SMT回流焊工艺详细介绍

合集下载

SMT加工之回流焊接工艺

SMT加工之回流焊接工艺

SMT加工之回流焊接工艺
1 设备:5温区热风回流焊
1.1 对动力的要求:电源:3相380V动力电,27kW;压缩空气:4 kgf/cm2~6 kgf/cm2。

1.2 对PCB的要求:宽度50mm~300mm(采用导轨运输方式)。

1.3 设备主要参数:温度控制范围:室温~350℃,升温时间35分钟,各温区温度独立控制,传送网带宽度390mm,长度3.8米,内配UPS电源,内配三点温度曲线测试系统和测试导线。

2 生产工艺标准
2.1 预热温度控制在120℃~150℃,预热时间应大于60秒,温升的速率要小于3℃/s(仅供参考,具体参见锡膏的规格书的规定)。

2.2 焊接温度控制在230℃~240℃,时间应为5~10秒,同样温升的速率要小于3℃/s(仅供参考,具体参见锡膏的规格书的规定)。

2.3 转产和每天上班前,读取温度曲线,确认满足要求后才可以开始生产。

2.4 PCB上同一条直线(该直线应与过炉方向垂直)上的各个焊盘温度的差异应小于5℃。

2.5 注意进炉的方向,否则会因为元件的两端焊脚因焊锡溶化和凝结时间的差异而容易形成吊桥(或称曼哈顿现象),即元器件的一端离开焊盘而向上方斜立或直立的现象。

3 工艺检验标准
3.1 浸润:焊料应在被焊金属表面铺展,其接触角必须小于90°;
3.2 焊料量:焊料量要适中,避免过多或过少;
3.3 焊点表面:应完整、连续和圆滑;
3.4 不允许有虚焊、脱焊、孔洞、桥接、拉尖、焊料球或吊桥的现象。

回流焊流程

回流焊流程

回流焊流程
回流焊是SMT电子组装中非常重要的一环,主要包括以下流程:
1.PCB进入预热温区,焊膏中的溶剂、气体蒸发,同时
助焊剂润湿焊盘、元器件焊端和引脚,焊膏软化、塌落,覆盖焊盘,将焊盘、元器件引脚与氧气隔离。

2.PCB进入焊接区时,温度以每秒2-3℃的升温速率迅
速上升使焊膏达到熔化状态,液态焊锡在PCB的焊盘、元器件焊端和引脚润湿、扩散、漫流和回流混合在焊接界面上生成金属化合物,形成焊锡接点。

3.PCB进入冷却区使焊点凝固。

回流焊流程结束后,应检查设备内有无杂物,确保安全后开机,选择生产程序开启温度设置。

回流焊导轨宽度要根据PCB 宽度进行调节,开启运风、网带运送、冷却风扇。

回流机温度控制有铅最高(245±5)℃,无铅产品锡炉温度控制在(255±5)℃。

自己总结的SMT回流焊技巧

自己总结的SMT回流焊技巧
注意:刮的时候要均匀出力,不要太用力,否则小焊盘上会沾上过多的锡浆,导致焊盘粘连,这样回流焊出来的芯片很多管脚会粘在一起。
3、人工贴片:
芯片一定要一次性方正位置,不要放好后来回移动,否则密脚芯片焊好后可能会管脚粘连在一起。
0603 小封装的贴片元件在贴片时一定要按下去与锡膏充分接触,否则可能会出现阻容元件翘起来导致一边焊上另一边没焊上的情况。
1、搅拌锡膏:
锡膏用之前需要搅拌,必要时需要滴5~10滴锡膏稀释剂,滴完后再搅拌,直到锡膏可以粘住钢网为止。
锡膏储存时需每个月看看有没有干掉,有干掉的话需加稀释剂搅拌,最好放冷藏冰箱保存。
2、刷锡膏:
用胶柄刮刀 155mm型号可刮边长为100mm的PCB
将调好的锡浆用搅拌刀取少量锡浆放在刮刀上,将刮刀在钢网上,将锡膏均匀散开,占刮刀的2/3左右,不用太使、回流焊:
DSP主板可用“曲线2:0307无铅锡膏2(265℃,380s)”进行焊接,注意PCB不能太靠左右边,否则会温度不够锡膏不能熔化,尽量将有元器件的位置往回流焊中间放。
带光耦的PCB最好用“曲线1:0307无铅锡膏1(255℃,350s)”进行焊接,否则光耦会有焊坏的可能(不排除是散新料质量问题导致)。

