江苏省扬州市武坚中学2013-2014年度苏科版七年级上期末考试数学试卷含答案

合集下载

江苏省扬州市武坚中学2013-2014学年七年级数学上学期期中试题(word版含答案)

江苏省扬州市武坚中学2013-2014学年七年级数学上学期期中试题(word版含答案)

⑴ 1+8=? 1+8+16=?⑵⑶ 1+8+16+24=? 第8题图……武坚中学七年级数学期中试卷(考试时间:120分钟 满分:150分) 亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。

请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 一、选择题:(本大题共8小题,每小题3分,共24分)1、在下列各数(3)-+、22-、π-、21()3-、4--中,负有理数有( )A .2个B .3 个C .4 个D .5个2、估计扬州市区2013年春节的最高气温为3℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .11℃3、28cm 接近于( )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度4、已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则此多项式是 ( )A .-6x 2-5x -1B .-5x -1C .-6x 2+5x +1 D .-5x +1 5、据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为 ( )A .8×106B .8.03×107C .8.03×106D .803×1046、下列说法中 ①-a 一定是负数;②|-a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是0、1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( ) A .0>+b a B .0>ab C .0<+b a D .b a <8、观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n - B.2(21)n +C .2(2)n +D .2n二、填空题(本大题共10小题,每题3分,共30分) 9、34-的倒数是 .10、单项式25xy -的次数是 .11、下列方程中一元一次方程是 .(填序号)(1)2(1)x x x =-- 2213(2)122x x x -+=+ 13(3)354y x =+ 11(4)257x x +--= 1(5)32x x -=12、在数轴上与表示数-2的点距离3个单位长度的点表示的数是 .13、如图所示两个形状、大小相同的长方形的一部分重叠在一起,重叠部分是边长为2的正方形,则阴影部分的面积是 (用含a 、b 的代数式表示).14、关于x 的方程1(2)21a a x -+-=是一元一次方程,则a= . 15、若m 、n 满足2)3(2++-n m =0,则.__________=m n16、规定符号⊗的意义为:1+--=⊗b a ab b a ,那么32⊗-= . 17、已知:230x y -+=,则代数式2(2)241y x x y --+-的值为 .18、如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输三、解答题:(共9小题,满分96分) 19、计算或化简(每小题5分,共20分)(1))16()7(1723-+--- (2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦(3) a a a a +--2242 (4) )3(4)3(2222b a ab ab b a +---20、解方程(每小题5分,共10分)(1)92(4)3x x --+= (2)42152x x x +--=+ 21、(每小题5分,共10分)(1)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式mba cd m ++-2的值; (2)已知12m xy --与323n x y +是同类项,求22(34)(23)m m n m n nm n -+-+-的值.(第18题)22、(本题8分)出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午行车里程如下(单位:千米)+11,-2,+15,-12,+10,+5,-15,+18,(1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米? (2)若每千米的营运额为7元,这天下午的营业额为多少?23、(本题8分)某地区的手机收费标准有两种方式,用户可任选其一: A .月租费20元,0.25元/分; B .月租费25元, 0.20元/分.(1) 某用户某月打手机x 分钟, 则A 方式应交付费用 元; B 方式应交付费用: 元; (用含x 的代数式表示) (2) 某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算? 24、(本题8分)如果代数式()()45321222-+--+-+y x bx y ax x 的值与字母x 所取的值无关,试求代数式3232112334a b a b ⎛⎫---⎪⎝⎭的值. 25、(本题10分)已知关于x 的方程:2(1)1x x -+=与3()1x m m +=-有相同的解,求关于y 的方程3332my m y--=的解. 26、(本题满分10分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。

苏科版七年级上学期数学《期末考试题》(含答案)

苏科版七年级上学期数学《期末考试题》(含答案)

