第四章线性方程组的求解

合集下载

李庆扬数值分析第五版习题答案清华大学出版社

李庆扬数值分析第五版习题答案清华大学出版社

李庆扬数值分析第五版习题答案清华大学出版社数值分析是一门研究数值计算方法的学科,它应用于各个领域,解决了许多实际问题。

《李庆扬数值分析第五版习题答案》是一本为读者提供数值分析习题解答的参考书,由清华大学出版社出版。

第一章误差1.1 绝对误差与相对误差在数值计算过程中,由于测量、取近似值和舍入误差等原因,我们常常会得到与真实值有一定偏差的结果。

绝对误差和相对误差是描述数值计算结果与真实值之间误差大小的衡量标准。

绝对误差表示实际值和计算值之间的差别,相对误差则是绝对误差与实际值之比。

1.2 舍入误差与有效数字在数值计算中,由于计算机底层的二进制表示以及计算机在表示无穷和无法精确表示的数字时需要进行近似,会导致舍入误差。

有效数字是用来表示浮点运算结果的一种方式,能够控制舍入误差的影响。

第二章插值与多项式逼近2.1 插值问题的提出插值问题是在有限数据点的基础上,构造一个与这些数据点足够接近的函数。

插值的目的是通过已知数据点之间构造一个函数,使得通过这个函数计算的结果近似于真实的未知数据点的值。

2.2 拉格朗日插值法拉格朗日插值法是通过构造一个基于已知数据点的多项式函数,来实现对未知数据点的预测。

它通过对每个数据点进行加权,以使得插值多项式通过这些数据点。

2.3 牛顿插值法牛顿插值法是通过使用差商的概念,构造一个多项式函数来进行插值。

差商是指由数据点的函数值所决定的差分系数。

第三章数值积分与数值微分3.1 数值积分的基本思想数值积分是通过将区间进行离散化,将连续变量转化为离散变量的和,从而实现对曲线下面积的近似计算。

3.2 复合求积公式复合求积公式将整个区间分割为若干子区间,对每个子区间进行积分,并将结果相加得到最终的数值积分结果。

通过增加子区间的数量,可以提高数值积分的精确度。

3.3 数值微分的基本思想数值微分是通过利用离散数据点之间的差值,来近似计算函数在某个点处的导数。

第四章线性方程组的数值解法4.1 线性方程组的求解线性方程组的求解是数值分析中的一个重要问题。

第四章 线性方程组

第四章  线性方程组
理学院田宝玉 (第 1 页/共 14 页) 第四章 线性方程组
结论:加减消元得到一系列同解方程组的过程,就相当于对增广矩阵施以一系列 的初等行变换, 化成上阶梯形矩阵. 得到的新矩阵作为增广矩阵所对应的方程组与 原方程组等价(即为同解方程组). 注:只施以初等行变换.
⎛ x1 ⎞ ⎛ −1 ⎞ ⎧ x1 = −1 ⎪ ⎜ ⎟ ⎜ ⎟ 求解: ⎨ x2 = −2 → 向量形式: ⎜ x2 ⎟ = ⎜ −2 ⎟ . ⎪x = 2 ⎜x ⎟ ⎜ 2 ⎟ ⎝ 3⎠ ⎝ ⎠ ⎩ 3 ⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 引例 2: ⎨ 2 x1 + 6 x2 − 3 x3 = 5 . ⎪3 x + 9 x − 10 x = 2 2 3 ⎩ 1
− c1n x n − c2n xn − c rn x n
此时, 每赋予未知量 xr +1 , xr + 2 ,
, xn 一组值, 则可惟一的解出左端 x1 , x2 ,
, xr 的
一组值.(因为左端系数矩阵的行列式不等于零,可由克拉默法则求解.)因此,方 程组有无穷多组解. 且右端未知量 xr +1 , xr + 2 ,
解 记系数矩阵为 A ,增广矩阵为 B .
⎛1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎜ ⎟ 行变换 ⎜ ⎟ ⎜ ⎟ B = ⎜1 −1 −1 1 0 ⎟ ⎯⎯⎯ → ⎜ 0 0 −2 2 −1 ⎟ → ⎜ 0 0 1 −1 1 2⎟ ⎜1 −1 −2 2 − 1 ⎟ ⎜ 0 0 −3 3 − 3 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎝ 2⎠ 2⎠
⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 同解方程组为: ⎨ x3 = 1 . 显然,此方程组无解. ⎪ 0 =1 ⎩

