半导体工艺基础 第九章续 表面钝化概要
表面钝化工艺

表面钝化工艺surface passivation technology在半导体器件表面覆盖保护介质膜,以防止表面污染的工艺。
1959年,美国人M.M.阿塔拉研究了硅器件表面暴露在大气中的不稳定性问题,提出热生长二氧化硅(SiO2)膜具有良好的表面钝化效果。
此后,二氧化硅膜得到广泛应用。
60年代中期,人们发现二氧化硅膜不能完全阻挡有害杂质(如钠离子)向硅(Si)表面的扩散,严重影响MOS器件的稳定性。
以后研究出多种表面钝化膜生长工艺,其中以磷硅玻璃(PSG)、低温淀积二氧化硅、化学汽相淀积氮化硅(Si3N4)、三氧化二铝(Al2O3)和聚酰亚胺等最为适用。
直接同半导体接触的介质膜通常称为第一钝化层。
常用介质是热生长的二氧化硅膜。
在形成金属化层以前,在第一钝化层上再生长第二钝化层,主要由磷硅玻璃、低温淀积二氧化硅等构成,能吸收和阻挡钠离子向硅衬底扩散。
为使表面钝化保护作用更好并使金属化层不受机械擦伤,在金属化层上面再生长第三层钝化层。
这第三层介质膜可以是磷硅玻璃、低温淀积二氧化硅、化学气相淀积氮化硅、三氧化二铝或聚酰亚胺。
这种多层结构钝化,是现代微电子技术中广泛采用的方式。
对于钝化层的基本要求是:能长期阻止有害杂质对器件表面的沾污;热膨胀系数与硅衬底匹配;膜的生长温度低;钝化膜的组份和厚度均匀性好;针孔密度较低以及光刻后易于得到缓变的台阶。
磷硅玻璃及其生长工艺1964年,发现硅在热氧化过程中通入少量三氯氧磷蒸汽后生成的二氧化硅膜具有磷硅玻璃特性,能捕获钠离子和稳定钠离子的污染作用,大大改善了器件的稳定性。
适当增加磷的浓度还能降低膜的针孔密度,防止微裂,减少快态密度和平缓光刻台阶。
磷硅玻璃已成为重要的第二层钝化膜。
其不足之处是磷浓度较高时有极化和吸潮特性,浓度太低则不易达到流动和平缓台阶的作用。
另一种常用的生长磷硅玻璃的方法是化学汽相淀积法,即把磷烷PH3加到硅烷SiH4和氧的反应过程中,反应温度为400~500℃。
半导体工艺基础 第九章续 表面钝化

2、金属功函数、氧化硅中电荷对C-V特性的影响
§9.3 主要的钝化方法
一、集成电路钝化的一般步骤 典型集成电路制造过程中至少包含三个钝化工序步骤:
1 、衬底氧化层(特别是 MOS 集成电路中的栅氧化层)生 长过程中的钝化。
通常采用含氯氧化,或 HCl 处理氧化石英管。 2、衬底和金属化层之间或多层金属化层之间绝缘隔离氧化 层的钝化工艺。 通常采用磷硅玻璃钝化工艺,为降低回流温度,有时采用 硼磷硅玻璃钝化。 3、芯片的最终钝化层。 常采用SiO2+Si3N4(或Al2O3) 或磷硅玻璃。其中,SiO2 主要 用作为Si3N4 应力缓解层。
3、氧化物固定正电荷Qf 固定正电荷存在于SiO2中离Si-SiO2界面约20Å范围内。 (1)来源:由氧化过程中过剩硅(或氧空位)引起,其密度 与氧化温度、氧化气氛、冷却条件和退火处理有关。 ( 2 )影响:因 Qf 是正电荷,将使 P 沟 MOS 器件的阈值增加, N道MOS器件的阈值降低;减小沟道载流子迁移率,影响MOS 器件的跨导;增大双极晶体管的噪声和漏电,影响击穿特性。 (3)控制氧化物固定正电荷的方法 ( a)氧化物固定正电荷与晶向有关: (111)>(110)>(100), 因此MOS集成电路多采用(100)晶向。 (b)氧化温度愈高,氧扩散愈快,氧空位愈少;氧化速率 愈大时,氧空位愈多,固定电荷面密度愈大。采用高温干氧氧 化有助于降低Qf 。 (c)采用含氯氧化可降低Qf 。