苏科版七年级上学期期末考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上相应的选项标号涂黑.1. ﹣3的相反数是()A.1 3 -B.13C. 3-D. 32.有理数a b、在数轴上的对应点的位置如图所示,则化简a b+的结果正确的是()A. +a b B. -a b C. a b-+ D. a b--3.已知32x y-与23ny x是同类项,则n的值为()A. 2B. 3C. 5D. 2或34.下列计算正确的是()A. 43a a-= B. 223n n n+= C. 23m m m-=- D. 32a a a-+=-5.下列方程为一元一次方程的是()A. 30x--= B. 232x x+=+ C.112x-= D. 232y x-=6.下列说法错误的是()A. 两点之间线段最短B. 对顶角相等C. 同角的补角相等D. 过一点有且只有一条直线与已知直线平行7.长方形纸板绕它的一条边旋转1周形成的几何体为()A. 圆柱B. 棱柱C. 圆锥D. 球8.已知点,,A B C为平面内三点,给出下列条件:AC BC=①;2;AB BC=②12AC BC AB==③.选择其中一个条件就能得到点C是线段AB中点的是()A. ①B. ③C. ①或③D. ①或②或③9.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 13x +4=14x +1D. 13x ﹣4=14x ﹣1 10.甲、乙两店分别购进一批无线耳机, 每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A. 56元B. 60元C. 72元D. 80元二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为__________.12.多项式22x y xy -的次数是__________.13.试写出一个解为x=1的一元一次方程:_____.14.已知α∠与β∠互为余角,3824'α∠=,则β∠=__________.15.若代数式22x x -的值为5,则代数式2363x x --的值为__________.16.如图,已知,OC OA OD OB ⊥⊥.若148AOB ∠=︒,则COD ∠= __________.17.如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M N 、(小孔大小忽略不计). 将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN =_______cm .18.长方体纸盒的长、宽、高分别是10,8,5cm cm cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是_______cm . 三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:()1()1123222⨯+---; ()()()2020221293--+÷-.20.解方程:()()1413x x +=-;()23123x x +-= 21.先化简,再求值:()()22222214a b ab a b ab ⎡⎤⎣--⎦--.其中1,42a b ==-. 22.如图,P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;过点P 画OA 的垂线,垂足为D ;(2)点C 到直线OB 的距离是哪条垂线段的长度?(3)请直接写出线段PC PD OC 、、的大小关系.(用“<”号连接)23.由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相间,那么这样的小正方体最多还可以添加个.24.我们规定,如果两个角的差是一个直角,那么这两个角互为足角. 其中的一个角叫做另一个角的足角. (1)如图,直线经过点O,OE平分,COB OF OE∠⊥.请直接写出图中BOF∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数.25.小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元:(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?26.如图1,在33⨯九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若210123456--、、、、、、、、,这9个数也能构成九宫归位图, 则此时每行、每列及每条对角线的3个数字之和都为 ; (2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a 的代数式分别表示这6个数)(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.答案与解析第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的选项标号涂黑.1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.有理数a b 、在数轴上的对应点的位置如图所示,则化简a b +的结果正确的是( )A. +a bB. -a bC. a b -+D. a b --【答案】D【解析】【分析】先根据各点在数轴上位置判断+a b 的符号,再去绝对值符号,即可得到答案.【详解】解:根据题意,可知:0a b +<,∴()a b a b a b +=-+=--;故选:D.【点睛】本题考查了绝对值和数轴,是基础题,判断出a+b 的符号是解题的关键.3.已知32x y -与23n y x 是同类项,则n 的值为( )A. 2B. 3C. 5D. 2或3【答案】B【解析】【分析】根据同类项定义,即可得到n 的值.【详解】解:∵32x y -与23n y x 是同类项,∴3n =;故选:B.【点睛】本题考查了同类项的定义,解题的关键是熟记同类项的定义.4.下列计算正确的是( )A. 43a a -=B. 223n n n +=C. 23m m m -=-D. 32a a a -+=- 【答案】C【解析】【分析】根据合并同类项的运算法则,分别进行合并计算,即可得到答案.【详解】解:A 、43a a a -=,故A 错误;B 、23n n n +=,故B 错误;C 、23m m m -=-,故C 正确;D 、32a a a -+=,故D 错误;故选:C.【点睛】本题考查了合并同类项,解题的关键是熟练掌握合并同类项的运算法则.5.下列方程为一元一次方程的是( )A. 30x --=B. 232x x +=+C. 112x -=D. 232y x -=【答案】A【解析】【分析】根据一元一次方程的定义,即可得到答案.【详解】解:30x --=是一元一次方程,故A 正确; 232x x +=+,112x-=,232y x -=都不是一元一次方程,故BCD 错误; 故选:A. 【点睛】本题考查了一元一次方程的定义,解题的关键是熟记一元一次方程的定义.6.下列说法错误的是( )A. 两点之间线段最短B. 对顶角相等C. 同角的补角相等D. 过一点有且只有一条直线与已知直线平行 【答案】D【解析】【分析】根据线段的性质、对顶角性质、补角定理、平行公理,分别进行判断,即可得到答案.【详解】解:两点之间线段最短,故A 正确;对顶角相等,故B 正确;同角的补角相等,故C 正确;过直线外一点有且只有一条直线与已知直线平行,故D 错误;故选:D.【点睛】本题考查了平行公理、补角定理、对顶角性质、线段的性质,解题的关键是熟练掌握所学性质定理进行解题.7.长方形纸板绕它的一条边旋转1周形成的几何体为( )A. 圆柱B. 棱柱C. 圆锥D. 球 【答案】A【解析】【分析】根据长方形纸板绕它的一条边旋转1周可以形成圆柱,即可得到答案.【详解】解:长方形纸板绕它的一条边旋转1周可以形成圆柱,故选:A.【点睛】此题主要考查了点线面体,关键是掌握点动成线,线动成面,面动成体,认识常见的立体图形. 8.已知点,,A B C 为平面内三点,给出下列条件:AC BC =①;2;AB BC =②12AC BC AB ==③.选择其中一个条件就能得到点C 是线段AB 中点的是( )A. ①B. ③C. ①或③D. ①或②或③ 【答案】B【解析】【分析】根据线段中点的定义,分别进行判断,即可得到答案.【详解】解:AC BC =,不能说明点C 是AB 中点,故①错误;2AB BC =,不能说明点C 是AB 中点,故②错误;12AC BC AB ==,能说明点C 是AB 中点,故③正确; 故选:B.【点睛】本题考查了线段的定义,解题的关键是熟练掌握线段中点的定义.9.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 13x +4=14x +1D. 13x ﹣4=14x ﹣1 【答案】A【解析】【分析】设井深为x 尺,则根据①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,即可列出方程.【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),故3(x +4)=4(x +1).故选:A .【点睛】本题主要考查了列一元一次刚才,解题的关键在弄清题意,找到等量关系并用未知数表示. 10.甲、乙两店分别购进一批无线耳机, 每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A. 56元B. 60元C. 72元D. 80元【答案】B【解析】【分析】设乙店的耳机进价为x 元,标价为y 元,则根据题意列出二元一次方程组,解方程组,求出x 的值,即可得到答案.【详解】解:根据题意,设乙店的耳机进价为x 元,标价为y 元,则甲店的耳机进价为:(110%)0.9x x -=元;标价为:( 5.4)y -元;∵甲乙两店的利润率分别为20%和17%, ∴ 5.40.920%0.917%y x x y x x --⎧=⎪⎪⎨-⎪=⎪⎩, 解得:6070.2x y =⎧⎨=⎩, ∴乙店每副耳机的进价为60元;故选:B.【点睛】本题考查了二元一次方程组的应用,解题的关键是熟读题目,找出题目中的关系,列出方程组,从而解方程组.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.今年无锡马拉松比赛有33200名选手参加,这个数字用科学记数法表示为__________.【答案】43.3210⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:433200 3.3210=⨯;故答案为:43.3210⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.多项式22x y xy -的次数是__________.【答案】3【解析】【分析】根据多项式的次数的定义,即可得到答案.【详解】解:多项式22x y xy -的次数是3,故答案为:3.【点睛】本题考查了多项式的次数的定义,解题的关键是熟记多项式次数的定义.13.试写出一个解为x=1的一元一次方程:_____.【答案】x ﹣1=0【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a ,b 是常数且a≠0);根据题意,写一个符合条件的方程即可.【详解】∵x=1,∴根据一元一次方程的基本形式ax+b=0可列方程:x ﹣1=0.(答案不唯一)14.已知α∠与β∠互为余角,3824'α∠=,则β∠=__________.