)求△A1B1C1的面积.【答案】(1)见解析;(2)6.2【分析】(1)作出△ABC各个顶点关于y轴对称的对应点,顺次连接起来,即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:3×2﹣12×1×2﹣12×2×3﹣12×2×3=6.2.【点睛】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.21.有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g.现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:110(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:110(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103 故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103 故乙的中位数是:100,乙的众数是100;(2)甲的方差为:2S甲=110[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2) =2.4;乙的方差为:2S乙=110[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2] =3.2,∵2S甲<2S乙,∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式.22.甲、乙两人同时从相距90千米的A地匀速前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后按原速返回A地,如图是他们与A地之间的距离y(千米)与经过的时间x(小时)之间的函数图像.(1)a ,并写出它的实际意义;(2)求甲从B地返回A地的过程中y与x之间的函数表达式,并写出自变量x的取值范围;(3)已知乙骑电动车的速度为35千米/小时,求乙出发后多少小时与甲相遇?【答案】(1)2.5;甲从A地到B地,再由B地返回到A地一共用了2.5小时;(2)y=-90x+225(1.5≤x≤2.5);(3)1.8小时.【分析】(1)根据路程÷时间可得甲人的速度,即可求得返回的时间,从而可求出a 的值;(2)设y 与x 之间的函数关系式为y=kx+b ,根据图象可得直线经过(1.5,90)以及(2.5,0),利用待定系数法把此两点坐标代入y=kx+b ,即可求出一次函数关系式,根据返回可得自变量x 的取值范围; (3)求出乙的函数关系式,联立方程组求解即可.【详解】(1)90÷1=90(千米/时);90÷90=1(小时)∴a=1.5+1=2.5(时)A 表示的实际意义是:甲从A 地到B 地,再由B 地返回到A 地一共用了2.5小时;(2)设甲从B 地返回A 地的过程中,y 与x 之间的函数关系式为y=kx+b ,根据图象知,直线经过(1.5,90)和(2.5,0)2.501.590k b k b ⎨⎩++⎧==, 解得,90225k b ⎩-⎧⎨== 所以y=-90x+225(1.5≤x≤2.5);(3)由乙骑电动车的速度为35千米/小时,可得:y=35x ,由9022535y x y x ⎨⎩-+⎧==, 解得 1.863x y ⎧⎨⎩==, 答:乙出发后1.8小时和甲相遇.【点睛】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B 地返回A 地的过程中,y 与x 之间的函数关系式.23.(1)计算:()05 3.1-+π-(2)化简求值:()()()22244x y x y x y y +--+÷⎡⎤⎣⎦,其中3x =,2y =-.【答案】(1)4;(2)25x y --,4【分析】(1)利用负数的绝对值是正数,任何一个数的零指数幂等于1(0除外)以及二次根式和三次根式的运算即可求出答案;(2)利用多项式乘以多项式将括号里的展开后再合并同类项,最后利用多项式除以单项式化简,将具体的值代入即可.【详解】解:(1)原式51424=+-+=;(2)原式()()2222248164820425x y x xy yy xy y y x y =----÷=--÷=--. 当3x =,2y =-时 原式()23526104=-⨯-⨯-=-+=.【点睛】本题主要考查的是实数的混合运算以及整式的乘除,掌握正确的运算方法是解题的关键.24.如图,在平面直角坐标系中,已知A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点C 1的坐标: ;(3)△A 1B 1C 1的面积是多少?【答案】(1)见解析;(2)(2,﹣1);(3)4.5【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)根据关于y 轴的对称点的坐标特点即可得出;(3)利用长方形的面积减去三个顶点上三个直角三角形的面积即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)由关于y 轴的对称点的坐标特点可得,点C 1的坐标为:(2,﹣1), 故答案为:(2,﹣1);(3)△A 1B 1C 1的面积为:11135253312 4.5222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了轴对称与坐标变化,熟知关于y 轴对称的点的坐标特点是解答此题的关键.25.已知:如图,Rt ABC ∆中,90BAC ∠=︒,AB AC =,D 是BC 的中点,AE BF =.求证:(1)DE DF =;(2)若8BC =,求四边形AFDE 的面积.【答案】(1)见解析;(2)1.