初中数学人教版《同底数幂的乘法》ppt
合集下载
初中数学人教版八年级上册《14.幂的乘方》课件

(1)在形式上,幂的乘方的底数本身就是一个幂,根据乘方的意义和 同底数幂的乘法的性质可以推出幂的乘方的性质; (2)在幂的乘方中,底数可以是单项式,也可以是多项式.
幂的乘方用性质, 底数不变指数乘, 推广指数一次幂, 逆用性质巧计算.
计算下列式子:
(1) (103)5 ;
(2) (a4)4 ;
(3) (am)2 ;
x2 (3)
思考:用含有 x 的字母表示图(1)、图(2)的面积和图(3)的体积.
x (1)
S(1)= x2
x2 (2)
S(2)= (x2)2
x2 (3)
V(3)=(x2)3
观察计算结果,你能发现什么规律? (1) (x2)2 = x2∙x2 = x2+2= x4 ;
(2) (x2)3 = x2∙x2∙x2 = x2+2+2= x6 .
同底数幂的乘法与幂的乘方的运算性质的区别
运算性质
不变
变化
公式
同底数幂的乘法
底数不变
指数相加
am×an=a(m+n)
幂的乘方
底数不变
指数相乘
(am)n=amn
(1) 幂的乘方的性质也可以推广为 [(am)n]p=amnp (m,n,p都为正整数). (2) 幂的乘方的性质可以逆用,即 amn=(am)n (m,n为正整数).
已知16m=4×22n-2,27n=9×3m+3 ,求 m,n 的值.
解:因为16m=4×22n-2,所以24m =22×22n-2 . 所以24m=22n,即4m=2n,2m=n. ① 因为 27n=9×3m+3 ,所以(33)n=32×3m+3 . 所以33n=3m+5,即3n=m+5. ② 由①②得,m=1,n=2.
新人教版数学八年级上册 《14.1.1同底数幂的乘法》课件

猜想: am ·an=
? (当m、n都是正整数)
猜想: am ·an=am+n (当m、n都是正整数)
am ·an (= aa…a)(aa…a)(乘方的意义)
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a
=am+n (乘方的意义)
你们真棒,你的猜想是正确的!
八年级 数学
14.1同底数幂的乘法
底数相同
❖ 式子1015×103中的两个因数有何特点?
我们把底数相同的幂称为同底数幂
请同学们先根据乘方的意义,解答
10 ×10 = = 10 15
3 (10×10×…×10)×(10×10×10)
( 18 )
15个
3个
a ×a = = a 15
3
(a×a×…×a)×(a×a×a)
( 18 )
思考:观察上面各题左右两边,底数、指数有什么关系?(完成P95探究)
谢谢观赏
You made my day!
我们,还在路上……
在2010年全球超级计算 机排行榜中,中国首台千万 亿次超级计算机系统“天河 一号”雄居第一,其实测运 算速度可以达到每秒2570万 亿次
问题1 一种电子计算机 每秒可进行1千万亿(1015 ) 次运算,它工作103 s 可进行 多少次运算? 列式:1015×103
怎样计算1015×103呢?
探究新知
2.填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
如果底数不同,能够化为相同底数的,可以用该法则,否 则不能用。
人教版数学八年级上册 《14.1.1同底数幂的乘法》优质课件

关闭 关闭
解析 答案
一二
1.a3·a4 的结果是( ).
A.a4
B.a7
1
2
3
4
5
6
C.a6
D.a12
关闭Bຫໍສະໝຸດ 答案2.下列计算正确的是( ).
A.b4·b2=b8
B.x3+x2=x6
C.a4+a2=a6
D.m3·m=m4
1
2
3
4
5
6
关闭
选项 A 和 D 都是同底数幂的乘法,底数不变,指数相加;选项 B 和 D 的左边都不是同类项, 不能合并.
1
2
3
4
5
6
.
2 187
关闭
答案
6.计算:
(1)-36×37; (2)y5·y4·y; (3)a3·a5-a2·a6; (4)29×28×23.
1
2
3
4
5
6
(1)-36×37=-36+7=-313; (2)y5·y4·y=y5+4+1=y10;
(3)a3·a5-a2·a6=a8-a8=0; (4)29×28×23=29+8+3=220.
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.1 同底数幂的乘法
学前温故 新课早知
1. 几个相同 的数或者式子相乘,这种运算叫做乘方,乘方的结果叫 做幂 . 2.乘方的性质:正数的任何次幂都是正数 ,负数的偶次幂是正数 ,负数 的奇次幂是 负数 .
学前温故 新课早知
1.同底数幂的乘法法则:同底数幂相乘,底数不变 ,指数相加 .
关闭
答案
为 a6;
初中数学七年级《幂的运算》第一课时同底数幂的乘法公开课教学课件

