第四章 线性方程组 补充题

合集下载

2019年春线性代数补充习题与参考答案

2019年春线性代数补充习题与参考答案

线性代数补充习题第一章 行列式一、填空题1.220a b a b =,则b a ,满足的条件是________ .2.若0010413≠xx x,则x 满足的条件是________ .3.排列3712456的逆序数为________ . 4.排列123(n 1)n -L 的逆序数为________ .5.行列式=0001000000000c b a ________ .6.行列式=-00001002001000ΛΛΛΛΛΛΛΛΛnn ________ . 7.设行列式12230503--a中,余子式632=M ,则=a ________ . 二、选择题1.下列行列式中值为0的是( ).(A )行列式中有两行对应元素之和为0 (B )行列式中对角线上元素全为0(C )行列式中有两行含有相同的公因子 (D )行列式中有一行与另一列对应元素成比例2.在函数xx x xxx f 21112)(---=中,3x 的系数是( ).(A )1 (B )-2 (C )3 (D )43.设121=b b ,则=++22121121111b a a a b a a a ( ).(A )-2 (B )-1 (C )1 (D )24.设1333231232221131211=a a a a a a a a a ,则111112132121222331313233423423423a a a a a a a a a a a a --=-( ). (A )-12 (B )12 (C )-24 (D )245.设0333231232221131211≠=a a a a a a a a a D ,ij A 是D 元素ij a 的代数余子式(3,2,1,=j i ),若0333223113≠++j j j A a A a A a ,则( ).(A )1=j (B )2=j (C )3=j (D )1=j 或3=j 6.下列选项是偶排列的是( )(A )12435 (B )54321 (C )32514 (D )542317.设001000102001000a =-,则a =( ) (A )12-(B )12(C )1 (D )-1 8.如果线性方程组12312312313231x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪-+=⎩有唯一解,则λ必须满足( )(A )1λ≠ (B )15λ≠-(C )15λ≠ (D )1λ≠- 三、判断题1.交换行列式的两行(列),行列式的值不变.( )2.n 阶行列式中,若有n n -2个以上元素为0,则行列式的值为0.( )3.333333222222111111d c c b b a d c c b b a d c c b b a +++++++++333222111c b a c b a c b a =333222111d c b d c b d c b +.( )4.元素ij a 的代数余子式ij A 与ij a 所在有行、列有关,而与ij a 的值无关.( )5.10100001111010001100111001111100010111100010001d c b a dc b a +++=.( )6.n 阶行列式中,某行元素全为0,则行列式的值为0.( )第一章 行列式1、a b =2、0≠x 且2≠x3、74、05、abc6、!)1(2)1(n n n -- 7、3-二、选择题1、A2、B3、C4、A5、C6、B7、A8、B三、判断题1、×2、√3、×4、√5、√6、√第二章 矩阵一、填空题1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010501,10001001B x A ,且B A =,则=x ________ . 2.设⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=23,1102b a B A ,若BA AB =,则b a ,为 .3.设⎥⎦⎤⎢⎣⎡=101a A ,则=nA . 4.设()⎥⎦⎤⎢⎣⎡=+-=2011,522A x x x f ,则()=A f . 5.设⎥⎦⎤⎢⎣⎡=5221A ,则A 的伴随矩阵=*A . 6.设)0(≠-⎥⎦⎤⎢⎣⎡=cb ad d c b a A ,则A -1= . 7.若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A O21(n i a i ,,2,1,0Λ=≠),则=-1A .8.设3=A ,且A 为二阶方阵,则=A 3 .9.已知⎥⎦⎤⎢⎣⎡=012301A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021B ,则=AB .10.21121214X ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,则=X .1.=⎥⎦⎤⎢⎣⎡++++c b b a z y y x ( ). (A )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b b z y y c b a z y x (B )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b z y b a y x (C )⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡c b z y b a y x (D )⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++c b a z y x b b a y y x2.设C B A ,,均为n 阶方阵,且E ABC =,则必有( ). (A )E CBA = (B )E BCA = (C )E BAC = (D )E ACB =3.已知矩阵 )(,n m B A m n n m ≠⨯⨯,则下列运算结果不为n 阶方阵的是( ). (A )BA (B )AB (C )TBA )( (D )T T B A 4.若A 是( ),则必有A A T-=.(A )可逆矩阵 (B )三角矩阵 (C )初等矩阵 (D )反对称矩阵 5.设B A ,均为n 阶方阵,则下列运算正确的是( ).(A )()kk kB A AB = (B )A A -=-(C )()()B A B A B A +-=-22 (D )若A 可逆,0≠k ,则()111---=A k kA6.矩阵A 经初等行变换化为行阶梯形矩阵后( ).(A ) 秩变大 (B )秩变小 (C )秩不变 (D )化为单位方阵 7.设A 是3阶可逆矩阵,λ为实数,如果A A 8=λ,则( ). (A )2=λ (B )2-=λ (C )1=λ (D )8=λ 8.设A 是n 阶方阵,k 为非零实数,则=-kA ( ).(A )()A k nn1- (A )A k n(C )A k - (D )A k9.设B A ,均为n 阶矩阵,则必有( ).(A )B A B A +=+ (B )BA AB = (C )BA AB = (D )()111---+=+B A B A三、判断题1.设B A ,都是n m ⨯矩阵,则A B B A +=+.( ) 2.两个n 阶可逆矩阵之和一定是可逆矩阵.( )3.