(全国通用)2020版高考数学二轮复习 第二编 专题三 数列 第3讲 数列的综合问题练习 理

合集下载

(全国通用)2020版高考数学二轮复习 提升专题 数列 教案讲义

(全国通用)2020版高考数学二轮复习 提升专题  数列 教案讲义

第1讲 等差数列、等比数列[例1] (1)(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n(2)(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.[答案] (1)A (2)1213[解析] (1)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2. 所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.(2)由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13(1-35)1-3=1213.[解题方略] 等差(比)数列基本运算的解题思路 (1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[跟踪训练]1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B.54 C.45D.-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A.-1B.1C.-2D.2解:(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0.解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+2n -1=n 2.解析:选C 法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q +4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q+2)2=0,所以q =-2,故选C.3.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[例2] (1)(2019·长春市质量监测一)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.(2)在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] (1)法一:设数列{a n }的公比为q (q >0且q ≠1),由题意可得⎩⎪⎨⎪⎧S 6=a 1(1-q 6)1-q=30, ①S 9=a 1(1-q 9)1-q =70,②①÷②得,1-q 61-q 9=1+q 31+q 3+q 6=37,又由q >0,得q 3=2,再由S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=13,得S 3=13S 6=10. 法二:由题意可得(S 6-S 3)2=S 3(S 9-S 6),即(30-S 3)2=40S 3,即S 23-100S 3+900=0,解得S 3=10或S 3=90,又数列{a n }的各项均为正数,所以S 3<S 6,S 3=90(舍去),故S 3=10.(2)设{a n }的公差为d .法一:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得6.5≤n ≤7.5. 因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7(13-2×7+15)2=49.法二:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15. 所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] (1)10 (2)49[解题方略] 与数列性质有关问题的求解策略[跟踪训练]1.在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A.-2+22B.- 2C. 2D.-2或 2解析:选B 设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.2.(2019·四省八校双教研联考)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( ) A.-1 B.0 C.1D.2解析:选C 法一:设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.法二:设{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.法三:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.3.数列{a n }是首项a 1=m ,公差为2的等差数列,数列{b n }满足2b n =(n +1)a n ,若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.解析:由题意得,a n =m +2(n -1), 从而b n =n +12a n =n +12[m +2(n -1)].又对任意n ∈N *都有b n ≥b 5成立,结合数列{b n }的函数特性可知b 4≥b 5,b 6≥b 5,故⎩⎪⎨⎪⎧52(m +6)≥3(m +8),72(m +10)≥3(m +8),解得-22≤m ≤-18.答案:[-22,-18][例3] 设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1; 当n ≥2时,a n =S n -S n -1=a n -1-a n , 即a n a n -1=12(n ≥2,n ∈N *). 所以数列{a n }是首项为1, 公比为12的等比数列,故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.[解题方略]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[跟踪训练]已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值.(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n . 解:(1)因为数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). 所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)因为S n =2a n -3n , 所以S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3,①把b n =a n +3及b n +1=a n +1+3,代入①式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1,所以a n =b n -3=6×2n -1-3=3(2n-1).逻辑推理——等比数列运算中的分类讨论[典例] 已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A.(-∞,-1] B.(-∞,0)∪[1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)[解析] 设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞). [答案] D[素养通路]等比数列的公比q <0时,相邻两项一定异号,相隔一项的两项符号一定相同;等比数列的公比q >0时,数列中的各项符号相同.用等比数列前n 项和公式时,如果其公比q 不确定,要分q =1和q ≠1两种情况进行讨论.本题考查了逻辑推理及数学运算的核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A.16B.8C.4D.2解析:选C 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.2.(2019·湖南省五市一校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6=( )A.6B.7C.8D.9解析:选B 法一:由题意知,数列{a n }是等差数列,设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d +a 1+5d =12,a 1+a 1+2d +a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以a 1+a 6=a 1+a 1+5d =7,故选B. 法二:由题意知,数列{a n }是等差数列,将a 2+a 4+a 6=12与a 1+a 3+a 5=9相加可得3(a 1+a 6)=12+9=21,所以a 1+a 6=7,故选B.3.(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A.32B.31C.64D.63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B. 法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.4.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2019=( ) A.1 B.-2 C.3D.-3解析:选A 因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n-1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.5.(2019届高三·西安八校联考)若等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A.10B.11C.12D.13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n+1<0的正整数n 的值为12,故选C.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A.0B.-9C.9D.1解析:选 C 由已知可得,数列{a n }为等差数列,f (x )=sin2x +cos x +1,∴f ⎝ ⎛⎭⎪⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin2x -cos x +1,∴f (π-x )+f (x )=2,∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.二、填空题7.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.解析:设等比数列的公比为q ,则a n =a 1qn -1=qn -1.∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34,即4q 2+4q +1=0,∴q =-12,∴S 4=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:588.(2019·北京高考)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -109.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14,∴数列{a n }的公差为2.答案:2 三、解答题10.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d .因为a 1=-10, 所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.11.