总结提升
特殊
幂的运算性质1
(同底数幂的乘法)
具体实例
特殊
一般
⋅
=
具体应用
+
( ,都是正整数).
同底数幂相乘,底数不变,指数相加.
形式
方法
作业:
1.课本54页习题8.1第1题.
2.试着用,2 ,5构造同底数幂的乘法算式并计算.
自我评价
请你根据今天的学习表现,结合学习目标,进行自我评价,把自己
形式
方法
新知应用
1
2
例 计算: 1
5
1
×
2
8
3 2 ⋅ 3 ⋅ 6
解
5
1
1
2
2
−2
8
1
1
×
=
2
2
2
5+8
1
=
2
2
−2
4
−
2
3
× −2
7
⋅ 4
13
底数是分数或负数时要加括号.
× −2 7= −2
2+7
= −2 9 = −29
同底数幂相乘,底数不变,指数相加.
3 2 ⋅ 3 ⋅ 6 = 2+3 ∙ 6 = 2+3+6= 11
⋅ = ( ⋅ ⋅ ⋯ ⋅ )( ⋅ ⋅ ⋯ ⋅ ) (乘方的意义)
个
= ⋅ ⋅⋯⋅
个
(乘法结合律)
( + )个
= +
(乘方的意义)
幂的运算性质1(同底数幂的乘法):
⋅ = +
( ,都是正整数).
八年级数学上册第十四章同底数幂的乘法教学课件新版新人教版ppt

新课导入
规 律 以上6个式子都是两个底数相同的幂相乘,其结果的幂的底数仍与 原来两个幂的底数相同,结果的幂的指数是原两个幂的指数相加. (其中指数均为正整数)
思考:你能总结出同底数幂相乘的运算法则吗?
新课讲解
知识点1 同底数幂的乘法 性质:同底数幂相乘,底数不变,指数相加.
am×an=(a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a∙a∙a∙a∙a)(a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a∙a∙a∙a∙a)
m个a
n个a
=a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a
m+n个a
=am+n
符号表示:am×an=am+n (m,n 都是正整数).
新课讲解
知识点1 同底数幂的乘法 性质:同底数幂相乘,底数不变,指数相加.
符号表示:am×an=am+n (m,n 都是正整数).
(1)使用该性质运算的前提条件有两个:①乘法运算; ②底数相同. (2)单个字母或数字可以看成指数为1的幂,参与同底数幂的乘法运 算时, 不能忽略指数为x+2=36,则 3x 2 . 2
提示:3x+2=3x·32=36,3x=4.
新课讲解
知识点1 同底数幂的乘法
示例:
指数相加
指数相加
a3×a5 = a8
(-a)×(-a)2×(-a)3 = (-a) 1+2+3 =(-a)6
底数a不变
底数-a不变
(-a)的指数为1
新课讲解
知识点1 同底数幂的乘法 (1)同底数幂的乘法的性质也适用于三个及三个以上的同底
数幂相乘,即 am∙ an∙ ap = am+n+p(m,n,p都为正整数). (2)同底数幂的乘法的性质可以逆用,即 am+n = am∙ an (m,n都为正 整数).
同底数幂的乘法课件人教版八年级数学上册