0 ox Cox 式中, 是单位面积的 d
1 1 1 C Cox CD
氧化层电容,d是氧化层厚度, Cox与栅压V无关。CD 是单位 面积的半导体势垒电容。对于 确定的衬底掺杂浓度和氧化层 厚度,CD 是表面势s(也是栅 压V)的函数。因此总电容C也 是s 的函数。
半导体工艺基础之续表面钝化

半导体工艺基础之续表面钝化引言半导体材料的表面处理是半导体工艺中至关重要的一步。
表面钝化是一种常用的表面处理技术,它能够改善半导体材料的界面性能,提高器件的性能和可靠性。
本文将介绍半导体工艺中常用的续表面钝化技术及其原理。
1. 表面钝化的作用表面钝化是指在半导体材料表面形成一层薄膜,用以保护材料免受外界环境的侵蚀以及提高半导体器件的性能。
其作用主要包括以下几个方面: - 防止材料表面与环境中的杂质发生反应,保护材料免受氧化、腐蚀等侵蚀; - 调整表面能级,改善界面特性,减小材料表面缺陷的密度; - 提高器件的电性能,如增加载流子迁移率、减小串联电阻、降低接触电阻等。
2. 续表面钝化技术2.1 清洗技术在进行续表面钝化之前,首先需要对半导体材料表面进行清洗,去除表面的杂质和污染物,以确保续表面钝化膜的质量。
常用的清洗技术包括: - 碱性清洗:使用碱性溶液(如氢氧化钠溶液)进行清洗,去除表面有机污染物、无机盐等; - 酸性清洗:使用酸性溶液(如硝酸、盐酸等)进行清洗,去除金属离子、金属氧化物等; - 氢氟酸清洗:使用氢氟酸溶液进行清洗,去除半导体表面的氧化硅膜等。
2.2 氧化技术氧化是一种常用的续表面钝化技术,通过在半导体表面形成氧化物薄膜,起到保护和改善表面性能的作用。
常见的氧化技术包括: - 干氧化:在高温(800~1200℃)下,将半导体材料暴露在氧气或氧气与水蒸汽的混合气体中,使材料表面发生氧化反应,形成氧化硅膜(SiO2); - 湿氧化:在高温(600~1000℃)下,将半导体材料暴露在水蒸汽环境中,使材料表面发生氧化反应,形成氧化硅膜; - 氧离子注入:通过氧离子轰击的方式,在半导体表面形成氧化硅膜; - 二次氧化:在已有氧化硅膜的基础上,再进行一次氧化处理,使氧化膜更加均匀致密。
2.3 硅氮化技术硅氮化是另一种常用的续表面钝化技术,它通过在半导体表面形成硅氮化薄膜,起到保护和改善表面性能的作用。
功率半导体器件表面钝化技术综述

P I ,glass f r i t ,e tc . F in a lly ,m a te ria ls such
as
B C B ,, - SiC
*H ,, - C *H ,w h ic h was n e w ly in tro d u c e d
tio n p ro c e s s ,and th e ir a p p lic a tio n prosjDect are d is c u s s e d .