回流焊工艺

回流焊工艺

回流焊工艺(一)摘要:由于电子产品PCB板不断小型化的需要,出现了片状元件,传统的焊接方法已不能适应需要。

首先在混合集成电路板组装中采用了回流焊工艺,组装焊接的元件多数为片状电容、片状电感,贴装型晶体管及二极管等。

随着SMT整个技术发展日趋完善,多种贴片元件(SMC)和贴装器件(SMD)的出现,作为贴装技术一部分的回流焊工艺技术及设备也得到相应的发展,其应用日趋广泛,几乎在所有电子产品领域都已得到应用,而回流焊技术,围绕着设备的改进也经历以下发展阶段。

(二)技术产生背景:由于电子产品PCB板不断小型化的需要,出现了片状元件,传统的焊接方法已不能适应需要。

起先,只在混合集成电路板组装中采用了回流焊工艺,组装焊接的元件多数为片状电容、片状电感,贴装型晶体管及二极管等。

随着SMT整个技术发展日趋完善,多种贴片元件(SMC)和贴装器件(SMD)的出现,作为贴装技术一部分的回流焊工艺技术及设备也得到相应的发展,其应用日趋广泛,几乎在所有电子产品领域都已得到应用。

(三)发展阶段:根据产品的热传递效率和焊接的可靠性的不断提升,回流焊大致可分为五个发展阶段第一代:热板传导回流焊设备:热传递效率最慢,5-30 W/m2K(不同材质的加热效率不一样),有阴影效应.第二代:红外热辐射回流焊设备:热传递效率慢,5-30W/m2K(不同材质的红外辐射效率不一样),有阴影效应,元器件的颜色对吸热量有大的影响。

第三代:热风回流焊设备:热传递效率比较高,10-50 W/m2K,无阴影效应,颜色对吸热量没有影响。

第四代:气相回流焊接系统:热传递效率高,200-300 W/m2K,无阴影效应,焊接过程需要上下运动,冷却效果差。

第五代真空蒸汽冷凝焊接(真空汽相焊)系统:密闭空间的无空洞焊接,热传递效率最高,300 W-500W/m2K。

焊接过程保持静止无震动。

冷却效果优秀,颜色对吸热量没有影响(四)回流焊的工作原理:再流焊又称回流焊。

回流焊原理及工艺流程

回流焊原理及工艺流程

回流焊原理及工艺流程
回流焊(Reflow soldering)是一种将焊料(solder)涂在电子元器件和电路板表面,通过加热使其熔化并与电路板表面结合在一起的焊接技术。

回流焊的工艺流程如下:
1. 表面处理:电路板表面需要进行清洁、去毛刺、去污等处理,以便焊料可以充分润湿。

2. 贴装元器件:将元器件通过自动贴装机或手工贴装的方式粘贴在电路板上。

3. 印刷焊膏:将焊膏印刷到元器件和电路板的焊接区域上。

4. 预热:将电路板放置在预热区,温度逐渐升高,使得焊膏中的挥发性成分挥发,准备进入焊接区。

5. 焊接:在焊接区中,电路板通过运送带进入回流炉中,使得焊膏熔化,在高温下进行焊接,使得电路板表面和元器件连接在一起。

6. 冷却:将焊接区中的电路板冷却至室温,焊接完成。

回流焊技术的优点是焊接质量可靠,成本低,效率高,适用范围广。

但是焊接过
程中需要控制温度,不当的温度会造成元器件损坏或焊接质量不佳,因此对于不同种类的电路板和元器件,需要按照不同的工艺参数进行调整和优化。

SMT回流焊工艺知识

SMT回流焊工艺知识

SMT 回流焊工艺知识Board/Sma llComp onen t ---------- LargeComp onen t1、 预热区:预热区的目的是使 PCB 和元器件预热,达到平衡,同时 除去焊膏中的水份、溶剂,以防焊膏发生塌落和焊料飞溅。