【答案】 5136'(或51.6︒).【解析】【分析】根据余角的性质,即可得到答案.【详解】解:∵α∠与β∠互为余角,∴90αβ∠+∠=︒,∵3824'α∠=︒,∴903824'5136'51.6β∠=︒-︒=︒=︒;故答案为: 5136'(或51.6︒).【点睛】本退考查了角度的四则运算,以及角度制,解题的关键是掌握角度四则运算的运算法则. 15.若代数式22x x -的值为5,则代数式2363x x --的值为__________.【答案】12【解析】【分析】由题意,得到225x x -=,然后化简代数式,利用整体代入法,即可得到答案.【详解】解:∵225x x -=,∴2363x x --=23(2)3x x --=353⨯-=12;故答案为:12.【点睛】本题考查了求代数式的值,解题的关键是熟练运用整体代入法进行解题.16.如图,已知,OC OA OD OB ⊥⊥.若148AOB ∠=︒,则COD ∠= __________.【答案】32︒【解析】【分析】根据题意,由180AOB COD AOC BOD ∠+∠=∠+∠=︒,即可求出COD ∠的度数.【详解】解:∵,OC OA OD OB ⊥⊥.,∴90AOC BOD ∠=∠=︒,∵9090180AOB COD AOC BOD ∠+∠=∠+∠=︒+︒=︒,∴180********COD AOB ∠=︒-∠=︒-︒=︒;故答案为:32︒.【点睛】本题考查了几何图形中角的运算,以及垂直的定义,解题的关键是掌握角的运算法则,正确得到180AOB COD AOC BOD ∠+∠=∠+∠=︒.17.如图,两根木条的长度分别为6cm 和10cm ,在它们的中点处各打一个小孔M N 、(小孔大小忽略不计). 将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN =_______cm .【答案】8或2【解析】【分析】根据题意,可分为两种情况进行分析,列式分别求出两种情况的长度,即可得到答案.【详解】解:可分为两种情况:设AB=6cm ,CD=10cm ,①如下图:M、N在重合点的同一侧时;∴MN=CN-AM=1111106532 2222CD AB-=⨯-⨯=-=cm;②如下图:M、N在重合点的异侧时;∴MN=CN+AM=1111106538 2222CD AB+=⨯+⨯=+=cm;∴MN的距离为2cm或8cm;故答案为:8或2.【点睛】本题考查了线段的和差计算,以及线段中点,两点间的距离,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.18.长方体纸盒的长、宽、高分别是10,8,5cm cm cm,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是_______cm.【答案】92【解析】【分析】分析长方体展开图所得的平面图形得到周长最小的情况,画出图形,然后计算,即可得到答案.【详解】解:根据题意,长方体展开图所得的平面图形周长最小的情况:如下图,∴最小周长为:5884102=92⨯+⨯+⨯cm;故答案为:92.【点睛】本题考查了几何体的展开图,熟练掌握几何体的几种展开图是解题的关键.三、解答题(本大题共8小题,共64分.请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:()1()1123222⨯+---; ()()()2020221293--+÷-.【答案】(1)31;(2)-6.【解析】【分析】(1)先去括号,计算绝对值,然后计算乘法,最后计算加减,即可得到答案;(2)先计算乘方,然后计算除法,最后计算加减,即可得到答案.【详解】解:(1)原式6322=++31=;()2原式143=--6=-.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.20.解方程:()()1413x x +=-;()23123x x +-= 【答案】(1)15x =-;(2)12x =. 【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后去分母,移项合并,系数化为1,即可得到答案.【详解】解:(1)443x x +=-,∴51x =-, ∴15x =-; (2)3123x x +-=, ∴()3236x x -+=,∴3266x x --=,∴12x =.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法和步骤.21.先化简,再求值:()()22222214a b ab a b ab ⎡⎤⎣--⎦--.其中1,42a b ==-. 【答案】232a b -,-5.【解析】【分析】先对原式进行化简,得到最简代数式,再把a 、b 的值代入计算,即可得到答案.【详解】解:原式22222[221]4a b ab a b ab =---+ 22224424a b ab a b ab =---+.232a b =-;当1,42a b ==-时, 原式213()(4)23252=⨯⨯--=--=-.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握整式的加减混合运算的运算法则.22.如图,P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;过点P 画OA 的垂线,垂足为D ;(2)点C 到直线OB 的距离是哪条垂线段的长度?(3)请直接写出线段PC PD OC 、、的大小关系.(用“<”号连接)【答案】(1)详见解析; (2)PC ; (3)PD PC OC <<.【解析】【分析】(1)根据题意,画出图像即可;(2)由图可知,CP ⊥OB ,即可得到答案;(3)根据两点之间垂线段最短,即可得到答案.【详解】解:(1)如图,直线PC、PD为所求;(2)由图可知,CP⊥OB,∴点C到直线OB的距离是垂线段PC的长度;<<.(3)由图可知,PD PC OC【点睛】本题考查了基本作图——作垂线,以及垂线段最短,解题的关键是正确做出垂线,掌握垂线段最短的基本事实.23.由10个完全相同的小正方体搭成的物体如图所示.(1)请在下面的方格图中画出该物体的主视图和左视图;(2)如果再添加若干个相同的小正方体之后,所得到的新物体的主视图和左视图跟原来的相间,那么这样的小正方体最多还可以添加个.【答案】(1)详见解析;(2)4.【解析】【分析】(1)根据几何体的小正方体的个数,即可画出几何体的主视图和左视图;(2)底层第二列第一行加1个,第三列第一、二分别加1个;第二层第三列第二行加1个,共4共4个. 【详解】解:(1)如图所示,(2)如果在这个几何体上再添加一些相同的小正方体,并保持其主视图和左视图不变,那么最多可以再添加4个小正方体(如图中A、B、C、D):∴最多可以再添加4个小正方体.故答案为:4.【点睛】本题考查几何体的三视图画法.熟练掌握几何体三视图的画法,注意要仔细统计,不要重复统计,也不要漏统计.24.我们规定,如果两个角的差是一个直角,那么这两个角互为足角. 其中的一个角叫做另一个角的足角. (1)如图,直线经过点O ,OE 平分,COB OF OE ∠⊥.请直接写出图中BOF ∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数. 【答案】(1)COE BOE ∠∠、;(2)这个角的度数为18或126︒.【解析】【分析】(1)根据题意,得到90FOE ∠=︒,BOE COE ∠=∠,由足角的定义,即可得到答案;(2)设这个角为x ︒,然后分090x <<和90180x <<两种情况进行讨论,列式计算,即可得到答案.【详解】解:(1)∵OE 平分,COB OF OE ∠⊥,∴BOE COE ∠=∠,90FOE ∠=︒,∴90BOF BOE BOF COE FOE ∠-∠=∠-∠=∠=︒,∴BOF ∠的足角为:COE BOE ∠∠、.(2)设这个角的度数为x ︒,当090x <<时,()2901803x x +=- 解得:18x =.当90180x <<时,()2901803x x -=- 解得:126x =.∴这个角的度数为:18︒或126︒.【点睛】本题考查了角平分线的性质,解一元一次方程,以及新定义,解题的关键是熟练运用所学知识进行解题.25.小明和父母打算去某火锅店吃火锅,该店在网上出售“25元抵50元的全场通用代金券”(即面值50元的代金券实付25元就能获得),店家规定代金券等同现金使用,一次消费最多可用3张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为145元,那么用代金券方式买单,他们最多可以优惠多少元:(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部6折.小明一家点了一份50元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付15元.问小明一家实际付了多少元?【答案】(1)最多优惠50元;(2)小明一家实际付了185元.【解析】【分析】(1)根据145150<,即最多购买并使用两张代金券,即可得到答案;(2)设小明一家应付总金额为x 元,则对应付金额进行分析,然后列式进行计算,即可得到答案.【详解】解:(1)145150.<∴最多购买并使用两张代金券,∴最多优惠50元;(2)设小明一家应付总金额为x 元,当50100x ≤<时,由题意得,()2550500.615x x -+-⨯⎤⎦=⎡⎣.解得:150x =(舍去).当100150x ≤<时,由题意得,()22550500.615x x -⨯-+⎡⎤⎣⎦-⨯=.解得: 212.5x =(舍去).当150x ≥时,由题意得,()32550500.615x x -⨯-+⎡⎤⎣⎦-⨯=.解得: 275x =.∴27532515185-⨯-=.答:小明一家实际付了185元.【点睛】本题考查了一元一次方程应用,解题的关键是掌握题意,找出等量关系,从而列出方程,解方程即可.26.如图1,在33⨯的九个格子中填入9个数字, 当每行、每列及每条对角线的3个数字之和都相等时,我们把这张图称之为九宫归位图:(1)若210123456--、、、、、、、、,这9个数也能构成九宫归位图, 则此时每行、每列及每条对角线的3个数字之和都为 ; (2)如图2.在这张九宫归位图中,只填入了3个数,请将剩余的6个数直接填入表2中;(用含a 的代数式分别表示这6个数)(3)如图3,在这张九宫归位图中,只填入了2个数,请你求出右上角“?”所表示的数值.【答案】(1)6;(2)详见解析;(3)1.【解析】【分析】(1)根据题意可知,数字2肯定在中间位置,其余两个格子的数之和为4,即可得到答案;(2)由图可知,设7a +是9个数中最大的数,根据规律,即可得到答案;(3)设右上角“?”所表示的数值为x ,设空格中相应位置的数为m n p q 、、、,然后根据每行、每列、每对角线的和相等,即可求出答案.【详解】解:(1)210123456--、、、、、、、、,这9个数中,∴2在中间,其余两个格子的数之和为4,∴此时每行、每列及每条对角线的3个数字之和都为:246+=;故答案为:6.(2)设7a +是9个数中最大的数,则中间的数为3a +,精品数学期末测试 ∴其余各数如图:(3)如图,设右上角“?”所表示的数值为x ,设空格中相应位置的数为m n p q 、、、,由题意可得:2m n x x p q m a p n g a ++=++=-+=+++,可得:2m n x x p q m a p n q a +++++=-+++++,∴22x =,解得:1x =.∴右上角“?”所表示的数值为1.【点睛】本题考查了有理数的加法,以及九宫归位图的定义,解题的关键是根据九宫归位图的规律进行列式计算.。