第四章-解AX=b的迭代法

第四章-解AX=b的迭代法

•迭代格式的收敛性
2 k 引理4.1 (线性代数定理) 设矩阵序列 IM , , M , , M ,
k l i m M 0 ( M ) 1 . k

(证明见关治和陈景良编《数值计算方法》P410-412) 定理4.1 设迭代格式为
( k 1 ) ( k ) xM x g , k 0 , 1 , 2 , ( 4 . 3 )
充分性()设ρ(M)<1,证{x(k)}收敛。
如果ρ(M)<1 ,则I-M为非奇异矩阵。事实上,因
为ρ(M)<1,λi<1,因此λ=1不是M的特征值,即
| 1 IM || IM |0 .
所以方程组 (I-M)x = f 有惟一解x*,满足(I-M)x* = f ,即 x*=Mx* + f 。于是
( k ) ( k 1 ) 2 ( k 2 ) x x * M ( x x * ) M ( x x * ) k ( 0 ) k M ( x x * ) M . 0
由引理4.1知,
k () k I f ( M ) < 1 ,t h e nl i m M 0 , l i m ( x x * ) 0 , i . e . k k () k l i m x x * . k
写成矩阵形式
x1 0 x b 2 21 31 x3 b x b n n1
或简记为
b 12 b 13 0 b23 b 0 32 bn2 bn3
b 1n x 1 g 1 b2n x2 g2 b 3n x 3 g3 g x 0 n n
( k ) ( k ) ( k 1 ) ( k ) x x * x x q x x *

《线性代数》教案

《线性代数》教案

《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。

2. 适用对象:本教案适用于大学本科生线性代数课程的教学。

3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。

二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。

2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。

3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。

四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。

2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。

3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。

五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。

2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。

3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。

4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。

(完整版)线性代数第四章线性方程组(自考经管类原创)

(完整版)线性代数第四章线性方程组(自考经管类原创)
第四章 线性方程组
知识结构
线性方程组
齐次线性方程组 非齐次线性方程组
4.1 齐次线性方程组
2
1.齐次线性方程组的解
设有齐次线性方程组
a11x1 a12 x2 a1n xn 0
a21 x1
a22 x2 a2n xn
0
am1 x1 am2 x2 amn xn 0
求齐次线性方程组通解的方法
(1)将系数矩阵A进行初等行变为行最简形矩阵T (2)写出Ax=0的同解方程组Tx=0 (3)确定自由未知量(n-r个),并用自由未知量表示其他未知量 (4)依次令其中某个自由未知量为1,其他自由未知量为0,求相 应的特殊解,那么基础解系即为所有特殊解的全体 (5)特殊解的线性组合即为通解,此处写明组合系数为任意实数
下面给出非齐次线性方程组解的性质
(1)设x 1及x 2都是Ax b的解,则x 1 2为对应的齐次方程Ax 0的解.
证明 A1 b, A2 b
A1 2 b b 0.
即x 1 2满足方程Ax 0.
(2) 设x 是方程 Ax b的解, x 是方程 Ax 0的解,则x 仍是方程 Ax b 的解.
a21x1 LLL
a22 x2 LLL
L L
L
a2n xn LLL
b2 L
am1x1 am2 x2 L amn xn bm
简写成矩阵形式AX=b,其中
a11 a12
A
a21
a22
am1 am2
a1n
a2n
,
amn
x1
x
x2
xn
b1
b
b2
例1 判断t为何值时,方程组无解
-x1 4x2 x3 1 tx2 3x3 3

