截交线相贯线习题及答案
合集下载
现代机械工程图学-截交线复习题

解题步骤
1 分析 截交线的水平投影为 椭圆,侧面投影为圆; 2 求出截交线上的特殊点Ⅰ、 Ⅳ、 Ⅴ、 Ⅷ; 3 求出若干个一般点Ⅱ、Ⅲ、 Ⅵ、Ⅶ; 4 光滑且顺次地连接各点,作 出截交线,并且判别可见性; 5 整理轮廓线。
[例6] 求截切圆柱的水平投影和侧面投影
解题步骤
1 分析 截交线的水平投影 为圆的一部分,侧面投影 为矩形; 2 求出截交线上的特殊点Ⅰ 、Ⅱ、Ⅲ、Ⅳ; 3 顺次地连接各点,作出截 交线并判别可见性; 4 整理轮廓线。
1
3
y
1 ”
4
3
”
”
y
[例题6] 求立体切割后的投影
6
(5) 4
1
2 (3)
此处
做平
行直 线
35
1
6
2 4
6
5
4
3 1 2
Ⅵ
Ⅴ Ⅳ
Ⅲ
ⅠⅡ
[例题7] 求三棱锥被截切后的水平投影和侧面投影
[例1] 求圆柱被截切后的侧面投影
3’4 ’ 2 ’
3
2
1’ 3 ”
1
分析:截平面与圆柱轴线斜
10"
Ⅹ
Ⅸ
11'
(6') 6"
9' 8'
11"
9"
Ⅺ
(7') 7"
8"
5
6
2(4)
7
11
1(3)
8
10
9
[例题4] 求如图所示三棱锥被正垂面所截切,求作截交线的
水平投影和侧面投影。
1’ a’
s’3’Pv 2’
s”
具体步骤如下:
1 分析 截交线的水平投影为 椭圆,侧面投影为圆; 2 求出截交线上的特殊点Ⅰ、 Ⅳ、 Ⅴ、 Ⅷ; 3 求出若干个一般点Ⅱ、Ⅲ、 Ⅵ、Ⅶ; 4 光滑且顺次地连接各点,作 出截交线,并且判别可见性; 5 整理轮廓线。
[例6] 求截切圆柱的水平投影和侧面投影
解题步骤
1 分析 截交线的水平投影 为圆的一部分,侧面投影 为矩形; 2 求出截交线上的特殊点Ⅰ 、Ⅱ、Ⅲ、Ⅳ; 3 顺次地连接各点,作出截 交线并判别可见性; 4 整理轮廓线。
1
3
y
1 ”
4
3
”
”
y
[例题6] 求立体切割后的投影
6
(5) 4
1
2 (3)
此处
做平
行直 线
35
1
6
2 4
6
5
4
3 1 2
Ⅵ
Ⅴ Ⅳ
Ⅲ
ⅠⅡ
[例题7] 求三棱锥被截切后的水平投影和侧面投影
[例1] 求圆柱被截切后的侧面投影
3’4 ’ 2 ’
3
2
1’ 3 ”
1
分析:截平面与圆柱轴线斜
10"
Ⅹ
Ⅸ
11'
(6') 6"
9' 8'
11"
9"
Ⅺ
(7') 7"
8"
5
6
2(4)
7
11
1(3)
8
10
9
[例题4] 求如图所示三棱锥被正垂面所截切,求作截交线的
水平投影和侧面投影。
1’ a’
s’3’Pv 2’
s”
具体步骤如下:
机械制图(含习题集)(第二版)(章 (5)