【分析】(1)连接AD ,证明△BFD ≌△AED ,根据全等三角形的性质即可得出DE=DF ;(2)根据△DAE ≌△DBF ,得到四边形AFDE 的面积=S △ABD =12S △ABC ,于是得到结论. 【详解】证明:(1)连接AD ,∵Rt △ABC 中,∠BAC=90°,AB=AC ,∴∠B=∠C=45°,∵AB=AC ,DB=CD ,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD ,∠ADB=90°,在△DAE 和△DBF 中,45AE BF ADE B AD BD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△DAE ≌△DBF (SAS ),∴DE=DF ; (2)∵△DAE ≌△DBF ,∴四边形AFDE 的面积=S △ABD =12S △ABC , ∵BC=1, ∴AD=12BC=4, ∴四边形AFDE 的面积=S △ABD =12S △ABC =12×12×1×4=1. 【点睛】本题主要考查了全等三角形的判定和性质以及等腰直角三角形的判定和性质.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q 在轨道槽AM 上运动,点P 既能在以A 为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN 上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.2.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C【答案】B【解析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.3.已知△ABC ≌△DEF ,∠A =80°,∠E =50°,则∠F 的度数为( )A .30°B .50°C .80°D .100° 【答案】B【解析】试题分析:利用△ABC ≌△DEF ,得到对应角相等∠D=∠A=80°,然后在△DEF 中依据三角形内角和定理,求出∠F=180﹣∠D ﹣∠E=50°故选B .考点:全等三角形的性质.4.计算:|﹣13| ) A .1B .23C .0D .﹣1【答案】C 【分析】先计算绝对值、算术平方根,再计算减法即可得. 【详解】原式=13﹣13=0, 故选C .【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质. 5.下列各式计算正确的是( ) A .6232126()b a b a b a ---⋅= B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x•3x 5=6x 6【答案】D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】A. 2321526()b a b a b a ---⋅=,故选项A 错误; B. (3xy )2÷(xy )=9xy ,故选项B 错误;C. a 与2a 不是同类二次根式,不能合并,故选项C 错误;D. 2x•3x 5=6x 6,正确.故选:D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.已知 △ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD 是平行四边形的依据是( )A .两组对边分别平行的四边形是平行四边形B .对角线互相平分的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形【答案】B【分析】根据尺规作图可知AC,BD 互相平分,即可判断.【详解】根据尺规作图可得直线垂直平分AC ,再可得到AC,BD 互相平分,故选B.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知尺规作图的特点.7.如图,在△ABC 中,AD ⊥BC ,添加下列条件后,还不能使△ABD ≌△ACD 的是( )A .AB AC = B .BD CD = C .B C ∠=∠ D .AD BD =【答案】D【分析】根据全等三角形的判定定理解答即可. 【详解】∵AD ⊥BC ∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD 则可利用“HL”判定全等,故A 正确; 若添加BD=CD ,又AD=AD 则可利用“SAS”判定全等,故B 正确; 若添加∠B=∠C ,又AD=AD 则可利用“AAS”判定全等,故C 正确; 若添加AD=BD ,无法证明两个三角形全等,故D 错误. 故选:D 【点睛】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键. 8.满足-2<x≤1的数在数轴上表示为( ) A . B .C .D .【答案】B【分析】-2<x≤1表示不等式x >﹣2和不等式x≤1的公共部分。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