《线性代数》教学课件—第4章 向量线性相关 第四节 线性方程组的解的结构

《线性代数》教学课件—第4章 向量线性相关 第四节 线性方程组的解的结构

2. 基础解系的求法
设系数矩阵 A 的秩为 r , 并不妨设 A 的前 r 个
列向量线性无关, 于是 A 的行最简形矩阵为
1
0
b11
b1,nr
B
0
0
1 0
br1 0
br,nr
,
0
0
0
0
0
与 B 对应, 即有方程组
x1
b11xr1 b1,nr xn
,
(3)
例 12 求齐次线性方程组
2xx11x52x2
x3 x4 3x3
2
0, x4
0,
7x1 7x2 3x3 x4 0
的基础解系与通解.
解 对系数矩阵 A 作初等行变换, 变为行最
简形矩阵, 有
1
1
1 1
行变换
1
0
2 7 5
3
7 4
例 13 设 Am×nBn×l = O,证明
xr
br1xr1 br,nr xn
,
把 xr+1 , ···, xn 作为自由未知量,并令它们依次 等于 c1 , ···, cn-r ,可得方程组 (1) 的通解
x1
b11
b12
b1,nr
xr
br1
br
2
br
,nr
xr1 c1 1 c2 0 cnr 0 .
把方程 Ax = 0 的全体解所组成的集合记作 S ,
如果能求得解集 S 的一个最大无关组 S0 : 1 , 2 , ···, t,那么方程 Ax = 0 的任一解都可由最大无关
组 S0 线性表示;另一方面,由上述性质 1、2 可 知,最大无关组 S0 的任何线性组合

第四章 解线性方程组的迭代法

第四章  解线性方程组的迭代法

x = ( x x + 1) / 8 ( k +1) ( k +1) (k ) = ( 2 x1 + x 3 + 4) / 10 x2 ( k +1) ( k +1) ( k +1) = ( x1 + x2 3) / 5 x3
(k ) 2 (k ) 3
( k +1) 1
迭代结果为: 取初始迭代向量 x ( 0) = (0 ,0 ,0) T ,迭代结果为:
4.2 迭代法的基本思想 迭代法的基本思想是将线性方程组转化 为便于迭代的等价方程组, 为便于迭代的等价方程组,对任选一组初始 按某种计算规则, 值 xi( 0) (i = 1,2, L , n) ,按某种计算规则,不断地 对所得到的值进行修正,最终获得满足精度 对所得到的值进行修正, 要求的方程组的近似解。 要求的方程组的近似解。
( 取初始向量 x ( 0 ) = ( x 1( 0 ) , x 2 0 ) , x 3( 0 ) ) T = ( 0 , 0 , 0 ) T
进行迭代, 可以逐步得出一个近似解的序列: 进行迭代 可以逐步得出一个近似解的序列:
( ( ) ( x1( k ) , x 2k ) , x 3 k ) ) (k=1, 2, …)
(k=0,1,2,…)
4.3.3 4.3.3 4.3.3 4.3.3 雅 可 比 迭 代 法 的 算 法 实 现
k+ 1 k y i x i i = 1 ,2 ,… ,n n
输 入 a i j ,b i , 和 方 程 阶 数 n , ε ,M
1 k
(bi
∑a
j =1 j≠i
n
ij
x j ) / a ii y i

线性代数 第四章 (1-2节)

线性代数 第四章  (1-2节)

