新浙教版八年级数学上册练习:3.4一元一次不等式组练习
初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
浙教版八年级数学上册第三章 一元一次不等式 章末检测含答案

数学浙教版八上册第三章 一元一次不等式 检测、答案一、单选题1.下列式子:① <y+5;②1>-2;③3m-1≤4;④a+2≠a-2 中,不等式有( )A. 2 个B. 3 个C. 4 个D. 1 个2.当 0<x<1 时, 、x、 的大小顺序是( )A.B.C.D.3.下列按条件列出的不等式中,正确的是( )A. a 不是负数,则 a>0 C. a 是不小于 0 的数,则 a>0B. a 与 3 的差不等于 1,则 a-3<1 D. a 与 b 的和是非负数,则 a+b≥04.如果 a>b,c<0,那么下列不等式成立的是( )A. a+c>bB. a+c>b﹣cC. ac﹣1>bc﹣1D. a(c﹣1)<b(c﹣1)5.若 x>y,且(a﹣3)x<(a﹣3)y,则 a 的值可能是( )A. 0B. 3C. 4D. 56.关于 的不等式组的解集在数轴上表示如图所示,则不等式组解集为( )A.B.C.D.7.不等式 2x-5>3(x-3)的解集中,正整数解的个数是( )A. 1 个B. 2 个C. 3 个D. 4 个8.若关于 的方程的解不大于 ,则 的取值范围是( )A.B.C.D.9.解集在数轴上表示为如右图所示的不等式组是( )A.B.C.D.10.若关于 的分式方程的根是正数,则实数 的取值范围是( ).A.,且二、填空题B.,且C. ,且D. ,且11.有理数 m,n 在数轴上如图,用不等号填空.(1)m+n________0; (2)m-n________0; (3)m•n________0; (4)m2________n; (5)|m|________|n|. 12.已知关于 x 的不等式(m-1)x <0 是一元一次不等式,那么 m=________.13.关于 x 的不等式 ax>b 的解集是 x< ,写出一组满足条件的 a , b 的值:a=________. 14.规定[x]表示不超过 x 的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则 y 的取值范围是________。
新浙教版八上数学第三章一元一次不等式和不等式组测试卷

新浙教版八上数学第三章一元一次不等式和不等式组测试卷It was last revised on January 2, 2021一元一次不等式和不等式组测试卷 一、选择题:1.在方程组221x y m y x -=⎧⎨-=⎩ 中,x,y 满足x+y>0,m的取值范围是 ( )A . B. C. D.2.下列按要求列出的不等式中错误的是 ( )是非负数,则m ≥0 是非正数,则m ≦0不大于-1,则m<-1 倍m 为负数,则2m<03.不等式9-114x>x+23的正整数解的个数是 ( ).24.若a<0,下列式子不成立的是 ( ) +2<3-a +2<a+3 C.-2a <-3aD.2a>3a5. 若a 、b 、c 是三角形三边的长,则代数式a 2 + b 2 —c 2 —2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于06.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ( ) >m>12 >m>-12 C.112>m>-12 D.12>m>-1127.若方程35x a-=26b x-的解是非负数,则a 与b 的关系是 ( ) ≤56b ≥56b ≥-56b ≥528b8.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ( )≤-1 <-1 ≥1 >1.9.若方程组3133x y k x y +=+⎧⎨+=⎩ 的解、满足01x y <+<,则k 的取值范围是 ()A.40k-<< B. 10k-<< C.08k<< D. 4k>-10.设a、b、c的平均数为M,a、b的平均数为N,N、c的平均数为P,若a>b>c,则M与P的大小关系是().A. M= PB. M > PC. M < PD. 不确定二、填空题:1.不等式组3231xx-≥⎧⎨->⎩的解集是 .2.当x________ 时,代数式354x-的值是非正数,当x_______时,代数式3(2)5x-的值是非负数.3.关于x的方程3x+2m=x-5的解为正数,则m的取值范围是.4.能使代数式12×(3x-1)的值大于(5x-2)+14的值的最大整数x是.5. 已知x >0,y<0.且x + y <0,那么有理数x , y,- x ,- y的大小关系为 .6.若关于x的不等式组4132x xx a+⎧>+⎪⎨⎪-<⎩解集为x<2,则a的取值范围是.7. 在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.8.已知机器工作时,每小时耗油9kg,现油箱中存油多于38kg但少超过45kg,问这油箱中的油可供这台机器工作时间t的范围为___________ 。