〖汇总3套试卷〗太原市2018年八年级上学期数学期末学业质量检查模拟试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1,113,π中,无理数是 ( )AB .113CD .π 【答案】D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.,113,π中,=2=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.2.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【答案】C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C .对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D .对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C .【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,在ABC ∆中,DE 是AC 的垂直平分线,8AC cm =,且ABD ∆的周长为16cm ,则ABC ∆的周长为( )A .24cmB .21cmC .18cmD .16cm【答案】A 【分析】根据线段的垂直平分线的性质得到DA =DC ,根据三角形的周长公式计算,得到答案.【详解】∵DE 是AC 的垂直平分线,∴DA =DC ,∵△ABD 的周长为16cm ,∴AB +BD +DA =AB +BD +DC =AB +BC =16cm ,∴△ABC 的周长=AB +BC +AC =16+8=24(cm ),故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D 【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.如图,在ABC ∆中,CE 平分ACB ∠交AB 于点E ,CF 平分ACD ∠,//EF BC ,EF 交AC 于点M ,若5CM =,则22CE CF +=( )A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 1+CF 1=EF 1.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 1+CF 1=EF 1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.6.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】∵A 是轴对称图形,∴A 不符合题意,∵B 是轴对称图形,∴B 不符合题意,∵C 不是轴对称图形,∴C 符合题意,∵D 是轴对称图形,∴D 不符合题意,故选C .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7.在xy , 1,23x ,(x+y ),2xy x y +这四个有理式中,分式是( ) A .xyB .2xC .13(x+y )D .2xy x y+ 【答案】D【分析】根据分式的定义逐项排除即可;【详解】解:A .属于整式中单项式不是分式,不合题意;B .属于整式中的单项式不是分式,不合题意;C .属于整式中的多项式不是分式,不合题意;D .属于分式,符合题意;故答案为D .【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.8.如图,AC 、BD 相交于点O ,OA =OB ,OC =OD ,则图中全等三角形的对数是( ).A .1对B .2对C .3对D .4对【答案】C 【解析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD ≌△OBC ,所以∠ADB=∠BCA,AD=BC,再由OA =OB ,OC =OD ,易得AC=-BD ,又因AB=BA,利用SSS 即可判定△ABD ≌△BAC,同理可证△ACD ≌△BDC,故答案选C .考点:全等三角形的判定及性质.9.已知如图,等腰ABC ∆中,,120,AB AC BAC AD BC =∠=︒⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,.OP OC =下面的结论:① 30APO DCO ∠+∠=︒;②OPC ∆是等边三角形;③AC AO AP =+;④APO DCO ∠=∠.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A 【分析】①连接BO ,根据等腰三角形的性质可知AD 垂直平分BC ,从而得出BO=CO ,又OP=OC,得到BO=OP ,再根据等腰三角形的性质可得出结果;②证明∠POC=60°,结合OP=OC ,即可证得△OPC 是等边三角形;③在AC 上截取AE=PA ,连接PE ,先证明△OPA ≌△CPE ,则AO=CE ,AC=AE+CE=AO+AP ;④根据∠APO=∠ABO ,∠DCO=∠DBO ,因为点O 是线段AD 上一点,所以BO 不一定是∠ABD 的角平分线,可作判断.【详解】解:①如图1,连接OB ,∵AB=AC ,AD ⊥BC ,∴BD=CD ,∠BAD=12∠BAC=12×120°=60°, ∴OB=OC ,∠ABC=90°-∠BAD=30°,∵OP=OC ,∴OB=OC=OP ,∴∠APO=∠ABO ,∠DCO=∠DBO ,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°-∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,PA PEAPO CPE OP CP=⎧⎪∠=∠⎨⎪=⎩,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,故③正确;④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;故①②③正确.故选:A.【点睛】本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.10.