常微分试卷三答案

合集下载

常微分方程第一、二、三次作业参考答案

常微分方程第一、二、三次作业参考答案

1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。

由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。

(4) 求出满足条件33ydx =⎰的解。

解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。

2、求下列方程的解。

1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。

则令2X x =-,73Y y =-。

故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。

3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。

2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

福师《常微分方程》期末试卷解析

福师《常微分方程》期末试卷解析

福师《常微分方程》期末试卷解析一、选择题(共10题,每题2分,共20分)1. 答案:A解析:对常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。

2. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。

将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。

3. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。

将dy/y = kdx,再进行积分,最后解出y。

4. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。

将dy/y = -dx/x,再进行积分,最后解出y。

5. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。

6. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。

将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。

7. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。

将dy/y = kdx,再进行积分,最后解出y。

8. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。

将dy/y = -dx/x,再进行积分,最后解出y。

9. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。

10. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。

将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。

常微分方程第三版答案

常微分方程第三版答案

百度文库•让每个人平等地捉升口我习题1.21・—=2xy,并满足初始条件:x=0, y=l 的特解。

dx解:—=2xdx 两边积分有:ln|y|=x'+cy=e ' +e =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2, x=0 y=l 时c=l特解为尸e r \2. y' dx+(x+l)dy=O 并求满足初始条件:x=0, y=l 的特解。

dy 1 + y 2* — 了dx xy + x^ydy _ 1 + y 2 1 dx y x + A 3 dy= ------ r dx X + X'两边积分:x(l+x 2) (1+y 2 )=cx"4. (1+x)ydx+(l-y)xdy=O解:原方程为:—dy=-—dx y x两边积分:In | xy +x-y=c另外x=0, y=0也是原方程的解。

5・(y+x) dy+(x-y)dx=O解:原方程为:解:y - dx=-(x+l)dy卑 dy=J x + 1 dx 两边积分:-丄=-ln|x+l|+ln|c| y I尸 In 1 c(x + 1)1另外y=0> X-1也是原方程的解x=0, y=l 时 c=e 特解:y=In I c(x + \) I解:原方程为:dy x- ydx x + y八V … t dv du 小、亠令i =u 则——=u+x 代入有: x dx dx---- d u= — dx iC +1 xln(u~ +l)x~ =c-2arctgu即 ln(y ~+x~ )=c-2arctg 厶.6. x — -y+ -Jx 2 — y 1 =0解:原方程为:y^=- + —-Jl-(-)2 dx xxv xA y dv dii 贝U 令—=u — =u+ x — x dx dx,du=sgnx — dx VI-w 2 Xarcsin —=sgnx In I x I +c x7. tgydx-ctgxdy=0解:原方程为:—=—fgy ctgx两边积分:In |siny =-ln |cosx I-In I c I1 c siny= ---------- = ------ 另外y=0也是原方程的解,而c=0时,y=0. ccosx cosx所以原方程的通解为sinycosx=c.dx y解:原方程为:学二 dx y2 e ' -3e~ =c.9・ x (lnx-lny)dy-ydx=0解:原方程为:——=—In — dx x xA v rjl dy du 令—=u ,贝11 — =u+ x —— x dx dxduu+ x — =ulnudxln(lnu-l)=-ln|cx|1+1 n = =cy・xdx解:原方程为:g二11 — =(x+y) 2dx“A十du解:令x+y=u,则〒=〒T dx dxdx------du=dx\ + ir arctgu=x+c arctg (x+y)=x+cdx (x+y)-“ 八dy du解:令x+y=u,则一=——1 dx dxu-arctgu=x+c y-arctg(x+y)=c.cly 2x - y +113.—= ---------- :——dx x-2y+ 1解:原方程为:(x-2y+l) dy=(2x-y+l)dx xdy+ydx-(2y-l)dy-(2x+l)dx=O dxy-d (y' -y) -dx +x=c乍•>xy-y - +y_x - _x二c—dy x-y+ 5dx x _ y _ 2解:原方程为:(x-y-2) dy= (x-y+5) dxxdy+ydx-(y+2)dy-(x+5)dx=O1 . 1 .dxy-d (— y' +2y) -d( —x" +5x) =02 2y - +4y+x - +10x-2xy 二c・15:— =(x+l) 2+(4y+l),+8xy + l dx解:原方程为:—=(x+4y) 2+3 dx八 e ■ 1 d" 1令x+4y=u 贝(J ——= -------dx 4 dx 41du 1 =------ =iT +34 dx 4—=4 U2+13dx3z、u= —t g(6x+c)T22t g(6x+c) = -(x+4y+l).16:证明方程丄学=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程: y dx1) y(l+x2 y2)dx=xdyX 心二2 + x:y: y dx2)2-x2y2证明:令xy=u,则x— +y= —dx dx…, dy 1 du u亠贝9于=—: ---- •有:dx x dx Q——=f (u) +1 u dx------ ! ------- d u= — dx«(/(«)+ 1) X所以原方程可化为变量分离方程。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