如果A 与B 可交换,且A 可逆,则1-A 与B 可交换.( ) 4.n 阶方阵A 可逆的充分必要条件是0=A .( )5.设C B A ,,都是n 阶方阵,且0≠A ,若AC AB =,则C B =.( ) 6.设B A ,都是n 阶方阵,若0=AB ,则0=B .( ) 7.若A 与B 为n 阶方阵,则BA AB =.( )8.设A 与B 为n 阶方阵,且A 为对称矩阵,则AB B T 也是对称矩阵.( ) 9.设A 与B 为n 阶方阵,则B A AB =.( )10.若A 和B 皆为n 阶方阵,则必有B A B A +=+.( )第二章 矩阵一、填空题1、52、0,11==b a3、⎥⎦⎤⎢⎣⎡101na 4、⎥⎦⎤⎢⎣⎡5014 5、⎥⎦⎤⎢⎣⎡--1225 6、⎥⎦⎤⎢⎣⎡---a c b d bc ad 17、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211n a a a O8、27 9、6- 10、1012⎡⎤⎢⎥-⎣⎦二、选择题1、C2、B3、B4、D5、D6、C7、A8、A9、C三、判断题1、√2、×3、√4、×5、√6、×7、×8、√9、√ 10、×第三章 向量组的线性相关性一、填空题1.设()()TT2,3,1,1,1,221-=-=αα,若()T5,,13λα=可由21,αα线性表示 ,则=λ .2.设()()()1231,2,3,5,4,1ααα===,则12,αα的线性相关性为线性 .3.设()()()1231,2,3,2,2,1,3,4,3ααα===,则123,,ααα的线性相关性为线性 .4.若向量组321,,ααα线性无关,则321321211,2,αααβααβαβ++=+==的线性关系为 . 5.若向量组()()()TTTt t 1,0,0,0,2,1,0,1,12321+==+=ααα的秩为2,则=t .6.若向量组()()()TTTk k k 0,1,,2,2,,7,1,6321==+=ααα的秩为3,则≠k .二、选择题1.向量组n ααα,,,21Λ线性无关的充要条件是( ). (A) n ααα,,,21Λ均不为零向量(B) n ααα,,,21Λ中任意两个向量的对应分量不成比例 (C) n ααα,,,21Λ中有一个部分向量线性无关(D) n ααα,,,21Λ中任意一个向量都不能由其余1-n 个向量线性表示 2.设向量组321,,ααα线性无关,则与321,,ααα等价的向量组为( ). (A) 3221,αααα++ (B) 2121214,3,,αααααα-+ (C) 31312121,,,αααααααα-+-+ (D) 3221,αααα-+ 3.设向量组γβα,,线性无关,δβα,,线性相关,则( ). (A) α必可由δγβ,,线性表示 (B) β必不可由δγα,,线性表示 (C)δ必可由γβα,,线性表示 (D) δ必不可由γβα,,线性表示4.设向量组12,s αααL 的秩等于3,则( ).(A) 12,s αααL 任意3个向量都线性无关 (B) 12,s αααL 中没有零向量(C) 12,s αααL 任意4个向量都线性相关 (D) 12,s αααL 任意2个向量都线性无关5. 向量组123(,1,1),(1,,1),(1,1,)T T Ta a a ααα==-=-线性相关,则=a ( )(A) 12-或 (B)13-或 (C) 10或 (D)32或三、判断题1.设向量组r ααα,,,21Λ与s βββ,,,21Λ都线性相关,且可以互相线性表示,则必有s r =.( ) 2.n 维向量组)1(,,,21>s s αααΛ线性相关的充要条件是其中有一个向量可由其余向量线性表示.( ) 3.设n 维向量组r ααα,,,21Λ中每一个向量均可由s βββ,,,21Λ线性表示,且s r >,则r ααα,,,21Λ必线性相关.( )4.设n ααα,,,21Λ为n 个m 维向量,且m n >,则该向量组必定线性相关.( ) 5.设321,,ααα是线性无关向量组,则向量组32121105,3,2ααααα+-也线性无关.( )6.设向量组r ααα,,,21Λ与s βββ,,,21Λ等价,则r ααα,,,21Λ的任一极大无关组与s βββ,,,21Λ的任一极大无关组可互相线性表示.( )第三章 向量组的线性相关性一、填空题1、-82、线性相关3、线性无关4、线性无关5、16、23-和4 二、选择题1、D2、C3、C4、C5、A三、判断题1、×2、√3、√4、√5、√6、√第四章 线性方程组一、填空题1.n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 仅有零解的充分必要条件是 .2.n 元非齐次线性方程组Ax b =,其增广矩阵记为A% 则方程组有唯一解的充要条件为 . 3.n 元非齐次线性方程组Ax b =,其增广矩阵记为A% 则方程组有无穷多解的充要条件为 . 4.若方程组⎪⎩⎪⎨⎧=++=++=++23213213211k kx x x k x kx x x x kx 无解,则=k .5.设方程组⎪⎩⎪⎨⎧-=+-=++-=++4224321321321kx x x x kx x kx x x 有唯一解,则≠k .6.齐次线性方程组()⎪⎩⎪⎨⎧=-+=+++=++02023202321321321x ax x x a x x x x x 只有零解,则≠a .7.齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-020743032321321321ax x x x x x x x x 有非零解,则=a .二、选择题1.设A 为n m ⨯矩阵,则齐次线性方程组0=Ax 仅有零解的充分必要条件是系数矩阵A 的秩为r ( ). (A) m r < (B) n r < (C) m r = (D) n r =2.设n 元齐次线性方程组0=Ax ,若n r A R <=)(,则该方程组的基础解系( ).(A )唯一存在 (B )共有r n -个 (C )含有r n -个解向量 (D )含有无穷多个解向量3.已知321,,ααα是线性方程组0=Ax 的一个基础解系,则必有( ). (A )321,,ααα线性相关 (B )321,,ααα线性无关(C )133221,,αααααα+++线性相关 (D )133221,,αααααα+++不是0=Ax 基础解系 4.方程组⎩⎨⎧=+--=-++032054354325431x x x x x x x x 的一组基础解系是由( )个解向量组成的.(A )2 (B )1 (C )3 (D )05. n 元非齐次线性方程组Ax b =,其增广矩阵记为A % 则方程组无解的充要条件为( ). (A )()(A)r Ar >% (B )()(A)r A r =% (C )()(A)r A r <% (D )()(A)r A r ≠% 6.设s ααα,,,21Λ是n 元齐次线性方程组0=Ax 的基础解系,则( ). (A )s ααα,,,21Λ线性相关 (B )0=Ax 的任意1+s 个解向量线性相关 (C )n A R s =-)( (D )0=Ax 的任意1-s 个解向量线性相关 7.若321,,ααα是齐次线性方程组0=Ax 的一个基础解系,则( ).(A )133221,,αααααα+++也是0=Ax 的一个基础解系 (B )基础解系具有唯一性 (C )133221,,αααααα+++不一定是0=Ax 的基础解系 (D )以上说法都不对 8.