列式:1015×103
怎样计算1015×103呢?
讲授新课
同底数幂的概念
1.同底数幂:就是指底数相同的幂.
底数相同 102
观1察0它们1的0 底数2 个
103 10 10 10
3个
2. 两个同底数幂相乘:102 103 ?
讲授新课
探索:同底数幂的乘法法则
1. 两个同底数幂相乘:102 103 ?
即:同底数幂相乘,底数_不__变__, 指数_相__加___.
探究新知
想一想 当三个或三个以上同底数幂相乘时,是否也具有这 一性质呢? 怎样用公式表示?
am·an·ap = am+n+p(m、n、p都是正整数)
同底数幂的乘法运算法则
am ·an = am+n (m、n都是正整数) am·an·ap = am+n+p (m、n、p都是正整
13
课堂练习
例 计算下列各式,结果用幂的形式表示.
(1)- x3·x6 ; (2) 2× 24× 23 ; (3) xm ·x3m+1 ;
14
课堂练习
计算下列各式,结果用幂的形式表示.
(1) b5 ·b ;
(2) 10× 102× 103 ;
(3) -a2 ·a6 ; (4) y2n ·yn+1 ;
数)
探究新知
素养考点 1 同底数幂的乘法的法则的运用
例1 计算:
(1)x2 x5;
(2a) a6;
(3()-2)(-2)4 (-2)3; (4x)m x3m1;
(5)(b+2)3·(b+2)4·(b+2) 解: (1) x2·x5 =x2+5 =x 7.
怎样计算1015×103呢?
讲授新课
同底数幂的概念
1.同底数幂:就是指底数相同的幂.
底数相同 102
观1察0它们1的0 底数2 个
103 10 10 10
3个
2. 两个同底数幂相乘:102 103 ?
讲授新课
探索:同底数幂的乘法法则
1. 两个同底数幂相乘:102 103 ?
即:同底数幂相乘,底数_不__变__, 指数_相__加___.
探究新知
想一想 当三个或三个以上同底数幂相乘时,是否也具有这 一性质呢? 怎样用公式表示?
am·an·ap = am+n+p(m、n、p都是正整数)
同底数幂的乘法运算法则
am ·an = am+n (m、n都是正整数) am·an·ap = am+n+p (m、n、p都是正整
13
课堂练习
例 计算下列各式,结果用幂的形式表示.
(1)- x3·x6 ; (2) 2× 24× 23 ; (3) xm ·x3m+1 ;
14
课堂练习
计算下列各式,结果用幂的形式表示.
(1) b5 ·b ;
(2) 10× 102× 103 ;
(3) -a2 ·a6 ; (4) y2n ·yn+1 ;
数)
探究新知
素养考点 1 同底数幂的乘法的法则的运用
例1 计算:
(1)x2 x5;
(2a) a6;
(3()-2)(-2)4 (-2)3; (4x)m x3m1;
(5)(b+2)3·(b+2)4·(b+2) 解: (1) x2·x5 =x2+5 =x 7.
《同底数幂的乘法》数学教学PPT课件(3篇)

特
殊
“光年”是长度单位,指光在真空中沿直线传 播一年所经过的距离。请问:一光年有多远?
3108 3.2107 33.2108 107 9.61015
青岛版七年级数学下册
同底数幂的乘法
嫦娥奔月
地球到月球的平均距离 是 3.8 ×108米
()
嫦白 娥兔 孤捣 栖药 与秋 谁复 邻春 ?,
李 白
6个10
=106 (乘方的意义)
25×22 =( 2 ×2 ×2 × 2 × 2 )×(2× 2 )
= 27
a3×a2=(a×a×a )×(a×a) = a5
观察下面各题左右两边,底数、指数有
什么关系?
102 ×104= 10( 6 ) = 10( 2+4 ) 25 ×22 = 2( 7 ) = 2( 5+2) a3× a2 = a( 5 ) = a( 3+2)
1.口答 (1)76×74 (2)a9·a8
(3)x5·x4
(4)b6·b
(710) (a17) (x9) (b7)
2.下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (×) (2)b5 + b5 = b10( ×)
b5 ·b5= b10
b5 + b5 = 2b5
(3)x5 ·x5 = x25 ( ×) (4)-y6 ·y5 = y11 ( ×)
1.计算:a2‧a3 + a‧a4
解:a2‧a3 + a‧a4= a2+3+a1+4
= a5+a5= 2a5
2023年4月23日7时23分
2.计算: (1) -y ·(-y)2 ·y3
x5 ·x5 = x10
2014年秋人教版八年级数学上册:14.1.1《同底数幂的乘法》ppt课件

2、转化为同底数幂运算。
检测五:
完成下列各题,并思考解题依据是什么?
计பைடு நூலகம்: (1) (2) (3)
a a a a
8 8
8 8 同底数幂乘法
2 2
8
8 合并同类项
先合并同类项,再同底数幂乘法
运用同底数幂的乘法法则要注意: 1.必须具备同底、相乘两个条件; 2.注意 am ·an 与am + an的区别;
通过观察可以发现1014、 103这两个因数都是同底
17个10
=1017
数幂的形式,所以我们
把像1014×103的运算叫
做同底数幂的乘法.
猜想:am · an= am+n (m,n都是正整数) am · an = a· …· a) (a· a· …· a)×(a· m个a = a· a· …· a (m+n)个a =am+n n个a (乘法结合律) (乘方的意义)
(乘方的意义)
am·an =am+n (m,n都是正整数)
检测一
完成下列各题(请同学口答,并说出解题依据)
3 3
3 2
5 3 3 3 3 3
3
a a a m n m n (m、n都是正整数) a a a
5 8
13
通过这三道题,你能发现这种运算的规律吗? 运算法则:底数 不变 ,指数 相加 。
检测二:
下面的计算是否正确,如果不对,应怎样改正? 你的做题依据是什么?
14.1.1同底数幂的 乘法
学习目标
学会同底数幂的乘法法 则,并能熟练的应用。
1、
a 表示n个a相乘,我们把这种运算 叫做乘方。
n
请同学们自学大屏幕的知识点,为本节课的 重点知识做好准备。(2分钟)