(完整版)常微分方程练习试卷及答案

(完整版)常微分方程练习试卷及答案

常微分方程练习试卷一、填空题。

1. 方程23210d xx dt+=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 . 3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个.4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程的待定特解可取 的形式:12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+. 3. 求解方程222()0d x dx x dt dt+= 。

4.用比较系数法解方程..5.求方程 sin y y x '=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设 3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX=满足初始条件η=)0(x 的解. 8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解试求方程组x Ax '=的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt 10.若三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和 没有共同的零点; (iii) 和没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -= .2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dy xy y dx dx -+=答案一.填空题。

常微分方程第三版答案doc

常微分方程第三版答案doc

常微分方程第三版答案doc习题1.21.dyd某=2某y,并满足初始条件:某=0,y=1的特解。

解:dyy=2某d某两边积分有:ln|y|=某2+cy=e某2+ec=ce某2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=ce某2,某=0y=1时c=1特解为y=e某2.2.y2d某+(某+1)dy=0并求满足初始条件:某=0,y=1的特解。

解:y2d某=-(某+1)dydy1y2dy=-某1d某两边积分:-1y=-ln|某+1|+ln|c|y=1ln|c(某1)|另外y=0,某=-1也是原方程的解某=0,y=1时c=e特解:y= ln|c(某1)|dy1y23.d某=某y某3y解:原方程为:dyd某=1y21y某某31y21ydy=某某3d某两边积分:某(1+某2)(1+y2)=c某24.(1+某)yd某+(1-y)某dy=0解:原方程为:1y某1ydy=-某d某两边积分:ln|某y|+某-y=c另外某=0,y=0也是原方程的解。

5.(y+某)dy+(某-y)d某=0解:原方程为:dyd某=-某y某y令ydy某=u则d某=u+某dud某代入有:-u11u21du=某d某ln(u2+1)某2=c-2arctgu即ln(y2+某2)=c-2arctgy某2.6.某dy22d某-y+某y=0解:原方程为:dyd某=y某+|某|某-(y2)则令y某=udydud某=u+某d某1du=gn某u2某d某arciny某=gn某ln|某|+c7.tgyd某-ctg某dy=0解:原方程为:dyd某tgy=ctg某两边积分:ln|iny|=-ln|co某|-ln|c|iny=1ccco某=co某另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为inyco某=c.y23某8dyed某+ydyey2解:原方程为:d某=3某ye2e3某-3ey2=c.9.某(ln某-lny)dy-yd某=0解:原方程为:dyyyd某=某ln某令y某=u,则dydud某=u+某d某u+某dud某=ulnuln(lnu-1)=-ln|c某|1+lny某=cy.10.dyd某=e某y解:原方程为:dy某d某=eeyey=ce某11dy2d某=(某+y)解:令某+y=u,则dydud某=d某-1du2d某-1=u11u2du=d某arctgu=某+carctg(某+y)=某+c12.dyd某=1(某y)2解:令某+y=u,则dyd某=dud某-1du1d某-1=u2u-arctgu=某+cy-arctg(某+y)=c.13.dy2某y1d某=某2y1解:原方程为:(某-2y+1)dy=(2某-y+1)d某某dy+yd某-(2y-1)dy-(2某+1)d某=0d某y-d(y2-y)-d某2+某=c某y-y2+y-某2-某=c14:dy某d某=y5某y2解:原方程为:(某-y-2)dy=(某-y+5)d某某dy+yd某-(y+2)dy-(某+5)d某=0d某y-d(12y2+2y)-d(122某+5某)=0y2+4y+某2+10某-2某y=c.15:dyd某=(某+1)2+(4y+1)2+8某y1解:原方程为:dyd某=(某+4y)2+3令某+4y=u则dy1dud某=4d某-141du14d某-4=u2+3dud某=4u2+13u=32tg(6某+c)-1tg(6某+c)=23(某+4y+1).16:证明方程某dyyd某=f(某y),经变换某y=u可化为变量分离方程,并由此求下列方程:1)y(1+某2y2)d某=某dy2)某dy2某2y2yd某=2-某2y2证明:令某y=u,则某dydud某+y=d某则dy1duud某=某d某-某2,有:某duud某=f(u)+1u(f(u)1)du=1某d某所以原方程可化为变量分离方程。