浙教版八年级数学上册《3.4一元一次不等式组在实际生活中的应用》同步练习含答案

一元一次不等式组在实际生活中的应用一、解答题。
1.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?二、选择题。
2.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.44.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A.10道题B.12道题C.13道题D.16道题5.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%三、填空题(共2小题,每小题3分,满分6分)7.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为克.8.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是立方米.四、解答题。
9.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.10.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨 2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分 8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?11.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?12.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130 290 (x)累计购物在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?一元一次不等式组在实际生活中的应用参考答案与试题解析一、解答题。
浙教版八年级上册数学第3章 一元一次不等式含答案(完整版)

浙教版八年级上册数学第3章一元一次不等式含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.若a 2>0,则a>0B.若a 2>a,则a>0C.若a<0,则a 2>aD.若a<1,则a 2<a2、不等式组的解集在数轴上表示如图,则该不等式组是()A. B. C. D.3、若x-3<0,则()A.2 x-4<0B.2 x+4<0C.2 x>7D.18-3 x>04、若关于x的不等式组无解,则a的取值范围是()A.a<-2B.a≤-2C.a>-2D.a≥-25、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.6、若a-b>0,则下列变形正确的是()A.a+3<b+3B.a-3<b-3C.-3a>-3bD.- <-7、已知关于x的不等式组的解集是1≤x<3,则a=( )A.1B.2C.0D.-18、x的2倍减去7的差不大于﹣1,可列关系式为()A.2x﹣7≤﹣1B.2x﹣7<﹣1C.2x﹣7=﹣1D.2x﹣7≥﹣19、已知a>b,则下列不等式中正确的是()A.﹣2a>﹣2bB.C.2﹣a>2﹣bD.a+2>b+210、下列哪个不等式组的解集在数轴上的表示如图所示( )A. B. C. D.11、不等式组的解集在数轴上表示正确的是()A. B. C.D.12、如果点P(3x+9,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A. B. C.D.13、把不等式组的解集表示在数轴上,如下图,正确的是()A. B. C. D.14、不等式组的解在数轴上表示为()A. B. C. D.15、不等式组的解集在数轴上表示正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、若,则x的取值范围是________ .17、某商品的进价是500元,标价是700元,商店要求以不低于5%的利润率打折出售,售货员最低可以打________折.18、在平面直角坐标系中,若点在第二象限,则整数m的值为________.19、若关于x,y的二元一次方程组的解满足2x+y<3,则a的取值范围是________.20、不等式4-x>1的正整数解为________21、不等式2x+4>10的解集是________.22、对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作恰好进行三次才停止,则x的取值范围是________.23、若关于的方程的解为负数,则的取值范围是________24、若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是________.25、规定[x]表示不超过x的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则y的取值范围是________。