已知小明从A地到B地,速度为4千米/小时,,A B两地相距3千米,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y与x之间的函数表达式是()A .4y x =B .43y x =-C .4y x =-D .34y x =-【答案】D 【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y 与x 的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x .故选:D .【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.二、填空题11.约分:222x y xy - =_____. 【答案】2x y- 【分析】根据分式的基本性质,约分化简到最简形式即可.【详解】22=22x y x y xy--, 故答案为:2x y-. 【点睛】 考查了分式的基本性质,注意负号可以提到前面,熟记分式约分的方法是解题关键.12.如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD=3,则BD 的长为______.【答案】1【分析】根据线段垂直平分线的性质求出AD=BD ,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD 即可.【详解】∵DE 是线段AB 的垂直平分线,∴AD=BD ,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°∴∠CAB=90°-∠B=90°-30°=10°,∴∠DAC=∠CAB-∠BAD=10°-30°=30°,∴在Rt △ACD 中,AD=2CD=1,∴BD=AD=1.故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.13.如图,点F 是△ABC 的边BC 延长线上一点,DF ⊥AB 于点D ,∠A =30°,∠F =40°,∠ACF 的度数是_____.【答案】80°【分析】根据三角形的内角和可得∠AED =60°,再根据对顶角相等可得∠AED =∠CEF =60°,再利用三角形的内角和定理即可求解.【详解】解:∵DF ⊥AB ,∴∠ADE =90°,∵∠A =30°,∴∠AED =∠CEF =90°﹣30°=60°,∴∠ACF =180°﹣∠F ﹣∠CEF =180°﹣40°﹣60°=80°,故答案为:80°.【点睛】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.14.一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),则关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为____. 【答案】24x y =⎧⎨=⎩. 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】∵一次函数y=kx+b 与y=x+2两图象相交于点P (2,4),∴关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解为24x y =⎧⎨=⎩.故答案为:24x y =⎧⎨=⎩. 【点睛】 本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 15.已知:如图,ABC 和ADE 为两个共直角顶点的等腰直角三角形,连接CD 、BE .图中一定与线段CD 相等的线段是__________.【答案】BE【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°,∴∠BAC -∠BAD=∠DAE -∠BAD ,∴∠DAC=∠BAE ,∵在△CAD 和△BAE 中,AB AC DAC BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.16.已知一组数据:2,4,5,6,8,则它的方差为__________.【答案】1【分析】先求出这组数据的平均数,再由方差的计算公式计算方差.【详解】解:一组数据2,1,5,6,8, 这组数据的平均数为:1(24568)55x =++++=, ∴这组数据的方差为:2222221(25)(45)(55)(65)(85)45S ⎡⎤=-+-+-+-+-=⎣⎦. 故答案为:1.【点睛】本题考查求一组数的方程.掌握平均数和方差的计算公式是解决此题的关键.17.计算:0.09的平方根是________.±【答案】0.3【分析】根据平方根的定义即可求解.±【详解】0.09的平方根是0.3±.故答案为:0.3【点睛】此题主要考查平方根,解题的关键是熟知其定义.三、解答题18.某广告公司为了招聘一名创意策划,准备从专业技能和创新能力两方面进行考核,成绩高者录取.甲、乙、丙三名应聘者的考核成绩以百分制统计如下表.(1)如果公司认为专业技能和创新能力同等重要,则应聘人______将被录取.(2)如果公司认为职员的创新能力比专业技能重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【答案】(1)甲;(2)乙将被录取,理由见解析.【分析】(1)根据平均数的计算公式分别计算出甲、乙、丙的平均数,再进行比较,即可得出答案;(2)根据题意先算出按6和4的甲、乙、丙的平均数,再进行比较,即可得出答案【详解】(1)甲的平均数是:(90+88)÷2=89(分),乙的平均数是:(80+95)÷2=87.5(分),丙的平均数是:(85+90)÷2=87.5(分),∵甲的平均成绩最高,∴候选人甲将被录取.故答案为:甲.(2)根据题意得:甲的平均成绩为:(88×6+90×4)÷10=88.8(分),乙的平均成绩为:(95×6+80×4)÷10=89(分),丙的平均成绩为:(90×6+85×4)÷10=88(分),因为乙的平均分数最高,所以乙将被录取.