七年级上册扬州数学期末试卷测试卷(解析版)

七年级上册扬州数学期末试卷测试卷(解析版)

七年级上册扬州数学期末试卷测试卷(解析版)一、选择题1.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -=2.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点3.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .4.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 5.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( ) A .赚了 B .亏了 C .不赚也不亏 D .无法确定6.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100B .140C .90D .1207.-5的相反数是( ) A .-5B .±5C .15D .58.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .272+x =(196-x ) B .(272-x )= (196-x ) C .(272+x )= (196-x ) D .×272+x = (196-x )9.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角10.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2 B .-1 C .1D .211.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2612.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b =13.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线14.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .115.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥二、填空题16.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)17.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度.18.比较大小:π1-+ _________3-(填“<”或“=”或“>”).19.如图,OC 是∠AOB 的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.20.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,则∠BOD=________.21.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .22.比较大小:227-__________3-. 23.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b =______.(用含字母a 的代数式表示)24.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.25.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1? 27.先化简,在求值:221523243m mn mn m ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2m =-,12n =28.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.29.解下列方程 (1)235x +=;(2) 913.7-(12)-4.37x -=. 30.解方程; (1)3(x +1)﹣6=0 (2)1132x x +-= 31.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.32.如图,已知所有小正方形的边长都为1,点A 、B 、C 都在格点上,借助网格完成下列各题.(1)过点A 画直线BC 的垂线,并标出垂足D ; (2)线段______的长度是点C 到直线AD 的距离;(3)过点C 画直线AB 的平行线交于格点E ,求出四边形ABEC 的面积.33.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 35.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.36.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.41.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.42.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同类项与合并同类项的知识进行选择排除即可. 【详解】A .3a 与2b 不是同类项不能合并,所以A 错误; B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误; 故答案为C. 【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键.2.D解析:D 【解析】 【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可. 【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A 、B 、C 三点在一条直线上时,当AC=BC 时,点 C 是线段 AB 的中点;故错误; 故选:D . 【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【解析】 【分析】 【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .4.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.5.B解析:B 【解析】 【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出. 【详解】设第一件衣服的进价为x , 依题意得:x (1+25%)=90, 解得:x =72,所以赚了解90−72=18元;设第二件衣服的进价为y ,依题意得:y (1−25%)=150, 解得:y =120,所以赔了120−90=30元, 所以两件衣服一共赔了12元. 故选:B . 【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.6.C解析:C 【解析】 【分析】设该商品进价为x元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】设该商品进价为x元,由题意得(x+70)×75%-x=30,解得:x=90,答:该商品进价为90元.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.7.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.8.C解析:C【解析】试题解析:解:设应该从乙队调x人到甲队,196﹣x=(272+x),故选C.点睛:考查了一元一次方程的应用,得到调动后的两队的人数的等量关系是解决本题的关键.9.C解析:C【解析】【分析】根据余角、补角、对顶角的定义进行判断即可.【详解】解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、补角是两个角的关系,故B错误;C、如果两个角的和是一个直角,那么这两个角互为余角;故C正确;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选:C.【点睛】此题考查对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.10.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.11.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D. 【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 12.D解析:D【解析】【分析】根据等式的性质,逐项判断即可.【详解】解:32a b =,等式两边同时加2得:3222a b +=+,∴选项A 不符合题意;32a b =,等式两边同时减5得:3525a b -=-,∴选项B 不符合题意;32a b =,等式两边同时除以6得:23a b =,∴选项C 不符合题意; 32a b =,等式两边同时乘以3得;96a b =,∴选项D 符合题意.故选:D .【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.13.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.14.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.15.B解析:B【解析】试题分析:由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选B.考点:由三视图判断几何体.二、填空题16.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.17.或【解析】【分析】设经过t秒时间A、B间的距离为个单位长度,分两种情况:①B在A的右边;②B在A的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为个单位解析:3或5【解析】【分析】设经过t秒时间A、B间的距离为3个单位长度,分两种情况:①B在A的右边;②B在A 的左边.由BA=3分别列出方程,解方程即可;【详解】解:设经过t秒时间A、B间的距离为3个单位长度,此时点A表示的数是:10-7t,点B 表示的数是:-2-4t.①当B在A的右边时:(10-7t)-(-2-4t.)=3,解得:t=3;②当B在A的左边时:(-2-4t.)-(10-7t)=3,解得:t=5;故答案为:3或5【点睛】本题考查一元一次方程的应用和数轴,解题关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出等量关系列出方程,再求解.18.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.19.2°【解析】【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°,∴,∴;故答案为:.【点睛】解析:2°【解析】【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°, ∴111306522BOC AOB ∠=∠=⨯︒=︒, ∴652448'4012'40.2COD BOC BOD ∠=∠-∠=︒-︒=︒=︒;故答案为:40.2︒.【点睛】 本题考查了角的计算,利用角平分线的性质得出∠BOC 是解题关键,又利用了角的和差. 20.35°【解析】试题分析:∵∠EOC=70°,OA 平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角解析:35°【解析】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.21.3【解析】【分析】求出BC长,根据中点定义得出CDBC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CDBC=3cm.故答案解析:3【解析】【分析】求出BC长,根据中点定义得出CD12=BC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CD12=BC=3cm.故答案为:3.【点睛】本题考查了有关两点间的距离的应用,关键是求出BC的长和得出CD12=BC.22.【解析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵,∴;故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 解析:<【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223 7>,∴223 7-<-;故答案为:<.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则.23.a-5【解析】【分析】设阴影部分上面的数字为x,下面为x+7,根据日历中数字特征确定出a与b的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1,x+7解析:a-5【解析】【分析】设阴影部分上面的数字为x,下面为x+7,根据日历中数字特征确定出a与b的关系式即可.【详解】设阴影部分上面的数字为x,下面为x+7,根据题意得:x=b-1,x+7=a+1,即b-1=a-6,整理得:b=a-5,【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.24.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.25.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.三、解答题26.(1)a=-8,b=4;(2)-1或6;(3)115秒,135秒或234秒. 【解析】【分析】(1)根据()232+4=0ab b +-,利用绝对值及偶次方的非负性即可求出;(2)若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,分三种情况讨论; (3)当MN =1时,根据运动情况,可分三种情形讨论,列出方程解答.【详解】(1)解:(1)∵()232+4=0ab b +-,∴ab=-32,b-4=0,∴a=-8,b=4.(2)根据题意,若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,线段AB 的中点表示的数为-2,设点P 表示的数为x ,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x )=2(-x ),解得:x=-1;②当0≤x<4时,则x+8-(4-x )=2x ,方程无解③当x≥4时,则x+8-(x-4)=2x ,解得:x=6.综上:存在点P ,表示的数为-1或6.(3)设运动时间为t ,根据运动情况,可知MN=1的情况有三种:①M 在A →O 上,且M 在N 左侧,则2t+3t+1=12,解得t=115. ②M 在A →O 上,且M 在N 右侧,则2t+3t-1=12,解得t=135. ③M 在O →A 上,且N 到达点A ,此时,M 在A →O 上所用时间为8÷2=4(s ), M 在O →A 上速度为4个单位每秒,∵MN=1,∴(8-1)÷4=74, ∴此时时间t=4+74=234, 综上:当MN=1时,时间为115秒,135秒或234秒. 【点睛】本题考查了数轴上的动点问题、一元一次方程的应用、数轴、偶次方,解题的关键是:(1)利用偶次方的非负性,求出a ,b 的值;(2)分清多种情况找准等量关系,正确列出一元一次方程.27.26m mn -+,11【解析】【分析】根据整式的加减运算进行化简,再代入m,n 即可求解.【详解】解:原式225264m mn mn m ⎡⎤=---+⎣⎦ ()22546m mn m =-+-22546m mn m =--+26m mn =-+当2m =-,12n =时 原式()()21226112=---⨯+=. 【点睛】此题主要考查整式的化简求值,解题的关键熟知整式的加减运算法则.28.(1)∠AOC =∠BOD ,理由详见解析;(2)① 58°;②∠AON =∠DON ,理由详见解析.【解析】【分析】(1)根据补角的性质即可求解;(2)①根据余角的定义解答即可;②根据角平分线的定义以及补角与余角的定义,分别用∠AOM的代数式表示出∠AON与∠DON即可解答.【详解】解:(1)∠AOC=∠BOD,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOD;(2)①∵∠AOC与∠MON互余,∴∠MON=90°﹣∠AOC=58°;②∠AON=∠DON,理由如下:∵OM平分∠AOC,∴∠AOC=2∠AOM,∠COM=∠AOM,∵∠AOC与∠MON互余,∴∠AOC+∠MON=90°,∴∠AON=90°﹣∠AOM,∴∠CON=90°﹣3∠AOM,∵∠BOD与∠BOC互补,∴∠BOD+∠BOC=180°,∴∠CON+∠DON+2∠BOD=180°,又∵∠BOD=∠AOC=2∠AOM,∴∠DON=180°﹣∠CON﹣2∠BOD=180°﹣(90°﹣3∠AOM)﹣4∠AOM=90°﹣∠AOM.∴∠AON=∠DON.【点睛】本题主要考查角平分线的定义,补角、余角的求法和角的和与差,掌握角平分线的定义,补角余角的求法,找准角之间的关系是解题的关键.29.(1)x=1;(2)x=132-【解析】【分析】(1)移项、合并同类项、系数化1即可;(2)去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:(1)235x +=移项、合并同类项,得22x =系数化1,得1x =(2) ()913.712 4.37x --=- 去分母,得()95.991230.1x --=-去括号,得95.991830.1x -+=-移项,得1830.1995.9x =-+-合并同类项,得18117x =-系数化1,得132x =-【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.30.(1)x =1;(2)x =﹣0.25.【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:3x +3﹣6=0,移项合并得:3x =3,解得:x =1;(2)去分母得:2(x +1)﹣6x =3,去括号得:2x +2﹣6x =3,移项合并得:﹣4x =1,解得:x =﹣0.25.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可. 【详解】 设:汽车行驶x 小时,则轮船行驶(x-3)小时,根据题意可列方程,24x=40(x-3)-40,解方程得,x=10,∴公路长40(x-3)=280千米,海路长为24x=240千米. 【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系. 32.(1)画图见解析;(2)线段CD 的长度是点C 到直线AD 的距离;(3)四边形ABEC 的面积为:15【解析】【分析】(1)利用格线画AD ⊥BC 于点D;(2)利用点到直线的距离进行解答即可;(3)画13⨯ 方格的对角线得到CE//AB,利用平行四边形特征求出四边形ABEC 的面积【详解】(1)∵如图:2222221251251310AD =+==+==+=,BD ,AB ,又∵()()()2225+510= ∴222+AD BD AB =∴∠︒ADB =90∴AD ⊥BC∴如图所示:AD 为所求;(2)线段CD 的长度是点C 到直线AD 的距离;(3)如图所示:E 为所求;CE//AB,连接BE∵222263455125BC AD +==+=3,,1115355222ABC S BC AD =⨯⨯=⨯=∵AB CE == ∴//=CE AB CE AB ,∴四边形ABEC 是平行四边形 ∴1522152ABEC ABC S S ==⨯= ∴四边形ABEC 的面积为:15【点睛】 本题考查了勾股定理和勾股逆定理以及平行四边形的面积,掌握勾股定理求线段长度和勾股逆定理以及平行四边形的面积是解题的关键.33.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;。

2013-2014年七年级期末数学试卷(附答案)

2013-2014年七年级期末数学试卷(附答案)