升温速率 要控制在适当范围内(过快会产生热冲击,如:引起多层陶瓷电容器 开裂、造成焊料飞溅,使在整个PCB 勺非焊接区域形成焊料球以及焊 料不足的焊点;过慢则助焊剂Flux 活性作用),一般上升速率设定为 1〜3C /sec ,最大升温速率为 4C /sec ;2、 恒温区:指从120C 升温至170C 的区域。

主要目的是使 PCB 上各 元件的温度趋于均匀,尽量减少温差,保证在达到再流温度之前焊料 能完全干燥,到保温区结束时,焊盘、锡膏球及元件引脚上的氧化物 应被除去,整个电路板的温度达到均衡。

过程时间约 60〜120秒,根 据焊料的性质有所差异。

3、 回流区:这一区域里的加热器的温度设置得最高,焊接峰值温度 视所用锡膏的不同而不同,一般推荐为锡膏的熔点温度加20〜40C 。

此时焊膏中的焊料开始熔化 , 再次呈流动状态,替代液态焊剂润湿焊 盘和元器件。

也可以将该区域分为两个区,即熔融区和再流区。

理想 的温度典型的回流曲线2 2曲线是超过焊锡熔点的“尖端区”覆盖的面积最小且左右对称。

4、冷却区:用尽可能快的速度进行冷却,将有助于得到明亮的焊点并饱满的外形和低的接触角度。

缓慢冷却会导致PAD的更多分解物进入锡中,产生灰暗毛糙的焊点,甚至引起沾锡不良和弱焊点结合力。

降温速率一般为-4 C/sec以内,冷却至75C左右即可。

由于锡膏、机型与工艺要求不同,产品的炉温曲线也不尽相同。

生产时必须定期用炉温测试仪测试炉温并记录存档。

炉温测试板的测试点必须合宜每片测温板最多可以使用200 次。

smt回流焊工作原理

smt回流焊工作原理
SMT(Surface Mount Technology,表面贴装技术)回流焊工作原理是指在组装过程中,用高温热风或者蒸汽将贴装在PCB(Printed Circuit Board,印刷电路板)表面的贴片元件和焊脚上的焊膏加热至融化点,使其与焊盘间形成可靠的焊接连接。