第4章 组合形体中的截交线和相贯线
图4-1 形体表面的截交线和相贯线
第4章 组合形体中的截交线和相贯线
4.1 截 交 线
平面与平面或平面与曲面之间的交线称为截交线,在棱柱、 棱锥、圆柱、圆锥形体上切口、开槽时,均会在形体上产生截 交线。 4.1.1 棱柱表面的截交线
棱柱被切口时,最明显的情况是各条棱线的长短变得不一 样长。要绘制这种形体的图形,可以先按照完整的棱柱形体绘 制图形,然后度量各棱线的长度变化,连点成线,绘制出截平 面的投影,擦除棱线被截断的部分即可。
第4章 组合形体中的截交线和相贯线 绘制此形体图形时,还是要先绘制出完整的六棱台投影
图形,然后在上面加开槽的情况。正面投影中,开槽的情况 比较简单,由一条水平线和两条斜线组成。水平投影中槽底 的绘制方法与前面介绍的三棱锥的开槽绘制方法相同,这里 不再重复。槽侧面的水平投影要注意槽侧面与槽底的交线、 与棱台上表面的交线以及与棱台侧面棱线的交点(正面投影中 与虚线的交点),绘制出的棱台水平投影中心部分被分割成五 部分,分别表示槽底、槽侧面和棱台上表面的保留部分。
第4章 组合形体中的截交线和相贯线 4.1.2 棱锥、棱台表面的截交线
用一个与棱锥底平面平行的平面截切棱锥,去除锥顶部分, 得到的形体称为棱台。棱台的投影特点为:一个视图为两个形 状类似、大小不等的多边形,这个多边形就是棱锥的特征图形。 另两个视图为由若干个梯形组成的图形。在各视图中,所有侧 棱线的方向都指向锥顶,尽管这个锥顶已经被切除。
第4章 组合形体中的截交线和相贯线 图4-4所示为三棱锥上开槽时图形绘制的情况。对于这样
的立体,绘制时可以先绘制出三棱锥没有开槽时的三面投影, 然后绘制开槽的情况。由于这个槽是由一个水平面和两个侧平 面组成的,因此在正面投影中非常容易绘制,是由一条水平线 和两条垂直线组成的缺口。
制图解题指导第3讲 求相贯线练习题-答案

【练习1】求作主视图。
【练习2】求作主视图。
【练习3】完成相贯线的投影。
【练习4】完成相贯线的投影。
【练习5】完成立体的正面投影。
【练习6】求作左视图。
【练习7】求作俯视图。
【练习8】求立体的相贯线,完成正面投影。
【练习10】求作俯视图。
【练习11】求作俯视图。
(1)
(2)
【练习13】求作主视图。
【练习14】完成相贯线的投影。
【练习15】完成相贯线的投影。
【练习16】完成相贯线的投影。
【练习17】求作左视图。
【练习18】求作左视图。
【练习19】求作左视图。
【练习20】求作俯视图。
【练习21】求作主视图。
【练习22】求作左视图。
(1)
(2)
【练习23】求作左视图。
【练习24】求作左视图。
【练习25】求作左视图。
【练习26】完成立体的投影。
【*练习27】完成立体的投影。
【*练习28】完成立体的投影。
机械工程图学习题集加详细答案 第7章

7-5完成被截切圆柱的三面投影。
(2)完成水平和侧面投影
7-5完成被截切圆柱的三面投影。
(3)完成水平和正面投影
7-5完成被截切圆柱的三面投影。
(3)完成水平和正面投影
7-5完成被截切圆柱的三面投影。
(4)完成侧面投影。
7-5完成被截切圆柱的三面投影。
(4)完成水平投影。
7-5完成被截切圆柱的三面投影。
(2)完成水平及侧面投影(注意整理轮廓线)。
7-9完成相贯体(平面立体与曲面立体)的投影。
(2)完成水平及侧面投影(注意整理轮廓线)。
7-9完成相贯体(平面立体与曲面立体)的投影。
(3)完成正面和侧面投影(注意整理轮廓线)。
7-9完成相贯体(平面立体与曲面立体)的投影。
(3)完成正面和侧面投影(注意整理轮廓线)。
7-10完成相贯体(曲面立体与曲面立体)的投影。 (6)
7-10完成相贯体(曲面立体与曲面立体)的投影。 (6)
7-10完成相贯体(曲面立体与曲面立体)的投影。 (7)
7-10完成相贯体(曲面立体与曲面立体)的投影。 (7)
7-10完成相贯体(曲面立体与曲面立体)的投影。 (8)
7-10完成相贯体(曲面立体与曲面立体)的投影。 (8)
7-6完成被截切圆锥的三面投影。
(4)完成水平和侧面投影。
7-6完成被截切圆锥的三面投影。
(5)完成水平和侧面投影。
7-6完成被截切圆锥的三面投影。
(5)完成水平和侧面投影。
7-6完成被截切圆锥的三面投影。
(6)完成水平和侧面投影。
7-6完成被截切圆锥的三面投影。
(6)完成水平和侧面投影。
7-10完成相贯体(曲面立体与曲面立体)的投影。 (1)
机械制图第4章 截交线与相贯线