设A 为n m ⨯矩阵,非齐次线性方程组b Ax =的导出组为0=Ax ,若n m <,则( ). (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解三、判断题1.设21,ξξ为齐次线性方程组0=Ax 的解,1η为非齐次线性方程组b Ax =的解,则22111ξξηk k ++为b Ax =的通解(21,k k 为任意实数).( )2.设21,ξξ为齐次线性方程组0=Ax 的解,21,ηη为非齐次线性方程组b Ax =的解,则()()2121ηηξξ-++为0=Ax 的解.( ) 3.含有n 个方程的n 元齐次线性方程组0=Ax ,仅有零解的充要条件是0A =.( ) 4.含有n 个方程的n 元齐次线性方程组0=Ax ,有非零解的充要条件是0A ≠.( )5.若方程组⎪⎩⎪⎨⎧=++=++=++000321321321kx x x x kx x x x kx 有非零解,则k 应满足的条件是0=k 或1=k .( )6.若方程组⎪⎩⎪⎨⎧=+=++=++03 02032321321x kx x x x x kx x 只有零解,则k 应满足的条件是53=k .( )第四章 线性方程组一、填空题1、r n =2、(A)r(A)n r ==% 3、(A)r(A)n r =<% 4、2- 5、1-和2- 6、1-和3 二、选择题1、D2、C3、B4、C5、D6、B7、A8、C三、判断题1、√2、√3、×4、×5、×6、×第五章 矩阵的特征值一、填空题1.设()()TT0,1,2,1,0,121==αα,则内积[]=21,αα .2.设()Tk 2,1,2=α为单位向量,则=k .3.设321,,ξξξ是矩阵A 的属于不同特征根321,,λλλ的特征向量,则321,,ξξξ是线性 . 4.设A 的特征值为1,2-,3,则A 2的特征值为 .5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=014020112A ,则A 的特征值为 . 6.若0λ为A 的一个特征值,则矩阵多项式()A f 有一个特征值为 . 7.已知三阶矩阵A 的三个特征值为1, -1,2,则()2E A -的特征值为 .8.设0≠λ为方阵A 的一个特征值,则()13-A 有一个特征值为 .9.设A 为n 阶方阵,方程组0=Ax 有非零解,则A 必有一个特征值为 . 10.n 阶矩阵A 可对角化的充分必要条件是A 有 个线性无关的特征向量.11.0是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 01020101的特征值,则=a .二、选择题1.下列结论中不正确的是( ).(A )若n 维向量α与β正交,则对任意实数l k ,,αk 与βl 也正交; (B )若n 维向量β与21,αα都正交,则β与21,αα的任意线性组合也正交; (C )若n 维向量α与β正交,则βα,中至少有一个是零向量; (D )若n 维向量α与任意n 维向量都正交,则α是零向量. 2.设A 是正交矩阵,则下列结论不正确的是( ).(A )1-A 是正交矩阵 (B )T A 是正交矩阵 (C )1±=A (m 是正整数) (D )kA (1≠k )是正交矩阵 3.下列说法正确的是( ).(A )因为特征向量都是非零向量,所以它对应的特征值非零; (B )一个特征值可对应多个特征向量; (C )一个特征向量可以属于多个特征值; (D )n 阶矩阵有n 个不同的特征值.4.设n 阶可逆矩阵A 有一特征值为λ,则A *的特征值之一是( ). (A )nA 1-λ (B )A 1-λ(C )A λ (D )nA λ5.设n 阶可逆矩阵A 有一特征值为λ,则1*--A A 的特征值之一是( ).(A )11---λλA (B )11--+λλA (C )λλ+-A 1 (D )λλ--A 16.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( ).(A )充分而非必要条件 (B )充要条件 (C )必要而非充分条件 (D )无关的条件7.设n λλλ,,,21Λ是n 阶对称矩阵A 的特征值,{}n diag λλλ,,,21Λ=Λ,则( )不成立. (A )A 与()()Λ=r A r (B )kA 与kΛ相似 (C )Λ=A (D )Λ≠A8.下列矩阵中与矩阵⎥⎦⎤⎢⎣⎡=Λ2011相似的是( ). (A )⎥⎦⎤⎢⎣⎡--2001 (B )⎥⎦⎤⎢⎣⎡2211 (C )⎥⎦⎤⎢⎣⎡2001 (D )⎥⎦⎤⎢⎣⎡10119.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ10000002,210100002y B ,若B A ,相似,则=y ( ). (A) 1 (B) 2 (C) 1- (D) 2-10.对于实矩阵A ,以下结论正确的是( ).(A )一定有n 个不同的特征值 (B )存在可逆矩阵B ,使AB B 1-为对角矩阵(C )它的特征值一定是实数 (D )属于不同特征值的特征向量一定线性无关三、判断题1.线性无关向量组一定可以化为等价的正交向量组.( )2.正交向量组必线性无关.( )3.若n 阶方阵A 与B 相似,则A 与B 必有相同的特征值和特征向量.( )4.设21,ξξ分别是实对称方阵A 对应于两个不同特征值21,λλ的特征向量,则内积[]0,21=ξξ.( )5.n 阶矩阵A 可逆的充要条件是A 的任一特征值不等于0.( )6.n 阶矩阵A 可与对角阵相似的充分必要条件是A 有n 个相异的特征值.( )7.n 阶矩阵A 可与对角阵相似的充分必要条件是A 有n 个线性无关的特征向量.( )8.n 阶方矩阵A 一定可与对角阵相似.( )9.特征多项式相同的矩阵一定相似.( ).第五章 矩阵对角化一、填空题1、22、31± 3、无关 4、2,4-,6 5、1-,2,2 6、)(0λf 7、0,1,4 6,11 8、131-λ 9、0 10.n 11. 1二、选择题1、C2、D3、B4、B5、A6、A7、D8、C9、A三、判断题1、√2、√3、×4、√5、√6、×7、√8、√9、×期考大题题型及分值计算题(一)(本大题共2小题,每小题4分,共8分.请写出计算过程、步骤.) 1.计算行列式201325143.2.121110212,231123341A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭计算23A B +计算题(二)(本大题共5小题,每题8分,共40分.请写出计算过程、步骤.)1.计算行列式0111101111011110.2.求111011101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.求向量组()()()()12341,0,3,1,1,3,0,1,2,1,7,2,4,2,14,4T T T Tαααα==--==的秩与它的一个极大无关组,并将其余向量用此极大无关组线性表示.4.解方程组:1231231234441624x x x x x x x x x ++=⎧⎪-++=⎨⎪-+=-⎩5.求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111020011A 的特征值证明题(6分)设321,,ααα线性无关,3211αααβ--=,3212αααβ-+-=,3213αααβ+--=,证明:321,,βββ线性无关.。