【点睛】此题考查平均数,解题关键在于掌握算术平均数和加权平均数的定义.19.选择适当的方法解下列方程.(1)241x x -=;(2)22530x x -+=.【答案】(1)1225,25x x =-=+;(2)123,12x x == 【分析】(1)直接使用配方法解一元二次方程即可;(2)直接使用因式分解法解一元二次方程即可.【详解】解:(1)配方24414x x -+=+开方得()225x -=, 25x -=±解得:1225,25x x =-=+;(2)因式分解得,(2x-3)(x-1)=0,2x-3=0或x-1=0,解得:123,12x x ==. 【点睛】本题考查了一元二次方程的解法,掌握并灵活运用配方法和因式分解法解一元二次方程是解答本题的关键.20.如图,在∆ABC 中,AB=4,AC=3,BC=5,DE 是BC 的垂直平分线,DE 交BC 于点D ,交AB 于点E ,求AE 的长.【答案】78【分析】根据勾股定理的逆定理可得ABC 是直角三角形,且∠A =90°,然后设AE x =,由线段垂直平分线的性质可得4EB EC x ==-,再根据勾股定理列方程求出x 即可.【详解】解:连接CE ,∵在ABC 中,4AB =,3AC =,5BC =,∴222AB AC BC +=,∴ABC 是直角三角形,且∠A =90°,∵DE 是BC 的垂直平分线,∴EC EB =,设AE x =,则4EB EC x ==-,∴2223(4)x x +=-, 解得78x =, 即AE 的长是78. 【点睛】本题考查了线段垂直平分线的性质,勾股定理及其逆定理.关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.21.在ABC ∆中,点Q 是BC 边上的中点,过点A 作与线段BC 相交的直线l ,过点B 作BN l ⊥于N ,过点C 作CM l ⊥于M .(1)如图1,如果直线l 过点Q ,求证:QM QN =;(2)如图2,若直线l 不经过点Q ,联结QM ,QN ,那么第(1)问的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.【答案】(1)详见解析;(2)成立,理由详见解析【分析】(1)由“AAS”可证△BQN ≌△CQM ,可得QM=QN ;(2)延长NQ 交CM 于E ,由“ASA”可证△BQN ≌△CQE ,可得QE=QN ,由直角三角形的性质可得结论.【详解】(1) 点Q 是BC 边上的中点,BQ CQ ∴=,BN l ⊥,CM l ⊥,90BNQ CMQ ∴∠=∠=︒,且BQ CQ =,BQN CQM ∠=∠,()BQN CQM AAS ∴∆≅∆,QM QN ∴=;(2)仍然成立,理由如下:如图,延长NQ 交CM 于E ,点Q 是BC 边上的中点,BQ CQ ∴=,BN l ⊥,CM l ⊥,//BN CM ∴,NBQ QCM ∴∠=∠,且BQ CQ =,BQN CQE ∠=∠,()BQN CQE ASA ∴∆≅∆,QE QN ∴=,且90NME ∠=︒,QM NQ QE ∴==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键. 22.如图,在ABC ∆中,90C ∠=︒.(1)用尺规作图作BAC ∠的平分线AD ,交BC 于D ;(保留作图痕迹,不要求写作法和证明) (2)若10AB cm =,4CD cm =,求ABD ∆的面积.【答案】(1)见解析;(1)10cm 1.【分析】(1)根据尺规作角平分线的方法,即可得到答案;(1)过D 作DE AB ⊥于E ,根据角平分线的性质定理和三角形的面积公式,即可求解.【详解】(1)如图所示:AD 即为所求;(1)过D 作DE AB ⊥于E ,∵AD 平分BAC ∠,90C ∠=︒,∴4DE CD ==cm , ∴2111042022ABD S AB DE cm ∆=⨯=⨯⨯=.【点睛】本题主要考查尺规作角平分线以及角平分线的性质定理,掌握角平分线的性质定理,是解题的关键. 23.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】解:(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019=21⨯=2【点睛】此题考察整式乘法公式的运用,准确变形是解题的关键.24.若241x x -=-,求(1)21()4x x -+;(2)1x x -的值. 【答案】(1)4;(2)23±.【分析】(1)根据241x x -=-可得14x x+=,再利用完全平方公式(222()2a b a ab b ±=±+)对代数式进行适当变形后,代入即可求解;(2)根据完全平方公式两数和的公式和两数差的公式之间的关系(22()()4a b a b ab -=+-)即可求解. 【详解】解:(1)∵241x x -=-,∴14x x+=, 2222221111()4242()x x x x x x x x-+=+-+=++=+ 将14x x+=代入, 原式=24=4;(2)由(1)得14x x +=,即22211()216x x x x +=++=, ∴221212x x +-=, 即21()12x x-=,即11223x x -=±=±. 【点睛】本题考查通过对完全平方公式变形求值,二次根式的化简.熟记完全平方公式和完全平方公式的常见变形是解决此题的关键.25.如图,ABC ∆是等边三角形,延长BC 到E ,使12CE BC =,点D 是边AC 的中点,连接ED 并延长ED 交AB 于F .求证:(1)EF AB ⊥;(2)2DE DF =.【答案】(1)见解析;(2)见解析.