erties and functions
of
various p a s iv a tio n
m aterials em ployed
in
these p a s iv a tio n
th e ir ty p ic a l data in th e structu re s o f p ow er devices are g iv e n ,in c lu d in g S i〇2 ,P S G ,S i3 N 4 ,S iO xN y ,A l2 〇3 ,S IP O S ,
(1. F a c u lty o f In fo rm a tio n E n g in e e rin g ,B e ijin g U n iv e rs ity o f T e c h n o lo g y ,B e ijin g 100124,C h in a ;
2. G lo b a l E n e rg y In te rc o n n e c tio n R esearch I n s titu te ,B e ijin g 102209,C h in a )
环境氛围的干扰、刺激、污 染 、渗透和变化等几乎不作
自1959年阿拉塔提出热生长二氧化硅膜具有良
半导体器件的钝化技术

半导体器件的钝化技术09023320 子腾09023307 邹骞09023308 峥09023319 骜目录1绪论 (1)2正文主体 (1)2.1钝化工艺及其对半导体器件参数的影响 (1)2.2制备钝化层的介质材料及其优缺点 (3) (3)3结论 (5)4主要参考文献…………………………………………………………………………………1绪论对于高性能高可靠性集成电路来说,表面钝化已成为不可缺少的工艺措施之一。
近二十年来,信息技术日新月异蓬勃发展。
二十一世纪,世界将全面进入信息时代,以信息技术为代表的高新技术形成的新经济模式,将在二十一世纪世界经济中起决定作用。
信息科技的发展在很大程度上依赖于微电子半导体技术的发展水平,其中(超)大规模集成电路技术(ULSI)是半导体关键的技术。
一个国家占领了信息技术的制高点,它将在二十一世纪获得经济上的主导地位。
摩尔定律——即集成电路的集成度每18个月翻一番,成本大幅下降,揭示了信息技术的指数发展规律,正在朝着高集成化、高速化和高质量化的方向发展。
表面钝化膜的种类很多,如氧化硅、氧化铝、氮化硅、磷硅玻璃、硼硅玻璃、半绝缘多晶硅等等,不同的介质薄膜具有不同的性质和用途。
总的来说,氮化硅薄膜是半导体集成电路中最具应用前景的表面钝化材料,发展低温的热CVD工艺来沉积氮化硅表面钝化膜是集成电路发展的必然趋势,而开发新的能满足低温沉积氮化硅薄膜的新的硅源、氮源前驱体是解决这一难题的有效方法。
接下来,我们小组将会在正文对于什么是钝化工艺,以及钝化层的制备两方面进行具体介绍。
2正文主体2.1钝化工艺及其对半导体器件参数的影响钝化工艺就是在半导体器件表面覆盖保护介质膜,以防止表面污染的工艺。
下文将对各主流钝化工艺进行介绍,并讨论其对半导体器件的影响在集成电路中,在一块单晶基片上需要组装很多器件,这些器件之间需要互相布线连接,而且随着集成度的提高和特征尺寸的减小,布线密度必须增加,所以用于器件之间以及布线之间电气隔离的绝缘钝化膜是非常重要的。
第9章_半导体工艺化学基础

9.3 纯水制备 9.3.1 纯水在半导体生产中的应用 天然水中含有很多杂质,可分为五大类。(1)电解质 (2)有机物(3)颗粒物质(4)微生物 (5)溶解气体 若用自来水清洗硅片等半导体材料时,这些有害杂质将 吸附在硅片表面上,使硅片沾污,使电路钝化,甚至短路, 因此改变装置的电特性及最终产品的性质。 纯水分为纯水和超纯水。纯水又称去离子水,即去掉阴、 阳离子和有机物等杂质的水。
3.离子交换装置系统 工业上制备纯水一般采用复床-混合床装置系统