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

线性代数第四章练习题答案

线性代数第四章练习题答案

线性代数第四章练习题答案第一篇:线性代数第四章练习题答案第四章二次型练习4、11、写出下列二次型的矩阵2(1)f(x1,x2,x3)=2x12-x2+4x1x3-2x2x3;(2)f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4。

解:(1)因为⎛2f(x1,x2,x3)=(x1,x2,x3) 0 2⎝⎛2 所以二次型f(x1,x2,x3)的矩阵为: 0 2⎝0-1-10-1-12⎫⎪-1⎪0⎪⎭⎛x1 x2 x⎝3⎫⎪⎪, ⎪⎭2⎫⎪-1⎪。

0⎪⎭(2)因为⎛0 f(x1,x2,x3,x4)=(x1,x2,x3,x4) 1 1⎝⎛0 1所以二次型f(x1,x2,x3,x4)的矩阵为: 1 1⎝***11⎫⎪0⎪1⎪⎪0⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪,⎪⎪⎭1⎫⎪0⎪。

⎪1⎪0⎪⎭2、写出下列对称矩阵所对应的二次型:⎛1 1(1) -2 1 ⎝212⎛01⎫⎪2⎪1 -2⎪;(2)2 ⎪-1⎪2⎪⎭0⎝12-11212-112012⎫0⎪⎪1⎪2⎪。

1⎪⎪2⎪1⎪⎪⎭-0-2T解:(1)设X=(x1,x2,x3),则⎛1 f(x1,x2,x3)=XTAX=(x1,x2,x3) -2 1 ⎝2-120-21⎫⎪2⎪-2⎪⎪⎪2⎪⎭⎛x1 x2 x⎝3⎫⎪⎪⎪⎭=x12+2x32-x1x2+x1x3-4x2x3。

(2)设X=(x1,x2,x3,x4)T,则⎛0 1f(x1,x2,x3,x4)=XTAX=(x1,x2,x3,x4)2 -1 0⎝12-11212-11201 2⎫0⎪⎪1⎪2⎪1⎪⎪2⎪1⎪⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪⎪⎪⎭2=-x2+x4+x1x2-2x1x3+x2x3+x2x4+x3x4。

练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。

22(1)f(x1,x2,x3)=2x1+x2-4x1x2-4x2x3;(2)f(x1,x2,x3)=2x1x2-2x2x3;222(3)f(x1,x2,x3)=x1+2x2+3x3-4x1x2-4x2x3。

2020考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强..