2013~2014学年度第一学期期末试题七年级数学(满分:150分 ;考试时间:120分钟)一、选择题 (本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.12的相反数是 A .2 B .2- C .21-D .212.在下列数中,无理数是A .3.14B .13C .1.2.D . π 3.下列说法正确的是①0是绝对值最小的有理数 ②相反数小于本身的数是正数 ③数轴上原点两侧的数互为相反数 ④两个负数比较,绝对值大的反而小 A .①②③ B .①②④ C .①③④ D .②③④ 4.下列计算正确的是A .22523a a -= B .2246a a a += C .231y y -=- D .33332m n m n m n -= 5.化简(2)x x y --的结果为是A .x y --B . x y -+C .3x y +D .3x y - 6.若关于x 的方程1210m xm -++=是一元一次方程,则这个方程的解是A .5-B .3-C .1-D .5 7.钟面角是指时钟的时针与分针所成的角.当时间是9:30时,钟面角等于A .90︒B .102︒C .105︒D .120︒8.图(1)是一个正方体的侧面展开图,正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是 A .江 B .苏 C .扬 D .州图1图2二、填空题 (本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 单项式212xy -的系数为 ▲ . 10.当1x =时,代数式13x -的值为 ▲ .11.南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为3600000平方千米,3600000用科学记数法可表示为 ▲ .12.已知α∠和β∠互为余角,且4016'α∠=︒,则β∠= ▲ . 13.如果单项式32m x y +-与3x y 的差仍然是一个单项式,则m = ▲ . 14.若22(1)0x y -++=,则y x= ▲ .15.一件衬衫先按成本提高40%标价,再以9折出售,获利26元.这件衬衫的成本是 ▲ 元. 16.如图,OM 平分AOC ∠,ON 平分BOC ∠,80AOB ∠=︒,则MON ∠= ▲ °. 17.如图,甲、乙两个长方形有一部分重叠在一起,甲长方形不重叠的部分是甲长方形面积的34,乙长方形不重叠的部分是乙长方形面积的56,且甲、乙两个长方形面积之和为2100cm ,则重叠部分面积是 ▲cm18.有一个运算程序,可以使:x ☆y =m (m 为常数)时,得)1(+x ☆y =2+m ,x ☆)1(+y =1-m ,现在已知1☆2=5,那么2014☆2014= ▲ .三.解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、解题过程或演算步骤) 19.(本题满分8分)计算:(1)1021(2)11-+--⨯ (2)3221123()()()333-⨯--÷-(第16题)(第17题)OANMB20.(本题满分8分) 先化简,再求值.2222632(31)6x xy xy x ⎡⎤---+⎣⎦,其中14,2x y ==-.21.(本题满分8分) 解方程: (1)7335x x -=-;(2)21123233x x+--=.22.(1) (本题满分4分)如图,点P 是线段AB 上的一点.请在下图的方格纸中完成下列任务.①过点P 画BC 的平行线,交线段AC 于点M ;②过点P 画BC 的垂线,垂足为H ; ③过点P 画AB 的垂线,交BC 于Q ;④线段 ▲ 的长度是点P 到直线BC 的距离.(2)(本题满分4分)下图是由一些大小相同的小正方体组合成的简单几何体, 请在下面方格纸中分别画出它的主视图和左视图.23.(本题满分10分)如图,B 是线段AD 上的一点,C 是线段BD 的中点. (1)若8AD =,3BC =.求线段CD 、AB 的长. (2)试说明:2AD AB AC +=.主视图左视图A B C24.(本题满分10分) (1)如图,直线AB 、CD 相交于点O ,FO CD ⊥于点O ,且EOF DOB ∠=∠.求EOB ∠的度数.(2)如图,O 为直线AB 上一点, OD 平分AOC ∠, 48AOC ∠=︒,90DOE ∠=︒.求BOE ∠的度数.25.(本题满分10分) 如果1x =是关于x 的方程21(32)13a x a -=+的解,求231a a -+的值. 26. (本题满分10分) 学校沿路护栏纹饰部分设计成若干个相同的菱形图案,每增加一个菱形图案,纹饰长度就增加dcm ,如图所示.已知每个菱形的横向对角线长为40cm .⑴ 若该纹饰要221个菱形图案,试用含d 的代数式表示纹饰的长度L ;当d =30时,求该纹饰的长度L ;⑵ 当d =25时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?A BCD OEFA BEC D27.(本题满分12分) 请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)28.(本题满分12分) 已知数轴上的点A 和点B 之间的距离为32个单位长度,点A 在原点的左边,距离原点5个单位长度,点B 在原点的右边.(1)点A 所对应的数是 ▲ ,点B 对应的数是 ▲ ;(2)若已知在数轴上的点E 从点A 出发向左运动,速度为每秒2个单位长度,同时点F 从点B 出发向左运动, 速度为每秒4个单位长度,在点C 处点F 追上了点E ,求点C 对应的数.(3)若已知在数轴上的点M 从点A 出发向右运动,速度为每秒2个单位长度,同时点N 从点B 出发向右运动, 速度为每秒4个单位长度,设线段NO 的中点为P (O 原点),在运动过程中线段PO AM 的值是否变化?若不变,求其值;若变化,请说明理由.48元附答案一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.12-10.2- 11.63.610⨯ 12.4944'︒ 13.1- 14.1 15.100 16.40︒ 17.10 18.2019三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.解:(1)原式=102122-++ ………………………………………………………2分=33. ………………………………………………………4分(2)原式=119994-⨯ ………………………………………………………3分 =536-. ………………………………………………………4分20.解:原式=232xy - ………………………………………………………4分 当14,2x y ==-时,原式=2134()22⨯⨯--=1 ……………………………8分 21.解:(1)2x =- ………………………………………………………4分(2)14x =………………………………………………………8分 (分步酌情给分) 22. (1)(①②③各1分)④PH ………………………………………………………4分(2)QHMCBAP(每个图2分)23.(1)∵C 是线段BD 的中点∴BC CD =∵3BC =∴3CD = ………………………………………………………3分 ∵8AD =∴8332AB AD BC CD =--=--= …………………………………………6分 (2) ∵AD AB AC CD AB +=++BC CD = ………………………………………………………8分 ∴2AD AB AC BC AB AC AC AC +=++=+= …………………………10分(23题只要说理清楚即可,不要求十分严密)24.(1)∵FO CD ⊥∴90FOD ∠=︒∴90EOF EOD ∠+=︒ ………………………………………………………2分 ∵EOF DOB ∠=∠ ∴90DOB EOD ∠+∠=︒即90EOB ∠=︒ ………………………………………………………4分 (2) ∵OD 平分AOC ∠∴11482422AOD AOC ∠=∠=⨯︒=︒……………………………………………2分 ∵180AOB ∠=︒,90DOE ∠=︒∴180902466BOE ∠=︒-︒-︒=︒ ………………………………………4分(24题只要说理清楚即可,不要求十分严密)25.∵1x =是关于x 的方程21(32)13a x a -=+的解 ∴21(32)13a a -=+ ……………………………………………4分 ∴2113a a -= ……………………………………………6分 ∴233a a -= ……………………………………………8分 ∴231314a a -+=+= ……………………………………………10分 26.(1)40220L d =+ ……………………………………………3分 当d =30时,40220306640()L cm =+⨯= …………………………………6分(2) 当d =25时,需要菱形图案的个数=664040126525-+=…………………………10分27.(1)设一个水瓶x 元,则一个水杯是(48)x -元,根据题意,得 ……………………1分 34(48)152x x +-= ……………………………………………3分解得40x =答:一个水瓶40元,则一个水杯是8元. …………………………………………5分(2) 甲商场所需费用=(405820)80%288⨯+⨯⨯=(元)…………………………7分乙甲商场所需费用=540(2052)8280⨯+-⨯⨯=(元)………………………9分∵288280>∴选择乙商场购买更合算. ……………………………………………10分28.(1)5-,27 ……………………………………………4分 (2)设经过x 秒F 追上了点E ,根据题意,得2324x x +=16x = ……………………………………………6分∴点C 对应的数=521637--⨯=-. ……………………………………………8分 (3)设运动时间为t ,则 2A M t =,27422ON tPO +== ……………………………………………10分 ∴PO AM -=27427222t t +-= 即PO AM -为定值,为272. ……………………………………………12分。

扬州市七年级上册数学期末试卷(含答案)

扬州市七年级上册数学期末试卷(含答案)

扬州市七年级上册数学期末试卷(含答案)一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =4.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°5.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.-2的倒数是( ) A .-2B .12-C .12D .27.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=18.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°9.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)11.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个C .3个D .4个12.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离13.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm14.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 18.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 19.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.20.当a=_____时,分式13a a --的值为0. 21.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.22.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.23.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.24.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.化简:2x+1﹣(x+1)=_____.27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.28.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.29.若523m xy +与2n x y 的和仍为单项式,则n m =__________.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?33.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 34.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.35.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.36.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.37.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.4.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.5.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.8.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.解析:B 【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.12.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.13.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.18.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.20.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.21.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.22.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 23.16【解析】 【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 24.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.25.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.26.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.27.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键28.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n 个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.29.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.30.-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a 的值,再依此求出b 的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.三、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 32.(1)﹣4,6;(2)①4;②1319,22或 【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.33.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.34.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.35.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.36.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为。

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷(含详细答案)

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷(含详细答案)