具体工作原理如下:
1. 准备:首先,在PCB上涂覆一层焊膏,通常是由粒径较小的金属颗粒和助焊剂组成的混合物。

此焊膏会在高温下熔化并形成焊接连接。

2. 定位:将待焊接的SMT元件精确放置在PCB表面上,通常通过自动化设备进行定位。

3. 预热:PCB与贴片元件一起通过热风或蒸汽流进行预热,以使整个组装过程达到焊接所需的温度。

4. 焊接:当预热达到适当温度时,进入焊接区域。

焊接区域中的热风或蒸汽继续升温,使焊膏熔化,并使贴片元件与PCB 之间的焊盘形成连接。

焊膏熔化后由于表面张力的作用,焊膏会自动湿润焊盘和焊脚。

5. 冷却固化:在焊接完成后,PCB与焊接区域逐渐冷却,焊膏通过表面张力的作用形成可靠的焊接连接。

总的来说,SMT回流焊工作原理是通过加热焊接区域,使焊膏熔化,并在冷却过程中形成稳定的焊接连接。

这一过程通常由自动化设备完成,以确保精确的温度控制和焊接质量。

回流焊工艺要求

回流焊工艺要求回流焊工艺是电子制造领域中一种重要的焊接技术,广泛应用于SMT(表面贴装技术)生产中。

回流焊工艺通过加热熔化预先涂布在电路板上的焊膏,将电子元件与电路板连接起来。

下面是回流焊工艺的要求:1.焊膏选择:回流焊工艺需要使用适合的焊膏,根据焊接材料、焊接温度和元件的耐热性等因素进行选择。

焊膏的粘度、润湿性、触变性等特性需根据具体的焊接要求进行选择。

2.焊膏涂布:将选好的焊膏按照一定的方式涂布在电路板上,涂布量要适中,过多或过少的焊膏都会影响焊接质量。

焊膏涂布通常采用手动或自动涂布设备完成。

3.元件放置:将电子元件按照电路设计要求放置在涂有焊膏的电路板上,元件的放置要准确、稳定,避免出现偏移或倾斜。

4.回流炉设定:将电路板放入回流炉中进行加热,设定合适的温度曲线,保证焊膏在适当的温度下熔化并充分润湿元件和电路板表面。

温度曲线包括预热、升温、保温和冷却等阶段,需根据具体的焊接要求进行设定。

5.温度控制:回流焊工艺要求温度控制精确,以保证焊接质量和元件的可靠性。

温度过高可能导致元件受损或焊接不良,温度过低则可能导致焊接不完全或形成冷焊。

因此,回流炉的温度设定和控制在整个工艺中具有至关重要的作用。

6.清洁和环境控制:回流焊工艺要求保持生产环境的清洁,以避免灰尘、杂质等对焊接质量的影响。

同时,要控制好湿度、温度等环境因素,确保生产过程的稳定性和焊接质量的可靠性。

7.质量检测:回流焊工艺完成后,需要对焊接质量进行检测,包括外观检查、电气性能测试等。

对于存在缺陷或不良的焊接点,需要进行修复或重新进行回流焊工艺。

8.工艺优化:回流焊工艺要求不断进行工艺优化,以提高生产效率、降低成本并提升焊接质量。

通过对不同产品、不同材料的焊接试验和数据分析,不断优化温度曲线、焊膏选择等工艺参数,实现生产过程的持续改进。

9.人员培训:操作人员的技能和经验对回流焊工艺的质量具有重要影响。

因此,需要对操作人员进行定期的培训和技能评估,确保他们熟悉回流焊工艺的基本原理、操作流程和质量控制要求。

回流焊工艺流程详述

回流焊工艺流程详述
回流焊工艺流程是一种常用的表面贴装(SMT)工艺,在电子产品制造中应用广泛。

以下是回流焊工艺流程的详细步骤:
1. 准备工作:准备和清洁PCB板和SMT元件,选择合适的焊膏。

2. 印刷焊膏:将焊膏通过印刷机印刷在PCB板上需要焊接的位置,确保焊膏均匀涂布、位置精准,防止出现短路和虚焊。

3. 贴装元件:将SMT元件通过自动贴装机或手工贴装放置在PCB板上,并进行视觉检查,确保元件的方向和位置正确。

4. 固定元件:将已经贴在PCB板上的元件经过加热后的融化焊膏与PCB板粘结在一起,形成电路板的内部电线连接。

5. 回流焊:将PCB板放进回流焊炉中,通过加热回流焊炉将焊膏和元件共同加热,使焊膏熔化,并与元件表面和PCB板连接。