2020考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强..

考研数学之线性代数第四章线性方程组基础与强化训练题(含答案,强烈推荐)习题部分一.填空(每题2分)1.设方程组22112122x x kx x kx x 有非零解,则k。

2.线性方程组960654032321321321x x x x x x x x x 有非零解,则。

3.方程组211111111321x x x aa a有无穷多解,则a。

4.非齐次线性方程组b AX(A 为m n 矩阵)有惟一解的的充分必要条件是____________。

5.设A 是n 阶方阵,21,是齐次线性方程组O AX 的两个不同的解向量,则A。

6.设A 为三阶方阵,秩2A r ,321,,是线性方程组b b AX 的解,已知10131321,,则线性方程组b AX 的通解为。

7.三元线性方程组b AX的系数矩阵的秩2A r ,已知该方程组的两个解分别为1111,1112,则b AX 的全部解可表为。

8.设1686493436227521a A,欲使线性齐次方程组O AX 的基础解系有两个解向量,则a =。

9.当a时,线性方程组233321321321321x ax x ax x x x x x 无解。

10.方程组321011032x x x =0的基础解系所含向量个数是___ ______。

11.若5元线性方程组b AX的基础解系中含有2个线性无关的解向量,则Ar 。

12.设线性方程组414343232121a x x a x x a x x a x x 有解,则4321a ,a ,a ,a 应满足条件。

13.设齐次线性方程组为021nx x x ,则它的基础解系中所包含的向量个数为。

14.设21,是非齐次线性方程组b AX 的解向量,则21是方程组的解向量.15.设s,,,21为非齐次线性方程组b AX 的一组解,如果ssc c c 2211也是该方程组的一个解,则sc c c 21。

16.设矩阵1111110A ,则齐次线性方程组O X A E 的一个基础解系为。

线性代数补充习题解

线性代数补充习题解

书本p59习10.设n 21a ,,a ,a 是一组n 维向量,已知n 维单位坐标向量n 21e ,e ,e 能由它们线性表示,证明n 21a ,,a ,a 线性无关。

证明:由于任意n 维向量均可由单位坐标向量n 21e ,e ,e 线性表示,所以向量组n 21a ,,a ,a 能由n 21e ,e ,e 线性表示,又由题中条件n 21e ,e ,e 能由n 21a ,,a ,a 线性表示,于是n 21a ,,a ,a 与n 21e ,e ,e 等价,因此它们的秩相等,又向量组n 21e ,e ,e 的秩为n ,所以向量组n 21a ,,a ,a 的秩也为n ,于是n 21a ,,a ,a 线性无关。

与书p137习6及练习八、一(3)相似题.设四元非齐次线性方程组的系数矩阵的秩为3,已知1η,2η,3η是它的三个解向量,且1η=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5432,2η+3η=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321,求该方程组的通解。

解:由四元非齐次线性方程组的系数矩阵的秩为3,知对应齐次线性方程组的基础解系只有一个解向量。

由119页及129页性质知21η-(2η+3η)=(1η-2η)+(1η-3η)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡6543是对应齐次线性方程组的一个解,由于其不等于0,于是它是一个基础解系,因此原非齐次线性方程组的通解为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5432+k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡6543,其中k 为任意实数。

书p138习10设*η是非齐次线性方程组Ax=b 的一个解,1ξ,r n 2,,-ξξ 是对应的齐次线性方程组的一个基础解系。

证明:(1)*η,1ξ,r n 2,,-ξξ 线性无关;(2)*η,*η+1ξ,。

,*η+r -n ξ线性无关。

证明:(1)由*η是非齐次线性方程组Ax=b 的一个解,1ξ,r n 2,,-ξξ 是对应的齐次线性方程组的一个基础解系,于是有A *η=b , A i ξ=0。