八年级数学上册第3章一元一次不等式3.4一元一次不等式组练习浙教版(2021年整理)

2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第3章一元一次不等式3.4 一元一次不等式组练习(新版)浙教版的全部内容。
3.4 一元一次不等式组A组1.下列不等式组是一元一次不等式组的是(C)A.错误! B.错误!C.错误! D.错误!2.不等式组错误!的解表示在数轴上正确的是(C)3.在下列不等式组中,解为-1≤x〈5的是(C)A.错误! B.错误!C.错误! D.错误!4.一元一次不等式组错误!的解是(B)A.x>-1 B.x≤2C.-1〈x≤2 D.x>-1或x≤25.已知三角形的三边长分别是3,5,x,则x的取值范围是__2<x<8__.6.不等式组错误!的整数解是__0,1,2__.7.解不等式组:(1)错误!【解】解不等式2x+5〉3(x-1),得x〈8.解不等式4x>错误!,得x〉1.∴不等式组的解为1<x<8.(2)错误!【解】解不等式x-3(x-2)≥4,得x≤1.解不等式错误!>x-1,得x<4.∴不等式组的解为x≤1.8.解不等式组,并把解在数轴上表示出来.(1)错误!【解】解2x+5≥3,得x≥-1.解3错误!〈2x-4,得x<2.∴不等式组的解为-1≤x<2.在数轴上表示如解图①所示.(第8题解①)(2)错误!【解】解x-1≤0,得x≤1.解1+错误!x>0,得x>-2.∴不等式组的解为-2<x≤1.在数轴上表示如解图②所示.,(第8题解②))9.先化简,再求值:错误!÷错误!,其中x是不等式组错误!的整数解.【解】错误!解①,得x〈3.解②,得x〉1.∴不等式组的解为1<x<3,∴不等式组的整数解为x=2.∵错误!÷错误!=错误!×错误!=4(x-1),∴当x=2时,原式=4×(2-1)=4.B组10.(1)关于x的不等式组错误!的解为x<3,则m的取值范围是(D)A.m=3 B.m>3C.m<3 D.m≥3【解】不等式组可化简为错误!∵不等式组的解为x<3,∴m的取值范围是m≥3.(2)若不等式组错误!恰有两个整数解,则m的取值范围是(A)A.-1≤m<0 B.-1<m≤0C.-1≤m≤0 D.-1<m<0【解】由题意得,不等式组的解为m-1<x<1,又∵不等式组恰有两个整数解,∴-2≤m-1<-1,解得-1≤m<0.11.已知关于x,y的方程组错误!的解是正数,且x〈y.(1)求a的范围.(2)化简:|8a+11|-|10a+1|.【解】(1)解方程组错误!得错误!由题意,得错误!解不等式①,得a〉-错误!.解不等式②,得a〈5.解不等式③,得a〈-错误!.∴不等式组的解是-错误!〈a〈-错误!.(2)∵-错误!<a〈-错误!,∴8a+11〉0,10a+1<0.∴|8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.12.解不等式组:错误!请结合题意,解答下列问题.(1)解不等式①,得x≥-3,依据是不等式的性质3.(2)解不等式③,得x〈2.(3)把不等式①,②和③的解在数轴上表示出来.(第12题)(4)从图中可以找出三个不等式的解的公共部分,得不等式组的解为-2<x<2.13.某玩具商计划生产A,B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号的玩具能全部售出,这两种玩具的生产成本和售价如下表:(1)该玩具商对这两种型号玩具有哪几种生产方案?型号A B成本(元)200240售价(元)250300(2)求该玩具商所能获得的最大利润.【解】(1)设该厂生产A型玩具x个,则生产B型玩具(100-x)个.由题意,得22400≤200x+240(100-x)≤22500,解得37.5≤x≤40.∵x为整数,∴x的取值为38或39或40.故有三种生产方案:方案一,生产A型玩具38个,B型玩具62个;方案二,生产A型玩具39个,B型玩具61个;方案三:生产A型玩具40个,B型玩具60个.(2)由题意知,生产B型玩具越多获利越大,故生产A型玩具38个,B型玩具62个才能获得最大利润,此时最大利润为38×(250-200)+62×(300-240)=5620(元).答:该玩具商所能获得的最大利润为5620元.数学乐园14.已知a,b为实数,则解可以为-2<x<2的不等式组是(D)A.错误! B.错误!C.错误! D.错误!导学号:91354021【解】从解出发,逆向分析.-2<x<2,即错误!观察选项知,所给不等式组的右边均为1,∴x<2的两边都除以2,得错误!x<1,x>-2的两边都除以-2,得-错误!x<1,即错误!的解为-2<x<2.∴当a=-错误!,b=错误!或a=错误!,b=-错误!时,D选项中的不等式组的解为-2<x <2.。
八年级数学上册阶段许7第3章一元一次不等式3-1-3-4浙教版

整数,∴m=3.