Ⅳ Ⅲ Ⅰ Ⅱ
4.1 截交线
4.1.1 平面立体的截交线 1. 平面与棱锥相交
上一页
下一页
2. 平面与棱柱相交 平面与棱柱相交产生的截交线求法如下: (1)求出截平面与棱柱上若干条棱线的交点;如 果立体被多个平面截割,应求出截平面间的交线。 (2)依次连接各点;
(3)判断可见性
(4)整理轮廓线
4.1 截交线
4.1 截交线 4.1.2. 回转体的截交线
虚拟 中间切直立圆柱
1. 圆柱体的截交线
上一页
下一页
例4:求带切口圆柱的三面投影
虚拟 侧切、中间切直立圆柱
4.1 截交线
4.1.2. 回转体的截交线
1. 圆柱体的截交线
上一页
下一页
例5:画出物体侧面投影
虚拟 中间切直立圆筒
4.1 截交线
4.1.2. 回转体的截交线
上一页
下一页
4.1.2 回转体的截交线
平面与回转体相交,截交线一般为封闭的平面曲线,特殊情 况为平面多边形。截交线上的每一点都是立体表面与截平面的 共有点,因此,求作这种截交线的一般方法是:作出截交
线上一系列点的投影,再依次光滑连接成曲线。
1. 圆柱的截交线 2. 圆锥截交线
3. 圆球的截交线
4. 组合回转体的截交线
4.1.1 平面立体的截交线
4.1.2 回转体的截交线
4.1 截交线 上一页 下一页
4.1.1 平面立体的截交线
平面立体的截交线是封闭的平面多边形,此多边 形的各个边为截平面与平面立体表面的交线,多边 形的各个顶点为截平面与平面立体上某些棱线、边 线的交点。
所以求平面立体截交线的实质就是求截平面与平 面立体表面的交线,即求截平面与平面立体上 某些棱线、边线的交点。
机械制图第4章(截交线与相贯线)(课资参考)

[例4-2 ]图4-3所示为圆柱被正垂面P斜切,截交线为椭圆 的作图过程。
分析: 由于截平面P是正垂面,所以椭圆的正面投影积聚在P’上,
水平投影与圆柱面的水平投影重合为圆,侧面投影为椭圆。
课堂借鉴!
上一页 下一页 返4回
4.1立体表面的截交线
作图 (1)求特殊点由图4-3(a)可知,最低点A,最高点C是椭
图线,描深。作图结果如图4-2(d)所示。
课堂借鉴!
上一页 下一页 返3回
4.1立体表面的截交线
4.1.2曲面立体被截割
曲面立体的截交线,是一个封闭的几何图形。作图时,需先 求出若干个共有点的投影,然后用曲线将它们依次光滑地连 接起来,即为截交线的投影。
截平面与圆柱轴线的相对位置不同时,其截交线有三种不 同的形状,见表4-1。
[例4-1 ]如图4-2(a)所示,求作六棱柱被正垂面尸截割后 的左视图。
.画出被切割前六棱柱的左视图[图4-2(b)]。 .根据截交线六边形各顶点的正面、水平面投影做出截交线
的侧面投影1",2",3",4",5",6"[图4-2(c)]。 .连接1", 2",3",4",5",6",补画遗漏的线,擦去多余作
课堂借鉴!
下一页 返6回
4.2立体表面的相贯线
4.2.1 两圆柱垂直相交
1.不同直径两圆柱的相贯线 从已知条件可知,两圆柱的轴线垂直相交,有共同的前后对
称面和左右对称面,小圆柱全部穿进大圆柱。因此,相贯线 是一条闭合的空间曲线,且前后、左右都对称。 由于小圆柱的水平投影积聚为圆,相贯线的水平投影便重 合在其上;同理,大圆柱面的侧面投影积聚为圆,相贯线的侧 面投影也就重合在小圆柱两轮廓线之间的一段圆弧上,且左 半和右半相贯线的侧面投影互相重合。于是问题就可归结为 已知相贯线的水平投影和侧面投影,求作它的正面投影。
分析: 由于截平面P是正垂面,所以椭圆的正面投影积聚在P’上,
水平投影与圆柱面的水平投影重合为圆,侧面投影为椭圆。
课堂借鉴!
上一页 下一页 返4回
4.1立体表面的截交线
作图 (1)求特殊点由图4-3(a)可知,最低点A,最高点C是椭
图线,描深。作图结果如图4-2(d)所示。
课堂借鉴!
上一页 下一页 返3回
4.1立体表面的截交线
4.1.2曲面立体被截割
曲面立体的截交线,是一个封闭的几何图形。作图时,需先 求出若干个共有点的投影,然后用曲线将它们依次光滑地连 接起来,即为截交线的投影。
截平面与圆柱轴线的相对位置不同时,其截交线有三种不 同的形状,见表4-1。
[例4-1 ]如图4-2(a)所示,求作六棱柱被正垂面尸截割后 的左视图。
.画出被切割前六棱柱的左视图[图4-2(b)]。 .根据截交线六边形各顶点的正面、水平面投影做出截交线
的侧面投影1",2",3",4",5",6"[图4-2(c)]。 .连接1", 2",3",4",5",6",补画遗漏的线,擦去多余作
课堂借鉴!
下一页 返6回
4.2立体表面的相贯线
4.2.1 两圆柱垂直相交
1.不同直径两圆柱的相贯线 从已知条件可知,两圆柱的轴线垂直相交,有共同的前后对
称面和左右对称面,小圆柱全部穿进大圆柱。因此,相贯线 是一条闭合的空间曲线,且前后、左右都对称。 由于小圆柱的水平投影积聚为圆,相贯线的水平投影便重 合在其上;同理,大圆柱面的侧面投影积聚为圆,相贯线的侧 面投影也就重合在小圆柱两轮廓线之间的一段圆弧上,且左 半和右半相贯线的侧面投影互相重合。于是问题就可归结为 已知相贯线的水平投影和侧面投影,求作它的正面投影。
截交线相贯线练习题参考答案