大学线性代数章节题附加参考题

大学线性代数章节题附加参考题

0 ⎞ ⎟ 0 ⎟ M ⎟ ,其中 ai ≠ 0 (i = 1,2,L , n) ,则 A −1 = ( ⎟ L a n −1 ⎟ L 0 ⎟ ⎠
) 。
) 。
⎛ 1 0 0⎞ ⎜ ⎟ −1 (10)设 A = ⎜ 2 2 0 ⎟ , A * 是 A 的伴随矩阵,则 ( A*) = ( ⎜ 3 4 5⎟ ⎝ ⎠
⎛5 ⎜ ⎜2 (3)设 A = ⎜ 0 ⎜ ⎜0 ⎝ 2 1 0 0 0 0 ⎞ ⎟ 0 0 ⎟ , 则 A −1 = ( ⎟ 1 −2 ⎟ 1 1 ⎟ ⎠
) 。
) 。
⎛ 1 0 2⎞ ⎜ ⎟ (4) 设 A 为 4×3 的矩阵,且 A 的秩为 R(A)=2, B = ⎜ 0 2 0 ⎟, 则 R(AB)=( ⎜ −1 0 3⎟ ⎝ ⎠
2, 3, 4) , α 2 = (2, 3, 4, 5) , α 3 = (3, 4, 5, 6 ) ,
) 。
α 4 = (4, 5, 6, 7 ) ,则该向量组的秩为(
(2) 已知三维向量空间的一个基为 α 1 = (1, 1,
0) ,α 2 = (1, 0, 1) ,α 3 = (0, 1, 1) ,
(2)设 A 是 3 × 3 矩阵,B 为 4 × 4 矩阵,且|A|=1,|B|=2, 则行列式||B|A|=( (a)-2; (b) 2; (c) 8; (d) -8.
(3)设 A 是 3 × 3 矩阵, | A |= −2 ,把 A 按列分快为 A = ( A1 , A2 , A3 ) ,其中 A j ( j = 1,2,3) 是 A 的第 j 列,则行列式 | A3 − 2 A1 ,3 A2 , A1 |= ( ) 。
−1
9.设 (2 E − C B ) A = C ,其中 E 是 4 阶单位阵, A 表示 A 的转置矩阵,

线性代数 (清华大学出版)课后习题部分解答(第四章)

线性代数 (清华大学出版)课后习题部分解答(第四章)

第四章课后习题 及解答1. 证明:T )(1,1,1,11=α, T )(1,1,1,12--=α, T )(1,1,1,13--=α, T )(1,1,1,14--=α是4R 的一组基, 并求T )(1,1,2,1=β在这组基下的坐标.证明:0161111111111111111,,,4321≠-=------=)(αααα.R ,,,44321的一组基是αααα∴设β在这组基下的坐标为x ,则x )(4321,,,ααααβ=,从而 βαααα14321,,,-=)(x⎝⎛⎪⎪⎪⎪⎪⎭⎫--→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------4141414510001000010000111211111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛--=∴111541x 2. 已知3R 的两组基为.6,1,1,1,2,5,4,1,3,1,7,3,3,3,2,1,2,1T3T 2T 1T1T 2T 1)()()()()()(-======βββααα求:(1)向量T2,6,3)(=γ在基{}321,,ααα下的坐标; (2)基{}321,,ααα到基{}321,,βββ的过渡矩阵; (3)用公式(4.7)求γ在基{}321,,βββ下的坐标。

解:(1)设γ在基{}321,,ααα下的坐标为x ,则:x )(321,,αααγ=从而 γααα1321,,-=)(x⎪⎪⎪⎭⎫- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫112100010001263131732321 ⎪⎪⎪⎭⎫⎝⎛-=∴112x(2)设基{}321,,ααα到基{}321,,βββ的过渡矩阵为A ,则:A ,,,,321321)()(αααβββ=从而 )()(3211321,,,,A βββααα-= ⎪⎪⎪⎭⎫--- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫-8124920941712710010001614121153131732321 ⎪⎪⎪⎭⎫⎝⎛---=∴81249209417127A (3)设γ在基{}321,,βββ下的坐标为y ,则:x y 1A -= ⎪⎪⎪⎭⎫-⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫----4832534153100100111281249209417127⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴83106153414832534153y3. 已知4R 的两组基为.2,1,3,1,2,1,1,2,2,2,1,0,1,0,1,21,0,1,1,1,1,2,1,1,1,1,1,0,1,2,1T4T3T2T1T4T 3T 2T 1)()()()()()()()(=-===--=-=-=-=ββββαααα(1)求基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵;若γ在基{}4321,,,αααα下的坐标为T 0,0,0,1)(,求γ在基{}4321,,,ββββ下的坐标.(2)求基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵;若ξ在基{}4321,,,ββββ下的坐标为T 0,1,2,1)(-,求ξ在基{}4321,,,αααα下的坐标.(3)已知向量α在基{}4321,,,αααα下的坐标为T 0,1,2,1)(-,求它在基{}4321,,,ββββ下的坐标.解:(1)设基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵为A ,则:A ,,,,,,43214321)()(ααααββββ=从而 )()(432114321,,,,,,A ββββαααα-=⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------0111101011100110001000010000122211120311112021110011112121111 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴010111010111001A 设γ在基{}4321,,,ββββ下的坐标为y ,则:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001A 1-y⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫101-01000100001000010001010111010111001 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴101-0y(2) 设基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵为B ,则:B ,,,,,,43214321)()(ββββαααα= ),,,(),,,(432114321B ααααββββ-=⎪⎪⎪⎪⎪⎭⎫----⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------11111000001111101000100001000011110111121211112221112031111202⎪⎪⎪⎪⎪⎭⎫⎝⎛----=∴1111100000111110B设ξ在基{}4321,,,αααα下的坐标为x ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1131012101011101011100101-21A x(3)设α在基{}4321,,,ββββ下的坐标为z ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20130121111110000011111001-21B z 4. 在4R 中找一个向量γ,它在自然基{}4321,,,εεεε和基T4T3T2T13,1,6,6,1,2,3,5,0,1,3,0,1,1,1,2)()()()(===-=ββββ下有相同的坐标.解:设所求坐标为x ,则它满足:x x )()(43214321,,,,,,ββββεεεε= 即:0211111163216501=⎪⎪⎪⎪⎪⎭⎫⎝⎛-x⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110010101001211111163216501 ∴此齐次线性方程组的一般解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1111k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==∴1111,,,4321k x )(可取εεεεγ 5. 已知)()()(2,2,1,1,1,1,3,2,1,1,2,1---=-=-=γβα。