常微分方程答案

常微分方程答案

《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。

此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。

同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。

因此是解矩阵。

又因为det=-t故是基解矩阵。

2、证明:(1),(t- t)是基解矩阵。

(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[解] (1)特征方程为2+ 1=0,=i, -i。通解为x(t)=C1exp(it)+C2exp(-it).
实通解为x(t)=C1cos(t)+C2sin(t). [5分]
(2)考虑算子形式的复系统(D2+ 1)z=exp(it).从而
z(t)= exp(it){1/( (D+i)2+ 1)}1= exp(it)(1/( (D2+2iD))1
[解] (1) x(t)=exp(a(t-t0)x0+t0texp(a(t-s) f(s) ds. [10分]
(2)首先,用分离变量法求得dx/dt=ax有通解x(t)=c exp(at)。
设方程有形如x(t)=c(t) exp(at)的解。代入方程得dc/dt= exp(-as) f(s),
从而得到特解x(t)= exp(at)exp(-as) f(s) ds和通解
x(t)=C1exp((- k/m)1/2)+ C2exp(-(- k/m)1/2),
当k>0时通解为
x(t)= C1cos(( k/m)1/2t)+ C2sin(( k/m)1/2t). [3分]
(3)当k<0时奇点(0,0)的是鞍点,是不稳定的。[3分]
当k>0时奇点(0,0)是中心,是稳定的。[3分]
通解为x(t)= C1cos(t)+C2sin(t)+ cos(t)/4+t sin(t)/2. [1分]
(3)代入初始条件得C1+ 1 /4=1, C2=0,即C1=3/4, C2=0.最终解为
x(t)= (3/4) cos(t)+ cos(t)/4+t sin(t)/2= cos(t)+t sin(t)/2. [4分]
四川大学期末考试试题(A卷)答案及评分标准
(2006——2007学年第一学期)
考试科目:常微分方程适用专业名称:基础数学、应用数学、计算数学)
(1)考虑线性系统dx/dt=A(t)x,其中A是nn实矩阵函数、tR,xRn。其所有的解构成一个__a____。
(a)存在x0使x(t,x0)0当t0,(b)对0附近所有x0有x(t,x0)0当t0,
(c)存在x0使x(t,x0)0当t+,(d)对0附近所有x0有x(t,x0)0当t+.
2、(20分)假设初值问题dx/dt=ax+f(t), x(t0)=x0满足解的存在唯一性条件,其中a为实数,tR, xR。(1)写出这个初值问题解的表达式。(2)用常数变易法证明这个表达式。
(4)草图(略) [4分]
注:其他等价做法以及等价结果相应给分。
满卷100分
5、(20分)方程d2x/dt2+(k/m)x=0描述了线性弹簧振子的自由振动,其中质量m>0,Hook常数k0。记y表示运动的速度,即y=dx/dt.
(1)写出方程的等价一阶微分方程组。
(2)求通解。
(3)分别对k>0和k<0判断奇点(0,0)的定性性质(类型及稳定性),并给出论据。
(4)画相平面轨道的草图。
(a)f连续,(b) f连续且对x有界,
(c) f连续且对x可微,(d) f连续且对x连续可微。
(5)在(4)中考虑的初值问题解对初值连续依赖的条件是__c___。
(a)f连续,(b) f连续且对x有界,
(c)连续且对x是Lipschitz的,(d) f连续且对x可微。
(6)设系统dx/dt=f(x)的初值问题具有存在唯一性且满足f(0)=0。系统关于初值x(0)=x0的解记为x(t,x0)。系统零解的渐近稳定性是指其零解稳定并且__d__。
=(x/y) d(xy3)+ 4x2d(xy)
=(x/y) {d(xy3)+ 4xy d(xy) }
=(x/y) d{xy3+ 2(xy)2},[4分]
从而得到xy3+ 2(xy)2=C。[1分]
4、(15分)计算方程d2x/dt2+x=cos t的通解。进而计算方程关于初值x(0)=1, dx/dt(0)=0的解。
= exp(it)(1/( (D+2i))t= exp(it)(1/( (D+2i))t
=(1/(2i))(t-1/(2i)) exp(it)=(cos(t)/4+t sin(t)/2)+i(sin(t)/4- t cos(t)/2).
从而,x(t)=Re z(t)= cos(t)/4+t sin(t)/2 . [5分]
[解] (1)等价一阶微分方程组为
dx/dt=y, dy/dt= -(k/m)x. [4分]
(2)特征方程为2+(k/m)=0,当k<0时特征值为
1=(- k/m)1/2,2= -(- k/m)1/2。
当k>0时特征值为
1=( k/m)1/2i,2= -( k/m)1/2i。[3分]
因此当k<0时通解为
(a) n维线性空间,(b) n2维线性空间,(c)无穷维线性空间, (d)不是线性空间。
(2)设X(t)是(1)考虑的系统的基本解矩阵,若C是nn可逆实矩阵,下列也是基本解矩阵的是___b___。
(a)CX((t), (b) X((t)C, (c) C+ X((t),(d) C- X((t)。
(3)X(t)是(1)考虑的系统的基本解矩阵,则它具有初值条件x(t0)=x0的解为___c___。
x(t)=exp(at)c+exp(a(t-s) f(s) ds.
通过初始条件可以确定c,并证得(1)的表达式。[10分]
3、(15分)求方程(xy2+4x2y)+(3x2y+4x3)dy/dx=0的通解。
[解]左式=( xy2dx+3x2y dy)+ (4x2y dx+4x3dy)[5分]
=(x/y) (y3dx+3xy2dy)+ 4x2(y dx+x dy)[5分]
(a)x(t)=exp(A(t-t0))x0(b)x(t)=X(t-t0)x0,
(c)x(t)= X(t)X-1(t0)x0, (d)x(t)=x0exp(trA(t-t0))。
(4)考虑系统dx/dt=f(t,x)关于x(t0)=x0初值问题,其中(t,x)R,即RRn中以(t0,x0)为中心的有界闭矩形。该初值问题存在唯一解的条件是___d___。
相关文档
最新文档