1-强酸型阳离子交换柱 2-强碱型阴离子交换柱 3-强酸、强碱型混合离子交换柱
离子交换法制高纯水流程图
4.离子交换树脂的预处理 1)脱水树脂的食盐水处理 2)阳树脂的预处理 3)阴树脂的预处理 5.离子交换树脂的再生和贮存
9.3.3 水纯度的测量 水的纯度越高,水中含杂质离子的浓度越小,水的电阻 率就愈大,因此,一般可采用电导仪测定水的电阻率来检 查水的纯度。电阻率越高,水质越好。 1.静态测量法 2.流动测量法
9.4.2 发光二极管的制备 发光二极管的制造过程大体可分为三个阶段:前段、 中段、后段。前段工序主要完成晶圆制造和外延生长,中 段工序主要包括研磨、蒸镀、光刻、切式。 前段工序的第一步是制造半导体晶圆。晶圆制造完成 后,进行外延生长。外延就是在衬底上淀积一层薄的单晶 层,新淀积的这层称为外延层。 外延片完成后,进行中游制造。 中游成品完成后进入后段工序,把LED管芯进行封装。
3.络合剂在化学清洗中的作用 1)酸性和碱性过氧化氢洗液在清洗中的作用 (1)碱性过氧化氢清洗液(通称Ⅰ号洗液) 它是由纯水、过氧化氢(30%)、浓氨水(27%)按一 定比例混合而成的。它们的体积比是:H2O : H2O2 : NH3· H2O=5 : 1 : 1到5 : 2 : 1。 Ⅰ号过氧化氢洗液可除去抛光后硅片上残存的蜡、松香 及光刻工艺硅片表面上的光刻胶等有机物,还可除去硅片表 面Au、Ag、Cu、Ni等金属及金属离子
芯片_二氧化硅_钝化的作用_解释说明以及概述

芯片二氧化硅钝化的作用解释说明以及概述1. 引言1.1 概述本文旨在探讨芯片在制造过程中使用二氧化硅进行钝化的作用及其解释说明。
钝化是一种常见的表面处理技术,它可以提高芯片的稳定性、可靠性和性能。
而二氧化硅作为一种优秀的钝化材料,在芯片制造中扮演着重要角色。
通过深入了解钝化过程及其对芯片性能的影响,我们可以更好地实施芯片钝化,并评估其效果。
1.2 文章结构本文分为五个主要部分。
首先,在引言部分,我们将介绍本文内容的概述、文章结构以及目的,以便读者明确文章主题和组织逻辑。
然后,在“芯片与二氧化硅”部分,我们将讨论芯片的定义和应用,以及二氧化硅在芯片制造中的角色。
接下来,在“钝化过程及作用”部分,我们将详细解释钝化的定义、原理以及钝化对芯片性能产生的影响,并对钝化方法和技术发展进行概述。
第四部分,“芯片钝化的实施与效果评估方法”,我们将简介肖特基二极管结构设计与制备流程,并探讨钝化剂选择与处理工艺优化研究示例。
最后,在“结论与展望”部分,我们将总结芯片钝化的作用,并对面临的挑战和未来发展方向进行探讨。
1.3 目的本文的目的是提供关于芯片钝化及其在芯片制造中应用的深入解读。
通过提供详细的说明和概述,我们希望读者能够全面了解钝化过程以及钝化对芯片性能可能产生的影响。
同时,我们还将介绍一些实施芯片钝化和评估效果的方法,以帮助读者更好地理解和应用相关技术。
最后,我们还将探讨当前芯片钝化领域所面临的挑战,并展望其未来发展方向。
以上就是“1. 引言”部分内容的详细清晰描述,请根据需要进行适当修改和调整。
2. 芯片与二氧化硅2.1 芯片的定义和应用芯片是一种集成电路,它将多个电子元件(如晶体管、电阻器、电容器等)集成在一块小型的半导体材料上。
芯片通常由二氧化硅基底加上金属导线制成,具有微小尺寸和大量功能。
芯片广泛应用于计算机、手机、电视以及其他各种电子设备中。
2.2 二氧化硅在芯片制造中的角色二氧化硅在芯片制造过程中扮演着重要角色。
半导体器件的钝化技术