第四章线性方程组§1 消元法在实际问题中,我们经常要研究一个线性方程组的解,解线性方程组最常用的方法就是消元法,其步骤是逐步消除变元的系数,把原方程组化为等价的三角形方程组,再用回代过程解此等价的方程组,从而得出原方程组的解.例1 解线性方程组解 将第一个方程加到第二个方程,再将第一个方程乘以(-2)加到第三个方程得在上式中交换第二个和第三个方程,然后把第二个方程乘以-2加到第三个方程得再回代,得.分析上述例子,我们可以得出两个结论:(1) 我们对方程施行了三种变换:① 交换两个方程的位置;② 用一个不等于0的数乘某个方程;③ 用一个数乘某一个方程加到另一个方程上.我们把这三种变换叫作线性方程组的初等变换.由初等代数可知,以下定理成立.定理1 初等变换把一个线性方程组变为一个与它同解的线性方程组.(2) 线性方程组有没有解,以及有些什么样的解完全决定于它的系数和常数项,因此我们在讨论线性方程组时,主要是研究它的系数和常数项.定义1 我们把线性方程组的系数所组成的矩阵叫做线性方程组的系数矩阵,把系数及常数所组成的矩阵叫做增广矩阵.设线性方程组则其系数矩阵是增广矩阵是显然,对一个方程组实行消元法求解,即对方程组实行了初等变换,相当于对它的增广矩阵实行了一个相应的初等变换.而化简线性方程组相当于用行初等变换化简它的增广矩阵,这样,不但讨论起来比较方便,而且能够给予我们一种方法,利用一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出.例2 解线性方程组解 增广矩阵是,交换矩阵第一行与第二行,再把第一行分别乘以和(-2)加到第二行和第三行,再把第二行乘以(-2)得,在中将第二行乘以2加到第三行得,相应的方程组变为三角形(阶梯形)方程组:回代得.§2 线性方程组有解判别定理上一节我们讨论了用消元法解方程组(4.1)这个方法在实际解线性方程组时比较方便,但是我们还有几个问题没有解决,就是方程组(4.1)在什么时候无解?在什么时候有解?有解时,又有多少解?这一节我们将对这些问题予以解答.首先,由第三章,我们有下述定理定理2 设A是一个m行n列矩阵,通过矩阵的初等变换能把A化为以下形式这里r≥0,r≤m,r≤n.注:以上形式为特殊标准情况,不过,适当交换变元位置,一般可化为以上形式.由定理2,我们可以把线性方程组(4.1)的增广矩阵进行初等变换化为:(4.2)与(4.2)相应的线性方程组为:(4.3)由定理1知:方程组(4.1)与方程组(4.3)是同解方程组,要研究方程组(4.1)的解,就变为研究方程组(4.3)的解.① 若dr+1,dr+2,…,dm中有一个不为0,方程组(4.3)无解,那么方程组(4.1)也无解.② 若dr+1,dr+2,…,dm全为0,则方程组(4.3)有解,那么方程组(4.1)也有解.对于情形①,表现为增广矩阵与系数矩阵的秩不相等,情形②表现为增广矩阵与系数矩阵的秩相等,由此我们可以得到如下定理.定理3 (线性方程组有解的判别定理)线性方程组(4.1)有解的充分必要条件是系数矩阵与增广矩阵有相同的秩r.① 当r等于方程组所含未知量个数n时,方程组有惟一的解;② 当r<n时,方程组有无穷多解.线性方程组(4.1)无解的充分必要条件是:系数矩阵A的秩与增广矩阵B的秩不相等.在方程组有无穷多解的情况下,方程组有n-r个自由未知量,其解如下:其中是自由未知量,若给一组数就得到方程组的一组解例3 研究线性方程组解 写出增广矩阵对进行初等行变换可化为由此断定系数矩阵的秩与增广矩阵的秩不相等,所以方程组无解.例4 在一次投料生产中,获得四种产品,每次测试总成本如下表:生产批次产品(公斤)总成本(元)ⅠⅡⅢⅣ12001001005029002500250200100705031004002013604400180160605500试求每种产品的单位成本.解 设Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品的单位成本分别为,由题意得方程组:化简,得写出增广矩阵对其进行初等行变换,化为由上面的矩阵可看出系数矩阵与增广矩阵的秩相等,并且等于未知数的个数,所以方程组有唯一解:例5 解线性方程组解 这里的增广矩阵是对其进行初等行变换,化为由上式可看出系数矩阵与增广矩阵的秩相等,所以方程组有解,对应的方程组是把移到右边,作为自由未知量,得原方程组的一般解为给自由未知量一组固定值:,我们就得到方程组的一个解.事实上,在例5中,也可作为自由未知量.我们同样可考察.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(行 系 数 i,k ) l
1.2.2
For j=k+1,…, n
aij- aik akj aij(新) bi - aik bk bi (新)
*常用|akk|≤
步骤 2. 步骤 3.
bn /ann xn For k=n-1,…,1 3.1 3.2
(回代)
bk s For j=k+1,…,n
b1( 0 ) (1) b2 (1) bn
注意:若a11(0) =0,因为 det(A)0,在A的第1列元素中至 少有某ai1(0) 0将i行与第1行交换,再作第1步 。
(0 a11 ) 假定已完成k-1步消元, ( 0) ( 0) ( A( k 1) , b( k 1) ) ( A ,b ) (0 a12 ) (1 a22)
迭代法:从一个初始向量出发,按照一定的迭代格 式,构造出一个趋向于真解的无穷序列。
举例
x 2 x2 2 x3 2 例:直接法解线性方程组 1 2 x1 3 x2 3 x3 4 4 x1 x2 6 x3 3
1 2 2 2 ( A, b) 2 3 3 4 4 1 6 3 2 2 1 2 0 1 7 8 0 0 61 61
解:
2 2 1 2 0 1 7 8 0 9 2 11
x3 1 x2 8 7 x3 1 x1 2 2x2 2x3 2
第四章 解线性方程组的直接法
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
回代公式
( xn annn)1 , ( xk ak kn)1 ,
j k 1
( akjk ) x j k n 1, ,1
n
1 1 2 求解一个三角形方程组 n个除法与 i 1) n(n 1) n 需 ( 2 2 i 1 次加法与乘法。
引言
快速、高效地求解线性方程组是数值线性代数研究中 的核心问题,也是目前科学计算中的重大研究课题之一。 各种各样的科学和工程问题,往往最终都要归结为求 解一个线性方程组。 线性方程组的数值解法有:直接法和迭代法。
直接法:在假定没有舍入误差的情况下,经过有限次 运算可以求得方程组的精确解;
(i k 1, n)
(3.3)
当经过 n 1步后, ( A(0) , b (0) )将化为 k
( A(0) , b(0) )
(0 a11 ) ( n 1) ( n 1) (A ,b ) (0 a12 ) (1 a 22) (0 a1n ) ( a 21) n
基本思想:通过对(4.1)消元,逐步将(4.1)简化为同解的上三 角方程组(---消元过程),再由下而上地解此方程组,求得解 x( ---回代过程)。
若det(A)0,记其增广矩阵
A ( A, b) ( A( 0) , b ( 0) )

