八年级上册数学错题集
苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个3.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()5.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43B .13C .43±D .13±6.20.3•、227-38( )A .1个B .2个C .3个D .4个7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对8.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--9.下列交通标志图案是轴对称图形的是( )A .B .C .D .10.在平面直角坐标系xOy 中,线段AB 的两个点坐标分别为A (﹣1,﹣1),B (1,2).平移线段AB ,得到线段A ′B ′.已知点A ′的坐标为(3,1),则点B ′的坐标为( ) A .(4,4)B .(5,4)C .(6,4)D .(5,3)二、填空题11.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.12.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______. 13.4的平方根是 .14.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.15.等边三角形有_____条对称轴.16.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.17.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.18.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____. 19.一次函数y =2x -4的图像与x 轴的交点坐标为_______.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
人教版数学八年级上册易错题难题整理含答案+易错题及答案

人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。
改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。
5、正确说法的个数有(D)4个。
改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。
18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。
2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。
由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。
八年级上册数学易错题总结及答案

八年级上册易错题集及参考答案第十一章三角形1. 一个三角形的三个内角中()A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°2. 如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为.3、三角形的一个外角大于相邻的一个内角,则它的形状;三角形的一个外角小于于相邻的一个内角,则它的形状;三角形的一个外角等于相邻的一个内角,则它的形状。
4、三角形内角中锐角至少有个,钝角最多有个,直角最多有个,外角中锐角最多有个,钝角至少有个,直角最多有个。
一个多边形中的内角最多可以有个锐角。
5.已知一个三角形的三边长3、a+2、8,则a的取值范围是。
6.如图②,△ABC中,∠C=70°,若沿虚线截去∠C,则∠1+∠2= 。
7.如图③,一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= 。
8.△ABC中,∠A=80°,则∠B、∠C的内角平分线相交所形成的钝角为;∠B、∠C的外角平分线相交所形成的锐角为;∠B的内角平分线与∠C的外角平分线相交所形成的锐角为;高BD与高CE相交所形成的钝角为;若AB、AC边上的垂直平分线交于点O,则∠BOC为。
9.一个多边形除去一个内角外,其余各角之和为2 750°,则这个多边形的边数为,去掉的角的度数为.10.一个多边形多加了一个外角总和是1150°,这个多边形是边形,这个外角是度.11.如图,在△ABC中,画出AC边上的高和BC边上的中线。
第十二章全等三角形1.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等;④斜边和一锐角对应相等;⑤两条直角边对应相等;⑥斜边和一条直角边对应相等。
其中能判断两直角三角形全等的是BAC2.已知△ABC与△A′B′C′中,AB=A′B′,BC=B′C′,下面五个条件:①AC=A′C′;②∠B=∠B′;③∠A=∠A′;④中线AD=A′D′;⑤高AH=A′H′,能使△ABC≌△A′B′C′的条件有。
八年级上数学错题集

3 a 9 a 八年级上数学错题集1.如图,在矩形 ABCD 中,已知AB = 8,BC =,点 P 在 BC 上,点 Q 在 CD 上,且 CP=2CQ ,四边形 APCQ 的面积是 7,求 BP 的长。
2. 已知x 的一元二次方程(k -1)x 2 + 2kx + k + 3 = 0 有两个不相等的实数根,求 k 的最大整数值。
3. 若 5的小数部分是b ,则b 的倒数是。
4.计算: a+ -5. 将一元二次方程(3x -1)2 - 2x =4化为一般形式为 , 一次项系数为,常数项为 。
6. 二次三项式x 2 + 20x + 96分解因式的结果为,如果令x 2+ 20x -96=0 ,那么它的两个根是。
7.计算: 9x 2 -18x=16018 3 a 38. 已知关于x的两个一元二次方程:方程:x2 + (2k -1)x +k 2 - 2k +13= 0 ①;2方程:x2 - (k + 2)x + 2k +9= 0 ②4(1)若方程①②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根,试判断方程①、②中,哪个没有实数根,并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的解。
-310.11.已知方程ax2 + c = 0(其中a ≠ 0)没有实数根,则a和c的符号关系为。
12.当等号右边为非负数时,;当等号右边为负数时,方程。
13.已知x2 + 2x -a +1 = 0(a为已知数)没有实数根,试判断x2 + 2x+12a=1 是否一定有两个不相等的实数根,并说明理由。
3m 33 -2 32 5 + 152 +39422314.m取什么值,关于x的方程mx 2 -(2m -1)x +m -2 =0(1)有两个相等的实数根?(2)有两个不相等的实数根?(3)没有实数根?15.如果=-x x +5,则x的取值范围是16.17.已知a +b =-4, ab = 3, 求:b +a a的值b18. 下列计算正确的是----------------------- ()(A)2 - 2 =(B) = 3(C) 1=+ 2 (D) =19.下列各式计算错误的个数为------------------- ( )①3 2 2 = 6 2; ② 5 3 5 = 5 6;③27 -312=-= 1 ④= 3 -1(A) 1 (B) 2 (C) 3 (D) 420.2x -解不等式:- 6x -3x3 + 5x2x2 -2x +3 b a33m5226 - 22235-2 5+221. “如果 x - y 与 2x - y + 1是同类二次根式,则x, y .” 出题者所给的标准答案是“x=-1,y ≤ -1”,你认为出题者的标准答案是否正确?为什么?请说明理由。
人教版八年级上册数学易错题(含解析)