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的相反数是( )A .2B .-2C .12D .12- 【答案】B【详解】2的相反数是-2.故选:B.2.江苏省的面积约为102 6002km ,这个数据用科学记数法表示正确的是( ) A .410.2610⨯B .41.02610⨯C .51.02610⨯D .61.02610⨯ 【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于102600有6位,所以可以确定n=6-1=5.【详解】解:102 600=1.026×105.故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定n 值是关键. 3.实数、在数轴上的位置如图所示,则化简a b a -+的结果为A .B .C .D .【答案】D【详解】试题分析:由绝对值可以看出:a <0,b >0,|a|<|b|∴|a -b|+a=-(a -b)+a=-a+b+a=b .故选D .考点:绝对值.4.已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC = C .AC BC AB +=D .12BC AB = 【答案】C5.如图,OD∴AB于O,OC∴OE,图中与∴AOC互补的角有A.1个B.2个C.3个D.4个【答案】B【详解】试题分析:根据题意可得:∴∴∴AOC+∴BOC=180°,∴∴BOC与∴AOC互补.∴∴OD∴AB,OC∴OE,∴∴EOD+∴DOC=∴BOC+∴DOC=90°,∴∴EOD=∴BOC,∴∴AOC+∴EOD=180°,∴∴EOD与∴AOC互补.故图中与∴AOC互补的角有2个.故选B.考点:补角与余角.6.下图所示几何体的主视图是(▲ )A.B.C.D.【答案】A【详解】根据实物的形状和主视图的概念判断即可.解答:解:图中几何体的主视图如选项A所示.故选A.7.下列方程中,解为x=2的方程是()A.3x﹣2=3B.4﹣2(x﹣1)=1C.﹣x+6=2x D.110 2x+=8.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是A.第45行B.第46行C.第47行D.第48行【答案】A【详解】试题分析:由数列知第n行第一个数为(n-1)2+1,第n行最后一个数为n2,而:1937<2014<2025即(45-1)2<2014<452所以:n=45.故选A.考点:数字变化规律.二、填空题9.有理数–3的绝对值是___.【答案】3.【详解】试题分析:根据绝对值的定义进行解答即可.试题解析:有理数-3的绝对值为3.考点:绝对值.10.单项式-5a 2b 3的次数是_____. 【答案】5.【详解】试题分析:根据单项式次数的定义直接进行解答.试题解析:单项式-5a 2b 3的次数是5.考点:单项式.11.如果a ,b 互为相反数,x ,y 互为倒数,则()20132014a b xy +-的值是_____. 【答案】-2014.【详解】试题分析:根据互为相反数的两个数的和可得a+b=0,互为倒数的两个数的积等于1可得xy=1,然后代入代数式进行计算即可得解.试题解析:∴a 、b 互为相反数,∴a+b=0,∴x 、y 互为倒数,∴xy=1,∴2013(a+b )-2014xy=0-2014×1=-2014.考点:1.代数式求值;2.相反数;3.倒数.12.一个角是5433︒',则这个角的补角与余角的差为____°.【答案】90°【详解】试题分析:先求出这个角的补角,再求出这个角的余角,再计算它们的差即可 试题解析:∴这个角的补角等于:180°-54°33′=125°27′,这个角的余角:90°-54°33′=35°27′,∴125°27′-35°27′=90°.考点:余角与补角.13.若x 2+2x 的值是8,则4x 2﹣5+8x 的值是_____.【答案】27【分析】原式结合变形后,将已知等式代入计算即可求出值.【详解】解:∴x 2+2x=8,∴原式=4(x 2+2x )﹣5=32﹣5=27.故答案为:27.【点睛】本题考查代数式求值,利用整体代入思想解题是关键.14.一个平面上有三个点A 、B 、C ,过其中的任意两个点作直线,一共可以作______条直线. 【答案】3或1##1或3【详解】试题分析:分三点共线和不共线两种情况作出图形即可得解.试题解析:点A 、B 、C 三点共线时可以连成1条,三点不共线时可以连成3条, 所以,可以连成3条或1条.考点:直线、射线、线段.15.某书店把一本新书按标价的八折出售,仍可获利20%,若该书的进价为20元,则标价为___________元. 【答案】30【分析】设每本书的标价为x 元,根据八折出售可获利20%,可得出方程:80%x -20=20×20%,解出即可.【详解】解:设每本书的标价为x 元,由题意得:80%x -20=20×20%,解得:x=30.即每本书的标价为30元.故答案为:30.16.下列三个判断:∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直.∴过一点有且只有一条直线与已知直线平行.其中判断正确的是__________.(填序号)【答案】∴∴.【详解】试题分析:根据线段的性质、平行线公理以及垂线公理得∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直正确,∴过一点有且只有一条直线与已知直线平行错误.试题解析:根据以上分析知∴∴∴正确.考点:1.线段的性质;2.平行线公理;3.垂线公理.17.设一列数、、、…、2014a 中任意三个相邻的数之和都是30,已知a 3=3x ,a 200=15,9994a x =-,那么a 2014=______.【答案】12【详解】解:由任意三个相邻数之和都是30可知:a 1+a 2+a 3=30,a 2+a 3+a 4=30,a 3+a 4+a 5=30,…,an +an +1+an +2=30,可以推出:a 1=a 4=a 7=…=a 3n +1,a 2=a 5=a 8=…=a 3n +2,a 3=a 6=a 9=…=a 3n , 所以a 999=a 3,a 200=a 2,则3x =4-x .x =1.a 3=3.a 1=30-3-15=12,因此a 2014=a 1=12.故答案为:12.18.在连续整数1,2,3,…,2014这2014个数的每个数前任意添加“+”或“-”,其代数和的绝对值的最小值是_______.【答案】1.【详解】试题分析:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是奇数.试题解析:根据试题分析知:在连续整数1,2,3,•••…2014这2014个数的每个数前任意添加 “+"或“-”,其代数和的绝对值的最小值是1.考点:有理数的加减混合运算.三、解答题19.(1)543669⎛⎫-⨯- ⎪⎝⎭(2)()()()()215325⎡⎤-⨯-÷-+⨯-⎣⎦(3)23(4)()30(6)4-⨯-+÷- (4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.20.化简求值(1) ()()3232a b b a -++(2)()()323233m n m n ---(3)()()2222243;ab b a b a b ⎡⎤--+--⎣⎦其中a=2,b=-3.【答案】(1)5a+b ;(2) -3n ;(3) 4ab -5b 2; (4)-69.【详解】试题分析:(1)去括号,合并同类项即可;(2)根据乘法对加法的分配律把括号去掉后,再合并同类项即可求解;(1)先去掉小括号,再去掉中括号后,进行合并同类项,再把a 、b 的值代入化简后的式子即可求值.试题解析:(1)原式=3a-2b+3b+2a=5a+b;(2)原式=6m-9n-6m+6n=-3n;(3)原式=4ab-3b2-(a2+b2-a2+b2)=4ab-3b2-a2-b2+a2-b2=4ab-5b2当a=2,b=-3时,原式=4×2×(-3)-5×(-3)2=-24-45=-69.考点:整式的化简求值.21.解方程(1);(2);(3)1231. 23x x+--=(4)2105试题解析:(1)∴22.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到该几何体的形状图【答案】(1)11;(2)图形见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,故答案为11;(2)如图所示;左视图,俯视图分别如下图:【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.如图,直线AB CD EF 、、相交于点O .(1)BOE ∠的对顶角是_______.图中共有对顶角 对.(2)若AOC ∠:2:3AOE ∠=,130EOD ∠=︒ , 求BOC ∠的度数.24.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.那么甲班原有多少人?【答案】52.【详解】试题分析:设甲班原有人数是x 人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.试题解析:设甲班原有人数是x 人,(98-x )+3=x -3.解得:x=52.答:甲班原有52人.考点:由实际问题抽象出一元一次方程.25.在一条数轴上有A 、B 两点,点A 表示数4-,点B 表示数6.点P 是该数轴上的一个动点(不与A 、B 重合)表示数x .点M 、N 分别是线段AP 、BP 的中点.(1)如果点P 在线段AB 上,则点M 表示的数是 , 则点N 表示的数是 (用含x 的代数式表示).并计算线段MN的长.(2)如果点P在点B右侧,请你计算线段MN的长.(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果.26.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x.(1)小明12:00时看到的两位数的十位数字为.(用x表示)(2)小明13:00时看到的两位数为;14:30时看到的两位数为;(用x表示,需要化简).(3) 你能帮助小明求出摩托车的速度吗?试试看.27.一个长方体水箱,从里面量长25厘米,宽20厘米,深30厘米,水箱里已经盛有深为a 厘米的水.现在往水箱里放进一个棱长10厘米的正方体实心铁块(铁块底面紧贴水箱底部).(1)如果28a ≥,则现在的水深为 cm .(2)如果现在的水深恰好和铁块高度相等,那么a 是多少?(3)当028a <<时,现在的水深为多少厘米?(用含a 的代数式表示,直接写出答案)。