16.(10 分)定义:如果一元一次不等式①的解都 是一元一次不等式②的解,那么称一元一次不等 式①是一元一次不等式②的蕴含不等式.例如: 不等式 x<-3 的解都是不等式 x<-1 的解,则 x <-3 是 x<-1 的蕴含不等式. (1)在不等式 x>1,x>3,x<4 中,是 x>2 的蕴 含不等式的是________; 解:(1)在不等式 x>1,x>3,x<4 中,是 x>2 的蕴含不等式的是 x>3;
(2)①设采购甲商品 m 件,17m+12(30-m)≤460,
解得,m≤20,答:最多可采购甲商品 20 件;
m≤20,
②由题意可得, 30-m≤4m, 5
解得 162 3
≤m ≤20,
∴购买方案有四种.
方案一:甲商品 20 件,乙商品 10 件,此时花费 为:20×17+10×12=460(元); 方案二:甲商品 19 件,乙商品 11 件,此时花费 为:19×17+11×12=455(元); 方案三:甲商品 18 件,乙商品 12 件,此时花费 为:18×17+12×12=450(元); 方案四:甲商品 17 件,乙商品 13 件,此时花费 为:17×17+13×12=445(元). 答:购买甲商品 17 件,乙商品 13 件时花费最少, 最少要用 445 元.
A.x>0 B.x>2 C.x<0 D.x<2
5.已知关于 x 的不等式4x+a >1 的解都是不等 3
式2x+1 >0 的解,则 a 的范围是( C )
3 A.a=5 B.a≥5 C.a≤5 D.a<5
6.已知(a-1)x>a-1 的解集是 x<1,则 a 的取
值范围是( C )
A.a>1 B.a>2 C.a<1 D.a<2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 一元一次不等式组
A 组
1.下列不等式组是一元一次不等式组的是(C )
A .⎩⎪⎨⎪⎧x 2
+1≥3x ,7x -8<4 B .⎩⎪⎨⎪⎧x +y >2,x <3 C .⎩⎪⎨⎪⎧3x +5<4,-2x +6≥10,12
(x +3)+2≥-1 D .⎩⎪⎨⎪⎧x -1x +3<0,x -2>3 2.不等式组⎩
⎪⎨⎪⎧x +1>2,3x -4≤2的解表示在数轴上正确的是(C )
3.在下列不等式组中,解为-1≤x<5的是(C )
A .⎩⎪⎨⎪⎧x ≥-1,x >5
B .⎩
⎪⎨⎪⎧x -5>0,x +1≤0 C .⎩⎪⎨⎪⎧x -5<0,x +1≥0 D .⎩
⎪⎨⎪⎧x +5<0,x +1≤0 4.一元一次不等式组⎩⎪⎨⎪⎧-2x>x -9,12
x ≤1的解是(B ) A . x >-1 B . x ≤2
C . -1<x ≤2 D. x >-1或x ≤2
5.已知三角形的三边长分别是3,5,x ,则x 的取值范围是__2<x<8__.
6.不等式组⎩⎪⎨⎪⎧2x +1>-1,2x -13
≥x-1的整数解是__0,1,2__.
7.解不等式组:
(1)⎩
⎪⎨⎪⎧2x +5>3(x -1),4x>x +72. 【解】 解不等式2x +5>3(x -1),得x<8.
解不等式4x>x +72
,得x>1. ∴不等式组的解为1<x<8.
(2)⎩⎪⎨⎪⎧x -3(x -2)≥4,1+2x 3
>x -1. 【解】 解不等式x -3(x -2)≥4,得x≤1.
解不等式1+2x 3
>x -1,得x<4. ∴不等式组的解为x≤1.
8.解不等式组,并把解在数轴上表示出来.
(1)⎩
⎪⎨⎪⎧2x +5≥3,3(x -2)<2x -4. 【解】 解2x +5≥3,得x≥-1.
解3()x -2<2x -4,得x <2.
∴不等式组的解为-1≤x<2.
在数轴上表示如解图①所示.
(第8题解①)
(2)⎩⎪⎨⎪⎧x -1≤0,1+12
x >0. 【解】 解x -1≤0,得x≤1.
解1+12
x>0,得x >-2. ∴不等式组的解为-2<x≤1.
在数轴上表示如解图②所示.
,(第8题解②))
9.先化简,再求值:⎝ ⎛⎭⎪⎫1+3x -1x +1÷x x 2-1,其中x 是不等式组⎩⎪⎨⎪⎧1-x>-1-x 2,x -1>0
的整数解. 【解】 ⎩⎪⎨⎪⎧1-x>-1-x 2,①x -1>0.②
解①,得x<3.