6. 冷却:在回流焊完成后,将PCB板从炉中取出,进行冷却,等待焊接完成。

7. 检查:最后进行目测检查和放大器检查,检查是否有短路、错位、错向等问题。

如果有问题需要及时处理。

通过以上步骤,回流焊工艺流程基本完成,可以在后续工艺中进行后续处理,如电路板清洗、贴标、加固等处理。

什么是SMT回流焊


静电防护技术
做法和要求
所有运输,储存,包装等的设备和材料必须用防静 电型的,且不可用普通金属和塑料等物
必要时人员坐椅,踏垫等也要做防静电处理 所有地线的连接方式要用软铜线且截面积不可小于
1.5mm2
SMT设备配置
大、中型生产:
装载设备(pcb输送) 自动印刷机 焊膏检测设备 自动贴片机 贴片检测设备 大、中型回流焊机 焊点检测设备 自动返修系统
不可与工作零线连接 接地主干线截面积不小于100mm2,支干线不小于
6mm2,设备与工作台连接线不小于1.25mm2
静电防护技术
场地的静电防护:
地板 天花板和墙壁 湿度
静电防护技术
人员的静电防护:
观念和意识 防静电工作服 防静电工作鞋 防静电护腕
设备的静电防护:
工作台,流水线,焊接设备,各种仪表
SMT的发展过程
封装的定义 DIP=>PLCC,QFP,SOP=>BGA=>CSP,
uBGA=>MCM
SMT典型生产工艺和不同工艺的选择
典型工艺流程: 涂焊锡膏=>贴装=>回流焊接=>成品
典型生产工艺:
来料检测 焊锡膏漏印 元器件贴装
成品
检测,返修 清洗
回流焊接
SMT典型生产工艺和不同工艺的选择
SMT生产工艺
SMT简单介绍 SMD发展过程 SMT典型生产工艺和不同工艺的选择 静电防护 SMT设备配置 SMT主要耗材 回流焊原理 回流焊的缺陷和分析
SMT简单介绍
SMT定义SMT的组成来自表面贴装元器件(SMD)
贴装技术 贴装设备
SMT的特点 与SMT相关
的产品
组装密度高,电子产品体积小,重量轻 可靠性高,抗震性好,焊点缺陷率低 高频性能好,减少了电磁和射频干扰 易于实现自动化,提高生产效率 有效降低成本
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SMT回流焊工艺详细介绍
SMT回流焊工艺详细介绍
回流焊接是用在SMT装配工艺中的主要板级互连方法,这种焊接方法把所需要的焊接特性极好地结合在一起,这些特性包括易于加工、对各种SMT设计有广泛的兼容性,具有高的焊接可靠性以及成本低等.
然而,在回流焊接被用作为最重要的SMT元件级和板级互连方法的时候,它也受到要求进一步改进焊接性能的挑战,事实上,回流焊接技术能否经受住这一挑战将决定焊膏能否继续作为首要的SMT焊接材料,尤其是在超细微间距技术不断取得进展的情况之下。

下面我们将探讨影响改进回流焊接性能的几个主要问题
一,未焊满未焊满是在相邻的引线之间形成焊桥。

通常,所有能引起焊膏坍落的因素都会导致未焊满,这些因素包括:
1,升温速度太快;
2,焊膏的触变性能太差或是焊膏的粘度在剪切后恢复太慢;
3,金属负荷或固体含量太低;
4,粉料粒度分布太广;
5;焊剂表面张力太小。

但是,坍落并非必然引起未焊满,在软熔时,熔化了的未焊满焊料在表面张力的推动下有断开的可能,焊料流失现象将使未焊满问题变得更加严重。

在此情况下,由于焊料流失而聚集在某一区域的过量的焊料将会使熔融焊料变得过多而不易断开。

除了引起焊膏坍落的因素而外,下面的因素也引起未满焊的常见原因:
1,相对于焊点之间的空间而言,焊膏熔敷太多;
2,加热温度过高;
3,焊膏受热速度比电路板更快;
4,焊剂润湿速度太快;
5,焊剂蒸气压太低;
6;焊剂的溶剂成分太高;
7,焊剂树脂软化点太低。

二,断续润湿焊料膜的断续润湿是指有水出现在光滑的表面上,这是由于焊料能粘附在大多数的固体金属表面上,并且在熔化了的焊料覆盖层下隐藏着某些未被润湿的点,因此,在最初用熔化的焊料来覆盖表面时,会有断续润湿现象出现。