【2014】江苏省扬州市武坚中学2013-2014年度七年级上12月月考考试数学试卷含答案【新课标人教版】

【2014】江苏省扬州市武坚中学2013-2014年度七年级上12月月考考试数学试卷含答案【新课标人教版】

七年级数学练习(考试时间:120分钟,本卷满分:150分) 2013.12一、选择题(每题3分,共24分,将答案填在下面表格中)1.下列图形中属于棱柱的有( ).A .2个B.3个C.4个D.5个2.若等式y x =可以变形为aya x =,则有( ) A .0>a B .0<a C .0≠a D .a 为任意有理数3.如果2=x 是方程121-=+a x 的解,那么a 的值是( ) A .0 B .2- C .2 D .6- 4. 已知下列方程:①x x 22=-;②13.0=x ;③152-=x x ;④342=-x x ;⑤6=x ;⑥02=+y x 其中一元一次方程的个数是( )A .2个B .3个C .4个D .5个5.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A .B .C .D .6.某商店将某种服装先按成本提高60%标价,再以8折优惠卖出,结果每件服装仍可获利28元,则这种服装每件的成本价是( ) A .240元 B .100元 C .120元D .95元.7.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( ) A.BC AC = B.AB BC AC =+ C.AC AB 2= D.AB BC 21=8.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,则满足条件的x 的不同值有( )个.A 、1B 、2C 、3D 、4 二、填空题(每题3分,共30分) 9.平方得16的数为 .10.江苏省的面积约为102 600 2km ,这个数据用科学记数法可表示为 2km . 11. 单项式y x 22103⨯的系数是 ..12.已知955945y x y x y x n m =- ,则=-n m . 13. 如果关于x 的方程()0832=++-m xm 是一元一次方程,则=m .14.已知y=x-1,则1)()(2+-+-x y y x 的值为 .15..将图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则=+y x .16.关于x 的多项式5382+-x x 与752323+-+x mx x 相加后,不含x 的二次项,则常数m 的值等于 .17. 某单位组织员工外出参观,若每辆客车乘40人,则有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设有x 辆客车,则列方程为 .18. 如图,是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为 . 三、解答题(共96分) 19.计算:(本题6分)20. 解方程:(每题6分,共12分)(1)()x x 8123=-+ (2)13122.05.03.0=--+x x()[]32413215.01-+-⨯⎪⎭⎫ ⎝⎛-÷+- 1 32xy第(15)题图FEDCBA第(18)题图21. 先化简,再求值:(本题8分)已知02122=⎪⎭⎫ ⎝⎛-++y x ,求()()[]xy x y xy x xy 354222+--+-的值.22.如图,是由一些棱长都为1cm 的小正方体组合成的简单几何体.(本题8分) (1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.23.为节约用水,某市规定三口之家每月标准用水量为10立方米,超过部分加价收费,假设不超过10立方米的部分水费为2.25元/立方米,超过的部分水费为3.5元/立方米. ①若某居民某月的用水量为m 立方米,请用代数式分别表示这家按标准用水和超出标准用水各应缴纳的水费;②如果这家某月用水28立方米,那么该月应交多少水费?(本题8分)24. 已知关于x 的方程x x m +=+135的解比关于x 的方程m m x 32=+的解相同,求m 的值. (本题10分)25. 马虎不得:(本题10分) 小马虎解方程12312-+=-ax x ,去分母时,方程右边的-1忘记乘6,因而求得的解为2=x ,请你帮助小马虎求出a 的值,并正确地解这个方程.26. 已知A 、B 、C 在同一条直线上,且cm BC cm AB 4,12==,其中点M 是线段AB 的中点,点N 是线段BC 的中点,求线段MN 的长. (本题10分)27.某车间共有75名工人生产A 、B两种工件,已知一名工人每天可生产A 种工件15件或B 种工件20件,但要安装一台机械时,同时需A 种工件1件,B 种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?(本题10分)28.已知:数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上一动点,其对应的数为x (1) 若点P 到点A 、点B 的距离相等,则点P 对应的数为 . (2) 若点P 在A 、B 之间,请化简:31--+x x ;(3) 数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,请说明理由.(4) 当点P 以每分钟1个单位长度的速度从O (原点)向左运动,同时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动.问它们同时出发,几分钟后点P 到点A 、点B 的距离相等?(本题14分)七年级数学试卷答案一、选择题二、填空题9. 4± 10. 510026.1⨯ 11. 2103⨯ 12. 4- 13. 314. 1 15. 8 16. 4- 17. 1431040+=+x x 18. 143 三、解答题19. -9 ……………………………………6分 20. (1) x=1 ……………………………………6分(2) x=511-……………………………………6分 21. 21,2=-=y x ……………………………………2分22y xy + ……………………………………3分47- ……………………………………3分 22. (1) 33 2cm ……………………………………2分 (2)……………………………………6分23..(1) 2.25m 立方米 ; ……………………………………3分(3.5m-12.5)立方米. ……………………………………3分(2) 85.5 立方米. ……………………………………2分24. ;251mx -=……………………………………3分 m x = ……………………………………3分m m =-251 ……………………………………2分71=m ……………………………………2分25. 将2=x 带入方程()()13122-+=-a x x 后,解得31=a ………………6分将31=a 带入原方程,解得3-=x ………………4分26.(1).点C 在线段AB 上 MN=4cm ; ………………5分 (2)点C 在线段AB 的延长线上 MN=8cm. ………………5分左视图 俯视图27.解:设该车间分配x 名工人生产A 种工件,()x -75名工人生产B 种工件才能保证连续安装机械时两种工件恰好配套. ………………2分 根据题意得 ()x x -=⨯7520152 ………………4分解得457530=-=x x ………………2分答:该车间分配30名工人生产A 种工件,45名工人生产B 种工件才能保证连续安装机械时两种工件恰好配套. ………………2分 28.(1) 1 ; ………2分 (2) 原式=22-x ; ………2分 (3)设点P 表示的数为x ,则531=-++x x 当1-≤x 时, 原方程可化为:531=-+--x x 23-=x 当31<<-x 时,原方程可化为:531=-++x x 4=5 (舍) 当3≥x 时, 原方程可化为:531=-++x x 27=x 综上:点P 表示23-或27时,它到点A 、点B 的距离之和为5. ………4分 (4)设同时出发分钟后点P 到点A 、点B 的距离相等.①点P 在点A 与点B 之间根据题意得 x x x x 20315-+=-+解得 232=x ………3分 ②点B 追上点A 时根据题意得 4520=-x x 解得 154=x ………3分 答:同时出发232或154分钟后点P 到点A 、点B 的距离相等.命题校对:李曼、刘涛。

2013-2014年第一学期扬州市武坚中学七年级数学第一阶段测试卷

2013-2014年第一学期扬州市武坚中学七年级数学第一阶段测试卷

扬州市仙城中学初一数学阶段性练习2013.10【卷首语:亲爱的同学,你好!升入初中已经一个月了,祝贺你与新课程一起成长.相信你在原有的基础上又掌握了许多新的数学知识和方法,变得更加聪明了.你定会应用数学来解决实际问题了.现在让我们一起走进考场,发挥你的聪明才智,成功一定属于你!】(本卷满分150分,考试时间120分钟)一. 选择题:(本大题8个小题,每小题3分,共24分) 1.7- 的绝对值是 ( ) A .71-B .71 C .7- D .72.有理数 -3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,负数有 ( ) A .1 个 B. 2 个 C. 3 个 D. 4个 3. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a4. 一个有理数的平方与它本身的和等于0,那么这个数是 ( ) A 0或1 B 0或-1 C 0 D -15.绝对值不大于3.1的整数有( ) A 、4个B 、5个C 、6个D 、7个6. 下列各组数中:①-52与(-5)2 ; ②(-3)2与-32; ③―(―0.3)5与0.35;④0100与0200; ⑤(-1)3与(-1)2,相等的共有( ) A 、1对B 、2对C 、3对D 、4对7. 若(x -1)2=4,那么3x 的值为 ( ) A 27 B 3或-1 C 25或-1 D -1或278. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为A.50B.64C.68D.72 二、填空题:(本大题10个小题,每小题3分,共30分) 9. .一个数的绝对值是2,则这个数是_________.10. 若向东走9米,记作:+9米,那么-6米表示 11. 比较大小:-3.14 -π(填=,>,<号)12. 数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的为 . 13. 填数:1234,,,,_________3153563-- 14. 据统计,全国每小时约有510000000吨污水排入江海,用科学记数法表示为 15. 已知(a +3)2+|b -2|=0,则a b =___________16. 设a >0,b <0,且b a <,用“<”号把a 、-a 、b 、-b 连接起来 .17. 规定a b *=5a +2b -1,则(-4)*6的值是__________18. 已知221=,422=,823=,1624=,3225=,6426=,……,观察规律,试猜想20092的个位数是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武坚中学七年级数学期末试卷(满分:150分测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入答题纸中表格相应的空格内)1.下列各数是无理数的是( ▲)A.-2 B.227C.0.010010001 D.π2.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高( ▲)A.-3℃B. 7℃C. 3℃D.-7℃3.下列运算中,正确的是( ▲)A.bababa2222=+- B.22=-aaC.422523aaa=+ D.abba22=+4.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( ▲)A. B. C. D.5.把方程20.3120.30.7x x+--=的分母化为整数,结果应为(▲)A.231237x x+--= B.10203102037x x+--=C.1020310237x x+--= D.2312037x x+--=6.如图,AD⊥BC,ED⊥AB,表示点D到直线AB距离的是(▲)A.线段AD的长度B.线段AE的长度C.线段BE的长度D.线段DE的长度7.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线ABED C上各点连接的所有线段中,垂线段最短。