八年级数学上册易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
八年级上册数学常见易错题(内含答案解析)

八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
八年级上册数学错题

八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。
当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。
当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。
故选 B。
错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。
二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。
B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。
C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。
八年级数学经典错题分析

八年级错题集1、如图11-1,,12,,ABE ACD B C ∆≅∆∠=∠∠=∠指出对应边和另外一组对应角。
错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。
错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需要对齐,不能根据对应顶点来确定对应角和对应边。
同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。
正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。
2、如图11-2,在ABD ACE ∆∆和中,AB=AC ,AD=AE ,欲证ABD ACE ∆≅∆,须补充的条件是( )。
A 、∠B =∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ;D 、∠CAD=∠DAE 。
错解:选A 或B 或D 。
错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。
上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。
∠CAD 与∠DAE 不是ABD ∆和ACE ∆中的内角,故不能选择D 。
所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。
正解:选C 。
3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线?错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图①,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,
S2,S3表示,则不难证明S1=S2+S3.
(1)如图②,分别以Rt△ABC三边为边向外作三个正方形,其面积分
别用S1,S2,S3表示,写出它们的关系;(不必证明)
(2)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别
用S1,S2,S3表示,确定它们的关系并证明;
(3)若分别以Rt△ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?
2、王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家
兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若
不能,说明理由.
3、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为
12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()
4、若5x+32的立方根等于-2,求x+17的平方根
5、若a.b 均为正整数,且a >根号7,b<2的立方根,则a+b 的最小值是()
6、如果正方形ABCD的两个相对顶点为B(3,0),D(0,3),那么A、C两点的坐标
分别为:
7、已知点A(m+1,-2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为
(), 如果直线AB∥y轴,那么m的值为()
8、在平面直角坐标系中,点P在x轴的上方,点P到y轴的距离为1,且OP=2,
画出图形并求P点坐标。
9、已知点M(x,y)与点A(-1/5,n)关于x轴对称,与点B(m,1/2)关于y轴对称,求
代数式25x²+20xy+4y²+2013的值
10、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为().
11、如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移3倍根号2个单位,求平移后的直线解析式。
12、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未
超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元).
(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;
(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
13、如果一次函数y=kx+b的自变量x的取值范围-2≤x≤6则相应函数值的范围是
-11≤y≤9.求此函数的解析式
14、如图,直线y=2x+3与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积
15、a为任一实数,一次函数y=ax-2a+1的图像必过一定点,此定点坐标是
( )
16、将长为30cm,宽为10cm的长方形白纸,按如图所示的方法黏合成一条长
为y(cm),宽为10cm的长方形纸带,黏合部分重叠3cm
(1)写出y与x之间的函数关系式
(2)设x张白纸黏合后形成的长方形纸带的面积为S(cm²),写出S 关于x的函数关系式
(3). 求出x=5时,y与S对应的值
17、如图所示,在△ABC中,CD是AB边上的高,且CD²=AD·BD.求证:△ABC是直角三角形.
18、如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要
求所连接的两条线段相交且互相垂直,并说明这两条线
段互相垂直的理由;
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为4/3根号3cm2,求旋转的角度n.
19、某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲、乙两个蓄水池水的深度相同;
(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.
向左转|向右转
20、为发展旅游经济.我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人.非节假日打4折售票.节假日按团队人数分段定价售票,即m 人以下(含m人)的团队接原价售票;超过m人的团队.其中m人仍按原价售票.超过m人部分的游客打b折售票.设某旅游团人数为x人.非节假日购票款为
(元),节假日购票款为 (元).与x之间的函数图象如图8所示.
(1)观察图象可知:a=______;b=______;m=______;
(2)直接写出与x之间的函数关系式:
(3)某旅行杜导游王娜于5月1日带A团.5月20日(非节假日)带B团都到该景区旅游.共付门票款1900元.A,B两个团队合计50人,求A,B两个团队各有多少人?
21、已知函数Y=(k+1)乘以X的K的平方减1+(K-3)X+K,当K取何值时,Y 是X的一次函数?
22、经过点(2,0)且与坐标轴围成的三角形面积为2的直线的解析式是_____
23、图①是一面矩形彩旗完全展平时的尺寸图(单位:cm),其中矩形ABCD是由双层白布缝制的穿旗
杆用的旗裤,阴影部分DCEF为矩形绸缎旗面.
(1)用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到1cm);
(2)将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220cm,在无风的天气里,彩
旗自然
下垂,如图②,求彩旗下垂时最低处离地面的最小高度h.
24、已知a、b为有理数,m、n分别表示5一√7的整数和小数部分,且amn+bn^=1,2a+b=()
25、如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A (10,0〕,C(0,4〕,M是OA的中点,点P在BC边上运动.
(1)当PO=PM时,点P的坐标为()
(2)当△OPM是腰长为5的等腰三角形时,求点P的坐标.
.
26、已知正比例函数过点A(2,-4),P在此正比例函数图像上,若直角坐标平面内
另有一点B(0,4),且S△ABP=8,求点P的坐标。
27、直线y=x-1与坐标轴交与A、B两点,点c在坐标轴上,三角形ABC为等
腰三角形,则满足条件的点C最多有()个。
28、如图,是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是().
A.
B.C.D.
.
29、我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此公司出租车最远能到达___公里处
30、。