消除断续润湿现象的方法是:
1,降低焊接温度;
2,缩短软熔的停留时间;
3,采用流动的惰性气氛;
4,降低污染程度。

三,低残留物对不用清理的软熔工艺而言,为了获得装饰上或功能上的效果,常常要求低残留物,对功能要求方面的例子包括“通过在电路中测试的焊剂残留物来探查测试堆焊层以及在插入接头与堆焊层之间或在插入接头与软熔焊接点附近的通孔之间实行电接触”,较多的焊剂残渣常会导致在要实行电接触的金属表层上有过多的残留物覆盖,这会妨碍电连接的建立,在电路密度日益增加的情况下,这个问题越发受到人们的关注。

显然,不用清理的低残留物焊膏是满足这个要求的一个理想的解决办法。

然而,与此相关的软熔必要条件却使这个问题变得更加复杂化了。

为了预测在不同级别的惰性软熔气氛中低残留物焊膏的焊接性能,提出一个半经验的模型,这个模型预示,随着氧含量的降低,焊接性能会迅速地改进,然后逐渐趋于平稳,实验结果表明,随着氧浓度的降低,焊接强度和焊膏的润湿能力会有所增加,此外,焊接强度也随焊剂中固体含量的增加而增加。

实验数据所提出的模型是可比较的,并强有力地证明了模型是有效的,能够用以预测焊膏与材料的焊接性能,因此,可以断言,为了在焊接工艺中成功地采用不用清理的低残留物焊料,应当使用惰性的软熔气氛。

四,间隙间隙是指在元件引线与电路板焊点之间没有形成焊接点。

一般来说,这可归因于以下四方面的原因:
1,焊料熔敷不足;
2,引线共面性差;
3,润湿不够;
4,焊料损耗枣这是由预镀锡的印刷电路板上焊膏坍落,引线的芯吸作用或焊点附近的通孔引起的。

为了解决这个问题,提出了在装配之前用焊料来预涂覆焊点的方法,此法是扩大局部焊点的尺寸并沿着鼓起的焊料预覆盖区形成一个可控制的局部焊接区,并由此来抵偿引线共面性的变化和防止间隙,引线的芯吸作用可以通过减慢加热速度以及让底面比顶面受热更多来加以解决,此外,使用润湿速度较慢的焊剂,较高的活化温度或能延缓熔化的焊膏(如混有锡粉和铅粉的焊膏)也能最大限度地减少芯吸作用.在用锡铅覆盖层光整电路板之前,用焊料掩膜来覆盖连接路径也能防止由附近的通孔引起的芯吸作用。

五,焊料成球焊料成球是最常见的也是最棘手的问题,这指软熔工序中焊料在离主焊料熔池不远的地方凝固成大小不等的球粒;大多数的情况下,这些球粒是由焊膏中的焊料粉组成的,焊料成球使人们耽心会有电路短路、漏电和焊接点上焊料不足等问题发生,随着细微间距技术和不用清理的焊接方法的进展,人们越来越迫切地要求使用无焊料成球现象的SMT工艺。

引起焊料成球的原因包括:
1,由于电路印制工艺不当而造成的油渍;
2,焊膏过多地暴露在具有氧化作用的环境中;
3,焊膏过多地暴露在潮湿环境中;
4,不适当的加热方法;
5,加热速度太快;
6,预热断面太长;
7,焊料掩膜和焊膏间的相互作用;
8,焊剂活性不够;
9,焊粉氧化物或污染过多;
10,尘粒太多;
11,在特定的软熔处理中,焊剂里混入了不适当的挥发物;
12,由于焊膏配方不当而引起的焊料坍落;
13、焊膏使用前没有充分恢复至室温就打开包装使用;
14、印刷厚度过厚导致“塌落”形成锡球;
15、焊膏中金属含量偏低。

六,焊料结珠焊料结珠是在使用焊膏和SMT工艺时焊料成球的一个特殊现象。

简单地说,焊珠是指那些非常大的焊球,其上粘带有(或没有)细小的焊料球.它们形成在具有极低的托脚的元件如芯片电容器的周围。

焊料结珠是由焊剂排气而引起,在预热阶段这种排气作用超过了焊膏的内聚力,排气促进了焊膏在低间隙元件下形成孤立的团粒,在软熔时,熔化了的孤立焊膏再次从元件下冒出来,并聚结起。