正确的有( ▲ ) A .1个 B .2个 C .3个 D .4个8.如图,由白色小正方形和黑色小正方形组成的图形.则第6个图形中白色小正方形和黑 色小正方形的个数总和等于( ▲ ) A.60 B.58 C.45 D.40二、填空题(每题3分,计30分,请把你的正确答案填入答题纸中相应的横线上)9.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数 法表示应是 吨. 10.单项式34a b π-的次数是 次.11.如果A 2618'∠=︒,那么A ∠的余角为 °(结果化成度).12.已知3x y -=,则()()12+-+-x y y x 的值为___________ .13.用边长为1的正方形,做了一套七巧板,拼成如图(1)所示的图形,则图②中阴影部14.得到折痕EF ,如果∠DFE =36°, 则∠DF A = °.15.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%; 乙超市连续两次降价15%;丙超市一次降价30%。

那么顾客到_____________家超市购 买这种商品更合算.16.某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转90°,则 结果指针的指向是 .(指向用方位角表示) 17. 在同一平面内已知∠AOB =80°,∠BOC =20°,OM 、ON 分别是∠AOB 和∠BOC 的平分线,则∠MON的度数是 .18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→ 4→5→1为第一次“移位”,这时2图()13他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2014次“移位”后,他到达编号为 的点. 三、简答题(本大题共10题,满分96分) 19.计算(本题满分10分)(1) 18(14)(18)13-+---- (2)4211(1)33(3)2---÷⨯--20.解下列方程(本题满分10分)(1)5(2)1x x --= (2) 1615312=--+x x21.(本题满分8分)有这样一道题:求2222211(231)3()(53)93x xy x xy x -----+-,其中2,3x y =-=.有位同学把2x =-错抄成2x =,但他的计算结果也是正确的,试通过计算说明其中的道理. 22.(本题满分8分)已知AB =10cm ,点C 在直线AB 上,如果 BC =4cm ,点D 是线段AC 的中点, 求线段BD 的长度 .下面是马小虎同学解题过程 解:根据题意可画出右图AC=AB+BC=10+4=14 cm∵点D 是线段AC 的中点172DC AC cm ∴== =3cm BD DC BC =-∴若你是老师,会判马小虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.23.(本题满分8分)利用直尺..画图 (1)利用图1中的网格,过P 点画直线AB 的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB 、CD 、EF 首尾顺次相接组成一个三角形.(3) 如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 .24.(本题满分10分)如图,是由一些棱长..为单位...1.的相同的小正方体组合成的简单几何体. (1)图中有 块小正方体;(2)请在下面方格纸中分别画出几何体的主视图、左视图和俯视图. (3)如果在其表面涂漆,则要涂 平方单位.(几何体放在地上,底面无法涂上漆)25. (本题满分10分)(1)根据表中所给,a b 的值,计算2()a b -与222a ab b -+的值,并将计算结果填入表中:(2)结合(1)的计算结果,你能够得出的结论为(用含b a ,的式子表示): . (3)请你利用你发现的结论进行简便运算:图(1) 图(2)2212.3456789212.3456789 2.3456789 2.3456789-⨯⨯+26.(本题满分10分)因课外阅读需要,学校图书馆向出版商邮购某系列图书,每本书单价为20元,邮购总费用包括书的价钱和邮费.相关的书价折扣、邮费如下表所示.(本,共需总费用为 元若一次邮购12本,共需总费用为 元.(2)已知图书馆需购书的总数是10的整数倍,且超过10本.①若分次邮购、分别汇款,每次邮购10本,总费用为930元时,共邮购了多少本书? ②如果图书馆需购书的总数为60本,若你是图书馆负责人,从节约的角度出发,在 “每次邮购10本”与“一次性邮购”这两种方式中你会选择哪一种?请说明理由. 27.(本题满分10分) (1) 如图(1),将两块直角三角尺的直角顶点C 叠放在一起,猜想 ①∠ACE 与∠DCB 的大小有何数量关系,并说明理由; ②∠ACB 与∠DCE 的大小有何数量关系,并说明理由; (2) 如图(2),若是将两个直角三角尺60°角和90°角的顶点A 叠放在一起,将三角板ADE 绕点A 旋转,旋转过程中三角板ADE 的边AD 始终在∠BAC 的内部,试探索:在旋转过程中,∠CAE 与∠BAD 差的变化范围.28.(本题满分12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B 的速度是点A 的速度的3倍. (速度单位:单位长度/秒)D A(2)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2OA.七年级第一学期期末试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分 )二、填空题(每题3分,计30分)9. 68.510⨯; 10.4; 11.63.7°; 12. 7; 13.38; 14. 108 ;15. 丙; 16. 南偏东40°; 17. 50°或30°(只答对一个给1分); 18. 1 ; 三、简答题(本大题共10题,满分96分) 19.计算(1):(1)原式=-18-14+18-13=-14-13 …… 3分 =-27 …… 5分(2)4211(1)33(3)2---÷⨯--解:原式=113392--÷⨯-=111623--⨯⨯…………………………3分=11--=2-………………………………………5分20.解方程:(1)5(2)1x x --=解:521x x -+= …… 2分512x x +=+63x = ……4分12x = ……5分(2)解: 2(21)(51)6x x +--=42516x x +-+= ……2分 45621x x -=--3x -= ……4分3x =- ……5分21. 解:原式=4x 2﹣4; …………………………………………6分 因为计算结果中只含有x 2项,(±2)2=4,把x=﹣2抄成x=2,x 2的值不变, 所以结果是正确的 ................................................8分 22. 解:不会判马小虎同学满分. ....................................2分 13.. (62)7...............4104 6 .m .c 8..............D AC DC AC cm BD DC B AC C c B B m A C ===+==-=-=⋯⋯⋯∴∴本题要分两种情况讨论(1)第一种情况同马小虎同学的解题过点程,可求得BD=3cm 分(2)第二种情况根据题意可画出图为线段的中点分分23.图略(1) 每个作图各2分,………………………4分(2)三角形 ………………………6分 (3)3.5 ………………………8分24. (1)图中有 11 块小正方体; ……………………2分 (2)……………………8分(每个视图2分) (3)如果在其表面涂漆,则要涂 28 平方米……………………10分 25.(1)上一行:4、1、25、4 下一行4、1、25、4 ………………4分 (2)222()2a b a ab b -=-+或2222()a ab b a b -+=- ………6分 (3)原式=2(12.3456789 2.3456789)-=210=100 ………………10分俯视图26.(1)若一次邮购8本,共需总费用为 150 元. …………………1分若一次邮购12本,共需总费用为 211.2 元.……………1分 (2)① 法一:设一共邮购了x 本书,分10x次 18693010xx +⋅= ∴50x = 答:共邮购了50本书. 法二:设邮购了y 次,(18⨯10+6)∙y=930 ∴ y=5所以一共邮购书共5⨯10=50本 ……………………7分 ②“每次邮购10本”总费用为(18106)618661116⨯+⨯=⨯=元一次性邮购总书价和邮费为16110%17.6601056⨯+⨯=⨯=()60元,……………9分 ∴从节约的角度出发应选一次性邮购的方式. ……………………10分27.(1) ①∠ACE 与∠DCB 相等理由略. ………3分 ②∠ACB+ ∠DCE=180° ∠ACB+ ∠DCE=∠ACE+ ∠DCE+∠DCB+∠DCE=∠ACD+ ∠BCE=90°+90°=180°……6分 (2)∠CAE-∠DAB 的差不变 ………7分 ∠CAE-∠DAB=∠DAE-∠BAC= 90°-60°=30° ……10分 28.解:(1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒3t 个单位长度.依题意有:2t+2×3t=16,解得t=2∴点A 的速度为每秒2个单位长度, 点B 的速度为每秒6个单位长度.画图 ………4分(2)设x 秒时,点A 、B 之间相距4个单位长度. ①根据题意,得6x-2x=16-4解之得 x=3 ………6分 ②根据题意,得6x-2x=16+4解之得 x=5 ………8分 即运动3或5秒时,点A 、B 之间相距4个单位长度.(3)设运动y 秒时OB=2OA①根据题意,得12-6y =2(4+2y ),解之得 y=52……10分 A B②根据题意,得6y-12 =2(4+2y ), 解之得 y=10 (3) 运动52s 或10s 秒时OB=2OA ……12分。

相关文档
最新文档