( a110 ) (0) a21 (0) a n1 ( 0 a120 ) a1(n ) (0 ( a22 ) a20 ) n ( (0 an0 ) ann ) 2
det() 0
1. 计算行系数
lik
(k aik 1) (k akk 1)
(i k 1, n)
(3.2)
2. 第 i行 第 k行 lik , 则 ( ( (k aijk ) aijk 1) lik akj 1)
( bi(k ) bi(k 1) lik bkk 1) ( j k 1, n)
n
例1 用Gauss消元法解线性方程组
2 x1 2 x2 3 x3 3 4 x1+7 x2+7 x3=1 2 x +4 x +5 x =-7 - 1 2 3
解:(略)
算法组织 将增广矩阵(A,b)放入一个二维数组.消去每一步算出的aij( k)放入 aij的位置,bi ( k) 放入bi ,lik放在aik上.消去完毕后,数组各位置上的数据 如下示: (0 (0 (0 a11 ) a12 ) a1n ) b1(0) (1 ( ( l 21 a22) a 21) b21) n (n ( l l n 2 a nn1) bnn 1) n1 A 回代过程的计算没有数据组织问题. b
“回代”过程较简单.上三角方程(3.4)有唯一解,其解可由下至 上得出: ( ( xn bnn 1) / ann (3.5) xn bnn 1) / ann (3.5) n n ( k 1) ( k 1) x (b ( k 1) ( k 1) (k (k aik 1) xk ) / akk 1) (k n 1,1) aik xk ) / akk (k n 1,1) xk (bk k k j i 1 j i 1 此即Gauss消去法.
( bi(1) bi(0) li1b1 0) , ( j 2, n)
这样,
( A( 0) , b( 0) )
( a110 ) 0 (1) (1) ( A ,b ) 0
( a120 ) (1 a22) ( an12)
0 a1(n ) ( a21n) (1 ann)
算法 Guass消去法 输入 n, aij ,bi ,(i,j=1,..,n)
说明:系数矩阵存放于数组 A中,右端向量放于数组b中
输出 解
x1, x2 …, xn
k=1,2,…,n-1 if akk=0* 1.2.1 (消元) 1.1 1.2 Then 输出”不能消元” stop
步骤1. For
for i=k+1,…,n aik/akk aik 1.2.2.1 1.2.3
3.2.1
3.3 步骤 4. End
s- akj xj s
s / akk xk
高斯消去法的计算量分析
高斯消去法的乘除总运算(由于计算机作乘除运算所需时间远大于作加减运 算所需时间,故我们只讨论乘除运算量)分析为
消元次数k 1 2 . . . k . . n-1
消元乘法次数 消元除法次数 n(n-1) n-1 (n-1)(n-2) n-2
(4.1)
§1 高斯消去法
1.三角形方程组的解法
b1 a11 x1 a x a x b2 21 1 22 2 a n1 x1 an 2 x2 ann xn bn
(4.2)
a11 x1 a12 x2 a1n xn b1 a 22 x2 a 2 n xn b2 a nn xn bn
消元公式
( ( k ) akjk 1) j k , k 1, , n 1 akj ( k 1) akk (k ) ( k 1) ( k 1) (k ) aij aij aik akj j k 1, , n 1 i k 1, n
AX = b
a11 a12 a 21 a 22 A a n1 a n 2 a1n a2n a nn x1 x2 X x n b1 b2 b b n