焊接结珠的原因包括:
1,印刷电路的厚度太高;
2,焊点和元件重叠太多;
3,在元件下涂了过多的锡膏;
4,安置元件的压力太大;
5,预热时温度上升速度太快;
6,预热温度太高;
7,在湿气从元件和阻焊料中释放出来;
8,焊剂的活性太高;
9,所用的粉料太细;
10,金属负荷太低;
11,焊膏坍落太多;
12,焊粉氧化物太多;
13,溶剂蒸气压不足。

消除焊料结珠的最简易的方法也许是改变模版孔隙形状,以使在低托脚元件和焊点之间夹有较少的焊膏。

七,焊接角焊接抬起焊接角缝抬起指在波峰焊接后引线和焊接角焊缝从具有细微电路间距的四芯线组扁平集成电路(QFP)的焊点上完全抬起来,特别是在元件棱角附近的地方,一个可能的原因是在波峰焊前抽样检测时加在引线上的机械应力,或者是在处理电路板时所受到的机械损坏,在波峰焊前抽样检测时,用一个镊子划过QFP元件的引线,以确定是否所有的引线在软溶烘烤时都焊上了;其结果是产生了没有对准的焊趾,这可在从上向下观察看到,如果板的下面加热在焊接区/角焊缝的间界面上引起了部分二次软熔,那么,从电路板抬起引线和角焊缝能够减轻内在的应力,防止这个问题的一个办法是在波峰焊之后(而不是在波峰焊之前)进行抽样检查。

八,竖碑(Tombstoning)竖碑(Tombstoning)是指无引线元件(如片式电容器或电阻)的一端离开了衬底,甚至整个元件都支在它的一端上。

Tombstoning也称为Manhattan效应、Drawbridging 效应或Stonehenge效应,它是由软熔元件两端不均匀润湿而引起的;因此,熔融焊料的不够均衡的表面张力拉力就施加在元件的两端上,随着SMT小型化的进展,电子元件对这个问题也变得越来越敏感。

此种状况形成的原因:
1、加热不均匀;
2、元件问题:外形差异、重量太轻、可焊性差异;
3、基板材料导热性差,基板的厚度均匀性差;
4、焊盘的热容量差异较大,焊盘的可焊性差异较大;
5、锡膏中助焊剂的均匀性差或活性差,两个焊盘上的锡膏厚度差异较大,锡膏太厚,印刷精度差,错位
严重;
6、预热温度太低;
7、贴装精度差,元件偏移严重。

九,BGA成球不良BGA成球常遇到诸如未焊满,焊球不对准,焊球漏失以及焊料量不足等缺陷,这通常是由
于软熔时对球体的固定力不足或自定心力不足而引起。

固定力不足可能是由低粘稠,高阻挡厚度或高放气
速度造成的;而自定力不足一般由焊剂活性较弱或焊料量过低而引起。

BGA成球作用可通过单独使用焊
膏或者将焊料球与焊膏以及焊料球与焊剂一起使用来实现;正确的可行方法是将整体预成形与焊剂或焊膏
一起使用。

最通用的方法看来是将焊料球与焊膏一起使用,利用锡62或锡63球焊的成球工艺产生了极好
的效果。

总结焊膏的回流焊接是SMT装配工艺中的主要的板极互连方法,影响回流焊接的主要问题包括:底面元
件的固定、未焊满、断续润湿、低残留物、间隙、焊料成球、焊料结珠、焊接角焊缝抬起、TombstoningBGA成球不良、形成孔隙等,问题还不仅限于此,在本文中未提及的问题还有浸析作用,金属间
化物,不润湿,歪扭,无铅焊接等.
只有解决以上问题,回流焊接作为一个重要的SMT装配方法,才能在超细微间距的时代继续成功地保留下去。

相关文档
最新文档