线性代数第四章考研辅导资料

线性代数第四章考研辅导资料

线性代数第四章考研辅导资料一、填空选择题1.若非齐次线性方程组123121231,3,31kx x x x kx x x x ++=⎧⎪+=⎨⎪++=⎩ 有唯一解,则().A .0k =或3k = B.0k ≠ C.3k ≠ D.0k ≠且3k ≠2.当λ取( )时,方程组12323232132(3)(4)(2)x x x x x x x +-=-⎧⎪-=-⎨⎪-=--+-⎩λλλλλλ有无穷多解.A.1B.2C.3D.43.非齐次方程组Ax b =中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r , 则( )A.r m =时,方程组Ax b =有解;B.r n =时,方程组Ax b =有唯一解;C.m n =时,方程组Ax b =有唯一解;D.r n <时,Ax b =有无穷解.4.设A 为m n ⨯矩阵,齐次线性方程组0Ax =仅有零解的充分条件是( )A.A 的列向量线性无关;B.A 的列向量线性相关;C.A 的行向量线性无关;D.A 的行向量线性相关.5.已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是对应的齐次线性方程组0Ax =的基础解系,12,k k 为任意常数,则方程组Ax b =的通解是( ) A.1211212()2k k ββααα-+++ B31211212()2k k ββααα++-+; C.1211212()2k k ββαββ-+++ D31211212()2k k ββαββ++-+6.设123,,ααα是四元非齐次线性方程组Ax b =的三个解向量,且()3R A =,()()T T 1121,2,3,4,0,1,2,3=+=ααα,则线性方程组Ax b =的通解为( ) A.11213141k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ B.10213243k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ C.12233445k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ D.13243546k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7.设12,αα是非齐次线性方程组Ax b =的解,β是对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( )A. 12αα+B. 12αα-C. 12βαα++D.121122βαα++ 8.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =必有( ).A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解B .(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解C .(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解D .(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解9.设A 为n 阶实矩阵,且A 中某元素的代数余子式0ij A ≠,则0Ax =的基础解系中所含向量个数为( )A.1B.iC.jD.n10.设有非齐次线性方程组Ax b =,下列说法正确的是( )A.导出组0Ax =只有零解时,Ax b =只有唯一解;B.导出组0Ax =有非零解时,Ax b =有无穷多解;C.若Ax b =有两个互异解,则Ax b =有无穷多解;D.以上都不对11.设n 阶矩阵A 的各行元素之和为零,且A 的秩为1n -,则线性方程组0Ax =的通解为_____.12.设齐次线性方程组为120n x x x +++=,则它的基础解系所含向量个数为 .13.若非齐次方程组123412341234 242 217411x x x x x x x x x x x x λ+-+=⎧⎪-++=⎨⎪+-+=⎩ 有解,则λ=14.若齐次方程组123123123 0 00x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩ 有非零解的充分必要条件是λ=15.线性方程组123123123123332x x x x x ax x ax x +-=⎧⎪++=⎨⎪++=⎩有唯一解,则a 满足条件16.设12,,,s γγγ为非齐次方程组Ax b =的一组解,且1122s s c c c γ+γ++γ亦为Ax b =的解,则12s c c c +++= 17.五元齐次线性方程组0Ax =的同解方程组为122300x x x +=⎧⎨=⎩,则A 的秩为二、解答题1.求非齐次线性方程组1234123412342 1422221x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩的通解2设方程组123123123(1)0(1)3(1)+++=⎧⎪+++=⎨⎪+++=⎩k x x x x k x x x x k x k , 问k 取何值时,此方程组(1)有唯一解; (2)无解; (3)有无穷多解?并在有无穷多解时求通解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则导出组 AX O 的通解是什么? AX
的通解是什么?
(2)设 n 阶方阵 A 的各行元素之和为 0 , r ( A) n 1 ,则齐次线性方程组
AX O 的通解是什么?
(3)设 1 , 2 , 3 是四元非齐次线性方程组 AX
的三个解,且 r ( A) 3 ,
1 (1,2,3,4) T , 2 3 (0,1,2,3) T ,则 AX 的通解是什么?
(4)已知 4 阶方阵 A ( 1 , 2 , 3 , 4 ) ,其中 2 , 3 , 4 线性无关, 1 2 2 3 , 如果 1 2 3 4 ,则线性方程组 AX
1 O, A 1 k 1 , A 2 l 1 k 2 , A 3 l 2 k 3
其中 k , l 都是数且 l 0 ,证明 1 , 2 , 3 线性无关。 8.求下列线性方程组的通解 (1)设 1 , 2 为非齐次方程组 AX
的两个不同解, A 是秩为 3 的 3 4 矩阵,
的三个解,求该方程组的通解。
1 1 2 10. 设 A 2 2 4 ,求一秩为 2 的三阶矩阵 B ,使得 AB O 。 3 3 6
11.设 为非齐次方程组 AX
的一个解,又1 , 2 , , r 是 AX 的导出组
AX O 的基础解系,证明:
(1) ,1 , 2 , , r 线性无关; (2) ,1 , 2 , , r 是 AX
的 r 1 个线性无关的解。
12.设 A 是 n m 矩阵, B 是 m n 矩阵,其中 n m ,若 AB E n ,证明: B 的列 向量组线性无关。 13.已知 m 个向量 1 , 2 , , m 线性相关,但其中任意 m 1 个向量都线性无关,证明: (1)如果等式 k1 1 k 2 2 k m m O ,则 m 个数 k1 , k 2 , , k m 或者全为 0 , 或者全不为 0 。 (2)如果存在两个等式:
T T T T
当 a, b, c 满足什么条件时, (1) 可由 1 , 2 , 3 线性表示,且表示法唯一; (2) 不能由 1 , 2 , 3 线性表示; (3) 可由 1 , 2 , 3 线性表示,但表示法不唯一。 18. k 为何值时,线性方程组
第四章 线性方程组 补充题
1.设 1 (1,1,1), 2 (1,2,3), 3 (1,3, t ) , (1)问 t 为何值时, 1 , 2 , 3 线性相关? (2)问 t 为何值时, 1 , 2 , 3 线性无关? (3)当线性相关时,将 3 表示为 1 , 2 的线性组合。 2.设向量组 1 , 2 , , t (t 2) 线性无关,令 1 2 3 t ,
k1 1 k 2 2 k m m O (1)和 l1 1 l 2 2 l m m O (2) ,
其中 l1 0 ,则
k k1 k 2 m 。 l1 l2 lm
14.已知向量组 ( I ) : 1 , 2 , , r 能由向量组 ( II ) : 1 , 2 , , s 线性表示,设
1 , 2 ,, s ( I )
线性无关的充要条件是,存在向量 可由向量组 ( I ) 线性表示,但不能由其中任何少于 s 个向 量线性表示。 5.设向量组 1 , 2 , , n 线性无关,证明;当且仅当 n 为奇数时,向量组
1 2 , 2 3 , , n 1 n , n 1
有无穷多解;
T
(2)若 X ( x1 , x 2 , , x n ) 为 AX
的解,则 x n 1 。
20.已知向量组 1 , 2 , 3 线性无关,讨论:当向量组 a 2 1 , b 3 2 , a 1 b 3 线 性相关时,线性方程组
也线性无关。 6.证明 n 维列向量 1 , 2 , , n 线性无关当且仅当 n 阶行列式
D
1T 1 1T 2 1T n T T T 2 2 2 2 2 n
T T T n 1 n 2 n n