【分析】(1)根据等边三角形的性质可知AB BC AC ==,60∠=∠=∠=︒A B C ,从而可得,30CD CE CDE E =∠=∠=︒,再利用三角形的内角和可求得90BFE ∠=︒,最后根据垂直定义可证得EF AB ⊥(2)通过添加辅助线BD 构造出Rt BDF ∆,再利用等边三角形的相关性质证得30DBE E ∠=∠=︒,从而得出BD DE =,最后根据30角所对的直角边等于斜边的一半知2BD DF =,即2DE DF =.【详解】(1)∵ABC ∆为等边三角形∴AC BC =,60ACB ∠=︒,60B ∠=︒∵D 是边AC 的中点∴12AD DC AC ==∵12CE BC = ∴DC CE =,∴CDE E ∠=∠∵ACB E CDE ∠=∠+∠,60ACB ∠=︒∴30CDE E ∠=∠=︒∴180306090BFE ∠=︒-︒-︒=︒∴EF AB ⊥;(2)连接BD∵ABC ∆为等边三角形∴AB BC =,60ABC ∠=︒,∵D 是边AC 的中点 ∴1302ABD DBC ABC ∠=∠=∠=︒ ∵30E ∠=︒∴30DBE E ∠=∠=︒∴BD DE =∵在Rt BDF ∆中,30FBD ∠=︒ ∴12DF BD =, ∴12FD DE =,即:2DE FD =【点睛】本题主要考查了等边三角形的性质,含30的直角三角形的性质.第一问再利用三角形的内角和、垂直定义等知识点即可得证;第二问解题关键在于辅助线的添加,构造出含30的直角三角形,再利用等边三角形的性质以及等要三角形的判定进一步转化得证最后结论.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性D.角平分线上的点到角两边的距离相等【答案】D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.2.下列长度的线段能组成三角形的是()A.3、4、8 B.5、6、11 C.5、6、10 D.3、5、10【答案】C【解析】解:A、3+4<8,故不能组成三角形,故A错误;B、5+6=11,故不能组成三角形,故B错误;C、5+6>10,故能组成三角形,故C正确;D、3+5<10,故不能组成三角形,故D错误.故选C.点睛:本题主要考查了三角形三边的关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】请在此输入详解!3.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.18【答案】A【解析】试题分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=1.∴这个三角形的周长为1.故选A .考点:等腰三角形的性质.4+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间【答案】C【解析】∵,∴,在在3和4之间.故选C.5.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.【答案】C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】A 、逆命题为:如果一元一次方程20ax bx c ++=()0a ≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.6.方差:一组数据:2,x ,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是( ) A .10B .53C .2D .83 【答案】B【分析】先根据中位数是3,得到数据从小到大排列时x 与3相邻,再根据中位数的定义列方程求解即得x的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,x ,3,4,5或1,2, 3,x ,4,5∴()323x +÷=解得:3x =∴这组数据是1,2,3,3,4,5 ∴这组数据的平均数为1+2+334536x +++== ∵2222121()()...()n S x x x x x x n ⎡⎤=-+-++-⎣⎦ ∴222222215(13)(23)(33)(33)(43)(53)63S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦ 故选:B .【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定x 的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.7.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9aB .9aC .﹣36aD .36a【答案】D 【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b) =36a.故选D.【点睛】本题考点:分式的化简. 8.把分式11361124x x +-的分子与分母各项系数化为整数,得到的正确结果是( ) A .3243x x +- B .4263x x +- C .2121x x +- D .4163x x +- 【答案】B【分析】只要将分子分母要同时乘以12,分式各项的系数就可都化为整数.【详解】解: 不改变分值, 如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时乘以12, 即分式11361124xx+-=4263xx+-故选B.【点睛】解答此类题一定要熟练掌握分式的基本性质, 无论是把分式的分子和分母扩大还是缩小相同的倍数, 分式的值不变.9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=【答案】C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.