半导体器件的钝化技术09023320 李子腾09023307 邹骞09023308 刘峥09023319 沈骜目录1绪论 (1)2正文主体 (1)2.1钝化工艺及其对半导体器件参数的影响 (1)2.1.1钝化工艺的产生与发展 (2)2.1.2钝化工艺的分类 (2)2.1.3钝化工艺对器件的影响 (2)2.1.3.1低温淀积二氧化硅工艺 (2)2.1.3.2磷硅玻璃及其生长工艺 (2)2.1.3.3化学汽相淀积氮化硅生长工艺 (2)2.2制备钝化层的介质材料及其优缺点 (3)2.2.1SiO2钝化工艺 (3)2.2.2磷硅玻璃钝化工艺 (3)2.2.3Si3N4钝化工艺 (4)2.2.4Al2O3钝化工艺 (5)3结论 (5)4主要参考文献…………………………………………………………………………………1绪论对于高性能高可靠性集成电路来说,表面钝化已成为不可缺少的工艺措施之一。
近二十年来,信息技术日新月异蓬勃发展。
二十一世纪,世界将全面进入信息时代,以信息技术为代表的高新技术形成的新经济模式,将在二十一世纪世界经济中起决定作用。
信息科技的发展在很大程度上依赖于微电子半导体技术的发展水平,其中(超)大规模集成电路技术(ULSI)是半导体关键的技术。
一个国家占领了信息技术的制高点,它将在二十一世纪获得经济上的主导地位。
摩尔定律——即集成电路的集成度每18个月翻一番,成本大幅下降,揭示了信息技术的指数发展规律,正在朝着高集成化、高速化和高质量化的方向发展。
表面钝化膜的种类很多,如氧化硅、氧化铝、氮化硅、磷硅玻璃、硼硅玻璃、半绝缘多晶硅等等,不同的介质薄膜具有不同的性质和用途。
总的来说,氮化硅薄膜是半导体集成电路中最具应用前景的表面钝化材料,发展低温的热CVD工艺来沉积氮化硅表面钝化膜是集成电路发展的必然趋势,而开发新的能满足低温沉积氮化硅薄膜的新的硅源、氮源前驱体是解决这一难题的有效方法。
接下来,我们小组将会在正文对于什么是钝化工艺,以及钝化层的制备两方面进行具体介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南科技大学理学院 2013.4. 15
§9.1 概述
一、钝化膜及介质膜的重要性和作用 1、改善半导体器件和集成电路参数
2、增强器件的稳定性和可靠性
二次钝化可强化器件的密封性,屏蔽外界杂质、离子电荷、 水汽等对器件的有害影响。 3、提高器件的封装成品率 钝化层为划片、装架、键合等后道工艺处理提供表面的机械 保护。 4、其它作用 钝化膜及介质膜还可兼作表面及多层布线的绝缘层。
2、对材料物理性质的要求 (1)低的内应力。高的张应力会使薄膜产生裂纹,高的压 应力使硅衬底翘曲变形。 (2)高度的结构完整性。针孔缺陷或小丘生长会有造成漏 电、短路、断路、给光刻造成困难等技术问题。 (3)良好的粘附性。对Si、金属等均有良好的粘附性。 3、对材料工艺化学性质的要求 (1)有良好的淀积性质,有均匀的膜厚和台阶覆盖性能, 适于批量生产。
(2)便于图形制作。能与光刻,特别是细线条光刻相容; 应有良好的腐蚀特性,包括能进行各向异性腐蚀,与衬底有良 好的选择性。 (3)可靠性好。包括可控的化学组分,高的纯度,良好的 抗湿性,不对金属产生腐蚀等。
三、钝化膜及介质膜的种类 钝化膜及介质膜可分为无机玻璃及有机高分子两大类。
无 机 玻 璃 氧化物 SiO2 , Al2O3 , TiO2 , ZrO2 , Fe2O3 , SixOy (SIPOS)
(1)来源:由氧化过程中的 Si/SiO2界面处的结构缺陷(如 图中的悬挂键、三价键)、界面附近氧化层中荷电离子的库仑 势、Si/SiO2界面附近半导体中的杂质(如Cu、Fe等)。 (2)影响:界面陷阱电荷影响 MOS器件的阈值电压、减小 MOS 器件沟道的载流子迁移率,影响 MOS 器件的跨导;增大 双极晶体管的结噪声和漏电,影响击穿特性。 (3)控制界面陷阱电荷的方法
二、对钝化膜及介质膜性质的一般要求 1、电气性能要求 (1)绝缘性能好。介电强度应大于5MV/cm; (2)介电常数小。除了作 MOS电容等电容介质外,介电常 数愈小,容性负载则愈小。
( 3)能渗透氢。器件制作过程中,硅表面易产生界面态, 经H2 退火处理可消除。