解②,得x>1.
∴不等式组的解为1<x<3,
∴不等式组的整数解为x =2.
∵⎝
⎛⎭⎪⎫1+3x -1x +1÷x x 2-1 =4x x +1×(x +1)(x -1)x
=4(x -1), ∴当x =2时,原式=4×(2-1)=4.
B 组
10.(1)关于x 的不等式组⎩
⎪⎨⎪⎧3x -1>4(x -1),x <m 的解为x <3,则m 的取值范围是(D ) A . m =3 B . m >3
C . m <3
D . m ≥3
【解】 不等式组可化简为⎩
⎪⎨⎪⎧x <3,x <m . ∵不等式组的解为x <3,
∴m 的取值范围是m ≥3.
(2)若不等式组⎩⎪⎨⎪
⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是(A )
A . -1≤m <0
B . -1<m ≤0
C . -1≤m ≤0 D. -1<m <0
【解】 由题意得,不等式组的解为m -1<x <1,
又∵不等式组恰有两个整数解,
∴-2≤m -1<-1,解得-1≤m <0.
11.已知关于x ,y 的方程组⎩
⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3的解是正数,且x<y . (1)求a 的范围.
(2)化简:|8a +11|-|10a +1|.
【解】 (1)解方程组⎩
⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3,得 ⎩⎪⎨⎪⎧x =8a +113,y =10-2a 3.
由题意,得⎩⎪⎨⎪⎧8a +113
>0,①10-2a 3
>0,②8a +113<10-2a 3.③
解不等式①,得a>-118
. 解不等式②,得a<5.
解不等式③,得a<-110
. ∴不等式组的解是-118<a<-110
. (2)∵-118<a<-110
, ∴8a +11>0,10a +1<0.
∴|8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.
12.解不等式组:⎩⎪⎨⎪⎧-2x≤6,①x>-2,②3(x -1)<x +1.③
请结合题意,解答下列问题.
(1)解不等式①,得x ≥-3,依据是不等式的性质3.
(2)解不等式③,得x<2.
(3)把不等式①,②和③的解在数轴上表示出来.
(第12题)
(4)从图中可以找出三个不等式的解的公共部分,得不等式组的解为-2<x<2.
13.某玩具商计划生产A ,B 两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号的玩具能全部售出,这两种玩具的生产成本和售价如下表:
(1)该玩具商对这两种型号玩具有哪几种生产方案?
(2)求该玩具商所能获得的最大利润.
【解】 (1)设该厂生产A 型玩具x 个,则生产B 型玩具(100-x)个.
由题意,得22400≤200x+240(100-x)≤22500,
解得37.5≤x≤40.
∵x 为整数,∴x 的取值为38或39或40.
故有三种生产方案:
方案一,生产A 型玩具38个,B 型玩具62个;
方案二,生产A 型玩具39个,B 型玩具61个;
方案三:生产A 型玩具40个,B 型玩具60个.
(2)由题意知,生产B 型玩具越多获利越大,
故生产A 型玩具38个,B 型玩具62个才能获得最大利润,此时最大利润为38×(250-200)+62×(300-240)=5620(元).
答:该玩具商所能获得的最大利润为5620元.
数学乐园
14.已知a ,b 为实数,则解可以为-2<x <2的不等式组是(D )
A . ⎩⎪⎨⎪⎧ax >1,bx >1
B . ⎩⎪⎨⎪⎧ax >1,bx <1
C . ⎩⎪⎨⎪
⎧ax <1,bx >1 D . ⎩⎪⎨⎪
⎧ax <1,bx <1
导学号:91354021
【解】 从解出发,逆向分析.
-2<x <2,即⎩
⎪⎨⎪⎧x<2,x>-2. 观察选项知,所给不等式组的右边均为1,
∴x <2的两边都除以2,得12
x <1, x >-2的两边都除以-2,得-12
x <1, 即⎩
⎪⎨⎪⎧12x<1,-12x<1的解为-2<x <2. ∴当a =-12,b =12或a =12,b =-12
时,D 选项中的不等式组的解为-2<x <2.。