截交线、相贯线练习题
画出图示物体得俯视图补画组合回转体得投影
画出被截切回转体得第三视图根据主视图与左视图,画出俯视图
画出图示物体得主视图求作立体得H面投影
补画立体得水平投影分析曲面立体得截交线,补全曲面立体得三面投影
补画立体得水平投影补画半球切割后得投影
补画圆锥与半球相贯得V面与H面投影补画圆柱与半球相贯得V面与H面投影
画出两圆柱面得相贯线。
(不能用圆弧来替代,要求
作以下立体得相贯线
保留辅助线)
画出圆柱面得内外相贯线根据主视图与左视图,画出俯视图中得相贯线
画出图示物体得俯视图补画下面物体得投影
完成圆柱与圆锥相贯后得正面投影与水平投影。
截交线重要例题

9′10′
10〞 3〞8〞
4′3′
7′8′
9〞 4〞7〞
10 3 2 8 6
1 4 9
5 7
整理棱线投影
6 1
4
3
2
5
求正四棱锥被截切后的水平和侧面投影。 1、空间分析
6′ 5′7′ 4′8′ 1′ 3′9′ 2′10′ 10 10″ 9″ 6″ 7″ 8″ 4″ 2″ 1″ 3″ 5″
立体表面交线的形状? ——空间10边形
2、投影分析
截交线的正面投影落 在截平面的积聚性投影上;
——水平截平面截切的交 线平行于四棱锥对应底边;
2、投影分析
截平面为正垂面,截 交线的正面投影落在截平 面的积聚性投影上,要求 的是截交线的水平投影和 侧面投影。
2 1
3 4
3、投影作图 4、整理图线
5
采用的是哪种解题方法?
完成棱柱体被截切后的水平投影和侧面投影。
6′7′ 4′5′ 7″ 6″ 4″
1、空间分析:
截交线为平面几边形? ——平面七边形
截交线的重要例题
B0
C0
[例题4]: 作出四 棱锥被 截切后
A0
C
D0
D
b ( d ) a
c
A
B
的水平
投影, 并求截 断面的 实形。
(1)找交点; (2)依次连接各点;
d
(3)判别可见性; (4)整理棱线;
c
a
b
(5)求实形;
作出四棱柱被截切后的水平投影和侧面投影,并出求 截断面的实形。
9 8 4
3
7
6 1 5 2
——侧平截平面截切的交 线平行于四棱锥前后棱线。