( 4)离子可控。在做栅介质时,希望能对正电荷或负电荷 进行有效控制,以便制作耗尽型或增强型器件。 (5)良好的抗辐射。防止或尽量减小辐射后氧化物电荷或 表面能态的产生,提高器件的稳定性和抗干扰能力。
硅酸盐
氮化物
PSG , BSG , BPSG
Si3N物
有机 高分 子 合成树脂
a-Si:H
聚酰亚胺类,聚硅氧烷类
合成橡胶
硅酮橡胶
§9.2 Si-SiO2系统
一、SiO2膜在半导体器件中的主要用途 1、SiO2膜用作选择扩散掩膜
利用SiO2对磷、硼、砷等杂质较强的掩蔽能力,通过在硅 上的二氧化硅层窗口区向硅中扩散杂质,可形成PN结。
3、氧化物固定正电荷Qf 固定正电荷存在于SiO2中离Si-SiO2界面约20Å范围内。 (1)来源:由氧化过程中过剩硅(或氧空位)引起,其密度 与氧化温度、氧化气氛、冷却条件和退火处理有关。 ( 2 )影响:因 Qf 是正电荷,将使 P 沟 MOS 器件的阈值增加, N道MOS器件的阈值降低;减小沟道载流子迁移率,影响MOS 器件的跨导;增大双极晶体管的噪声和漏电,影响击穿特性。 (3)控制氧化物固定正电荷的方法 ( a)氧化物固定正电荷与晶向有关: (111)>(110)>(100), 因此MOS集成电路多采用(100)晶向。 (b)氧化温度愈高,氧扩散愈快,氧空位愈少;氧化速率 愈大时,氧空位愈多,固定电荷面密度愈大。采用高温干氧氧 化有助于降低Qf 。 (c)采用含氯氧化可降低Qf 。
( 1)来源:任何工艺中(氧化的石英炉管、蒸发电极等) 或材料、试剂和气氛均可引入可动离子的沾污。 ( 2 )影响:可动正离子使硅表面趋于 N型,导致 MOS 器件 的阈值电压不稳定;导致 NPN晶体管漏电流增大,电流放大系 数减小。 (3)控制可动电荷的方法
(a)采用高洁净的工艺,采用高纯去离子水,MOS级的 试剂,超纯气体,高纯石英系统和器皿,钽丝蒸发和自动化操 作等。 ( b)磷处理,形成 PSG-SiO2 以吸除、钝化 SiO2 中的 Na+。
2、SiO2膜用作器件表面保护层和钝化层 (1)热生长SiO2电阻率在1015.cm以上,介电强度不低于 5106 V/cm,具有良好的绝缘性能,作表面一次钝化; ( 2 )芯片金属布线完成后,用 CVD-SiO2 作器件的二次钝 化,其工艺温度不能超过布线金属与硅的合金温度。 3、作器件中的绝缘介质(隔离、绝缘栅、多层布线绝缘、 电容介质等) 4、离子注入中用作掩蔽层及缓冲介质层
二、Si-SiO2 系统中的电荷 1、可动离子电荷Qm 常规生长的热氧化SiO2中一般存在着1012~1014cm-2的可动正 离子,由碱金属离子及氢离子所引起,其中以Na+的影响最大。 Na+来源丰富且SiO2几乎不防Na+,Na+在SiO2的扩散系数和迁移 率都很大。在氧化膜生长过程中,Na+倾向于在SiO2表面附近积 累,在一定温度和偏压下,可在SiO2层中移动,对器件的稳定 性影响较大。
(a)界面陷阱密度与晶向有关: (111)>(110)>(100),因此 MOS集成电路多采用(100)晶向(有较高的载流子表面迁移率); 而双极型集成电路多选用(111)晶向。 ( b) 低 温 、 惰 性 气 体 退 火 : 纯 H2 或 N2-H2 气 体 在 400~500℃退火处理,可使界面陷阱电荷降低 2~3数量级。原因 是氢在退火中与悬挂键结合,从而减少界面态。 (c)采用含氯氧化,可将界面陷阱电荷密度有效控制在 1010/cm2数量级。
(c)采用掺氯氧化,以减小Na+ 沾污,并可起钝化Na+ 的 作用。
2、Si-SiO2 界面陷阱电荷Qit(界面态)
指存在于Si-SiO2界面,能带处于硅禁带中,可以与价带或 导带交换电荷的那些陷阱能级或能量状态。靠近禁带中心的界 面态可作为复合中心或产生中心,靠近价带或导带的可作为陷 阱。界面陷阱电荷可以带正电或负电,也可以呈中性。