如图,在ABC∆中,32B=︒∠,将ABC∆沿直线m翻折,点B落在点D的位置,则12∠-∠的度数是()A.32︒B.45︒C.60︒D.64︒【答案】D【分析】由翻折得∠B=∠D,利用外角的性质得到∠3及∠1,再将∠B的度数代入计算,即可得到答案.【详解】如图,由翻折得∠B=∠D ,∵∠3=∠2+∠D ,∠1=∠B+∠3,∴∠1=∠2+2∠B ,∵32B =︒∠,∴12∠-∠=64︒,故选:D.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的内角的和,熟记并熟练运用是解题的关键.二、填空题11.若实数5x <则x 可取的最大整数是_______. 【答案】2 【分析】根据24593=<<= ,得出x 可取的最大整数是2 【详解】∵24593=<=∴x 可取的最大整数是2【点睛】本题考查了无理数的大小比较,通过比较无理数之间的大小可得出x 的最大整数值12.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】1【解析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1=(116)﹣1 =1,故答案为:1.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键. 13.如图,在矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使DA 与对角线DB 重合,点A 落在点A′处,折痕为DE ,则A′E 的长是_________.【答案】32. 【详解】在Rt △ABD 中,AB=4,AD=3,∴222243AB AD ++, 由折叠的性质可得,△ADE ≌△A'DE , ∴A'D=AD=3,A'E=AE ,∴A'B=BD-A'D=5-3=2,设AE=x ,则A'E=AE=x ,BE=4-x ,在Rt △A'BE 中,x 2+22=(4-x )2解得x=32, 即AE=32. 考点:1.翻折变换(折叠问题);2.勾股定理.14.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为 .【答案】2.1【解析】先根据线段的垂直平分线的性质得到DB=DA ,则有∠A=∠ABD ,而∠C=90°,∠DBC=10°,利用三角形的内角和可得∠A+∠ABD=90°-10°=60°,得到∠ABD=10°,在Rt △BED 中根据含10°的直角三角形三边的关系即可得到DE=12BD=2.1cm . 解:∵DE 垂直平分AB ,∴DB=DA ,∴∠A=∠ABD ,而∠C=90°,∠DBC=10°,∴∠A+∠ABD=90°-10°=60°,∴∠ABD=10°,在Rt △BED 中,∠EBD=10°,BD=4.6cm ,∴DE=12BD=2.1cm , 即D 到AB 的距离为2.1cm .故答案为2.1.16. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________【答案】80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键. 17.如图,等边△ABC 的边长为6,点P 沿△ABC 的边从A→B→C 运动,以AP 为边作等边△APQ ,且点Q 在直线AB 下方,当点P 、Q 运动到使△BPQ 是等腰三角形时,点Q 运动路线的长为_____.【答案】3或1【分析】如图,连接CP ,BQ ,由“SAS”可证△ACP ≌△ABQ ,可得BQ =CP ,可得点Q 运动轨迹是A→H→B ,分两种情况讨论,即可求解.【详解】解:如图,连接CP ,BQ ,∵△ABC ,△APQ 是等边三角形,∴AP =AQ =PQ ,AC =AB ,∠CAP =∠BAQ =60°,∴△ACP ≌△ABQ(SAS)∴BQ =CP ,∴当点P 运动到点B 时,点Q 运动到点H ,且BH =BC =6,∴当点P 在AB 上运动时,点Q 在AH 上运动,∵△BPQ 是等腰三角形,∴PQ =PB ,∴AP =PB =3=AQ ,∴点Q 运动路线的长为3,当点P 在BC 上运动时,点Q 在BH 上运用,∵△BPQ 是等腰三角形,∴PQ =PB ,∴BP =BQ =3,∴点Q 运动路线的长为3+6=1,故答案为:3或1.【点睛】本题考查了点的运动轨迹,全等三角形的判定和性质,等边三角形的性质,确定点Q 的运动轨迹是本题的关键.三、解答题18.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.【答案】()1证明见解析;()2BEF 67.5∠=.【解析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数. 【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.19.(1212-⎛⎫ ⎪⎝⎭; (2)已知:()22181x -=,求x 的值.【答案】(1)-3;(2)5x =或 4x =-.【分析】(1)原式利用算术平方根的定义,立方根和负整数指数评价的人运算法则进行计算,最后再进行加减运算即可;(2)方程利用平方根的定义开方即可求得方程的解. 【详解】(1212-⎛⎫ ⎪⎝⎭, =2-1-4=-3;(2)()22181x -=开方得,219x -=±∴219x -=,219x -=-解得,5x =或 4x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知△ABC 中,∠C=90°,∠B=15°,AC=2cm ,分别以A 、B 两点为圆心,大于12AB 的长为半径画弧,两弧分别相交于E 、F 两点,直线EF 交BC 于点D ,求BD 的长.。
2017-2018学年度 八年级数学期末测试卷(含答案)

2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。