0。
7.设 A 是 n 阶矩阵, 1 , 2 , 3 是 n 维列向量,且
1 1 2 2 P , r s
其中 P 为 r s 矩阵,且向量组 ( II ) 线性无关,证明:向量组 ( I ) 线性无关的充要条件是 秩 ( P) r 。 15.设 A, B 都是 n 阶方阵,试证 r ( AB) r ( B) 当且仅当线性方程组 ABX O 的解 必为线性方程组 BX O 的解。 16.设 A ( aij ) mn 是 m n 矩阵, (b1 , b2 , , bn ) 是 n 维行向量,如果线性方程组
Hale Waihona Puke AX O 的解全是方程 b1 x1 b2 x 2 bn x n 0 的解,证明 可用 A 的行向量组
1 , 2 ,, m 线性表示。
17.设向量组 1 ( a,2,10) , 2 ( 2,1,5) , 3 ( 1,1,4) , (1, b, c) ,试问:
x1 x 2 x3 2 x 4 3 2 x 3 x ax 7 x 8 1 2 3 4 x1 2 x 2 3 x 4 4 x1 x3 (a 2) x 4 b 1
的解;且当方程组有无穷多解时,用其导出组的基础解系表示其通解。 21.设 A 为 n 阶矩阵, 1 , 2 , , n 是 n 个线性无关的 n 维列向量,证明:秩 ( A) n 的充要条件是 A 1 , A 2 , , A n 线性无关。
x1 x 2 kx3 4 2 x1 kx2 x3 k x x 2 x 4 2 3 1
有唯一解?无解?有无穷多解?若有解时,求其全部解。 19.设 1 , 2 , , n 为 m 维列向量,其中 1 , 2 , , n 1 线性相关, 2 , 3 , , n 线 性无关,又设 1 2 n , A ( 1 , 2 , , n ) ,证明: (1)线性方程组 AX
T T
的通解是什么?
T
9.已知1 (1,1,0,2) , 2 (2,1,1,4) , 3 (4,5,3,11) 是线性方程组
a1 x1 2 x 2 a3 x3 a 4 x 4 d1 4 x1 b2 x 2 3 x3 b4 x 4 d 2 3x c x 5 x c x d 2 2 3 4 4 3 1
2 1 3 t , , t 1 2 t 1 ,证明 1 , 2 ,, t 线性无关。
3.设向量组 1 , 2 , , s 线性无关,向量 1 可由这组向量线性表示,而向量 2 不能 由这组向量线性表示,证明向量组 1 , 2 , , s , l1 2 线性无关(其中 l 为常数) 。 4.证明:向量组
相关文档
最新文档