综述:若A非奇,总可通过带有行交换或不带有行交换的消元过
程,将A化成非奇三角矩阵A(n-1).因此, 回代求解过程也可进行到底. 但实际中,A是否非奇异难以判定.算法应考虑: 1.消元过程某一步找不到非零元,于是计算中断. 2.消元可进行到底,但ann(n-1) = 0,回代求解过程无法进行.
故算法设计要考虑以上情况,给出计算中断的信息.
(4.3)
2.高斯消去法
a11 x1 a12 x2 a13 x3 a1n xn a1, n 1 a 21 x1 a 22 x2 a 23 x3 a 2 n xn a 2, n 1 a n1 x1 a n 2 x2 a n 3 x3 a nn xn a n , n 1
而每个乘积是n个元素相乘,因此共需乘法次 数 ( n + 1)·n!( n - 1)= ( n + 1) ! ( n - 1)
当n=20时( n + 1) ! ( n - 1)≈9.7×1020。
要完成这么多次乘法,在每秒做一亿次乘法 运算的计算机上,也需30.8万年。因此克莱 姆法则在实际计算中不适用。
从这个表可以看出用计 算机解含有 个未知量的线性方程组 100 是一件很简单
Gauss消元法是解线性方程组 的基本方法,它是直接 法的基础,具有计算简
2.1.2
高斯消去法的运算量
高斯消去法比起克莱姆法则和约当消去法,
主要长处就是运算量较少。
用克莱姆法则求解n阶线性方程组,需计算
n+1个行列式;每个行列式是n!个乘积之和,


(n a nn1)
b1(0) (1) b2 ( bnn 1)
且 akk(k-1) ≠0(i=1,…, n) ,∣A∣=a11(0)a22(1)…ann(n-1).于是,得到上三 角方程组 A( n 1) x b ( n 1) (3.4)
这 就 完 成 了消 去" 过 程. "
b1( 0 ) (0) b2 (0) bn
设k=1,第1步消元。假定a11(0) 0,从(4.1)中用第1个方 程消去下面n-1个方程的未知数x1。对 ( A(0) , b(0) )作如下计算: ai(10 ) 1. 计算行系数 li1 ( 0 ) i 2, n a11 2. 第 i行 第 1行 l , 则 ( ( aij1) aij0 ) li1 a1( 0 ) (i 2, n ) i1 j
相关文档
最新文档