(2019·广西梧州、桂林、贵港等期末)设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)∵⎩⎪⎨⎪⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,∴⎩⎪⎨⎪⎧a 1=1,d =2, 故a n =1+(n -1)×2=2n -1. (2)由(1)知,S n =n (1+2n -1)2=n 2.∵S 3,a 14,S m 成等比数列,∴S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.12.(2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?解:(1)证明:∵a 3=7,a 3=3a 2-2,∴a 2=3, ∴a n =2a n -1+1, ∴a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n, ∴a n =2n-1,∴S n =2(1-2n)1-2-n =2n +1-n -2,∴n +S n -2a n =n +(2n +1-n -2)-2(2n-1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.B 组——大题专攻强化练1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n(n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明:数列{b n }为等差数列;(2)设c n =n a n,求数列{c n }的前n 项和S n . 解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n=3a n +3n3n=a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝ ⎛⎭⎪⎫1-13n =32-12·3n -1.2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.3.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.4.已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2020成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1.(2)由(1)知,b n =2n+1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n)1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1031,f (10)=211+10-2=2056, 故使b 1+b 2+…+b n >2020成立的最小正整数n 的值是10.第2讲 数列通项与求和[例1] (1)已知S n 为数列{a n }的前n 项和,a 1=1,当n ≥2时,S n -1+1=a n ,则a 8=________.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. [解析] (1)当n =2时,S 1+1=a 2,即a 2=2.当n ≥2时,⎩⎪⎨⎪⎧S n -1+1=a n ,S n +1=a n +1,相减得a n +1=2a n ,又a 1=1,所以a 2=2a 1.所以数列{a n }构成一个等比数列, 所以a 8=a 2·q 6=2×26=128.(2)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. [答案] (1)128 (2)22n -1[解题方略]1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[跟踪训练]1.已知S n 是数列{a n }的前n 项和,且log 5(S n +1)=n +1,则数列{a n }的通项公式为________.解析:由log 5(S n +1)=n +1,得S n +1=5n +1,所以S n =5n +1-1.当n ≥2时,a n =S n -S n -1=4×5n;当n =1时,a 1=S 1=24,不满足上式.所以数列a n 的通项公式为a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2. 答案:a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2 2.已知首项为2的数列{a n }满足a n +1(2n -1)=a n (2n +1)(n ∈N *),则数列{a n }的通项公式为a n =________.答案:4n -2解析:因为a n +1(2n -1)=a n (2n +1)(n ∈N *),且a 1=2,所以a n +1a n =2n +12n -1,得a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×53×…×2n -12n -3=4n -2. 考点二数列的求和题型一 分组转化求和[例2] 已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解] (1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16,所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n-1=3n.(2)由(1)得b n =3n+2n -1,所以S n =(3+32+33+ (3))+(1+3+5+…+2n -1) =3(1-3n)1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32. [解题方略]求解此类题的关键:一是会“列方程”,即会利用方程思想求出等差数列与等比数列中的基本量;二是会“用公式”,即会利用等差(比)数列的通项公式,求出所求数列的通项公式;三是会“分组求和”,观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n 项和时可用分组求和法,把数列分成几个可以直接求和的数列;四是会“用公式法求和”,对分成的各个数列的求和,观察数列的特点,一般可采用等差数列与等比数列的前n 项和公式求和.题型二 裂项相消求和[例3] (2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.[解] (1)由已知有S n -S n -1=1(n ≥2,n ∈N ), ∴数列{S n }为等差数列,又S 1=a 1=1, ∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,∴n ≥5,∴n 的最小值为5. [解题方略]求解此类题需过“三关”:一是定通项关,即会利用求通项的常用方法,求出数列的通项公式;二是巧裂项关,即能将数列的通项公式准确裂项,表示为两项之差的形式;三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.题型三 错位相减求和[例4] (2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式.(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).[解题方略]运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }是不是一个为等差数列,一个为等比数列;二是错开位置,为两式相减不会看错列做准备;三是相减,相减时一定要注意最后一项的符号,学生在解题时常在此步出错,一定要小心.[跟踪训练]1.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,∴q =2.于是a 1=2,∴数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,∴T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n 2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,∴T n =1+12+122+…+12n -1-n2n=1-⎝ ⎛⎭⎪⎫12n1-12-n2n =2-n +22n.2.(2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),求T n .解:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.∴1a n =1+12(n -1)=12(n +1), 即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2), ∴b n =1n (n +1)=1n -1n +1(n ≥2),∴T n =b 1+b 2+…+b n =⎛⎪⎫1-12+ ⎛⎪⎫12-13+…+ ⎛⎪⎫1n -1n +1=1-1n +1=n n +1. [例5] (2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.[解] (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.[解题方略]求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.[跟踪训练](2019·重庆市七校联合考试)已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式;(2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧d a 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1), 所以S n =(2+22+23+…+2n )+(1+3+5+…+2n -1)=2n +1+n 2-2.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1).由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7. 由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1.(2)由(1)得b n =2n -1+(n -1)ln2,所以T n =(1+2+22+…+2n -1)+[0+1+2+…+(n -1)]ln2=1-2n1-2+n (n -1)2ln2=2n-1+n (n -1)2ln2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2),则a 1+a 2+…+a 2020=( )A.-3027B.3027C.-3030D.3030解析:选C 因为a 1+a 2+…+a 2020=(a 1+a 2)+(a 3+a 4)+…+(a 2019+a 2020)=(1-4)+(7-10)+…+[(3×2019-2)-(3×2020-2)]=(-3)×1010=-3030,故选C.2.已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=( )A.-12B.23C.12D.11解析:选D 因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.3.(2019·广东省六校第一次联考)数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)na n (n ∈N *),则数列{b n }的前50项和为( )A.49B.50C.99D.100解析:选A 由题意得,当n ≥2时,a n =S n -S n -1=2n ,当n =1时,a 1=S 1=3,所以数列{b n }的前50项和为(-3+4)+(-6+8)+…+(-98+100)=1+2×24=49,故选A.4.已知数列{a n }是等差数列,若a 2,a 4+3,a 6+6构成公比为q 的等比数列,则q =( ) A.1 B.2 C.3D.4解析:选A 令等差数列{a n }的公差为d ,由a 2,a 4+3,a 6+6构成公比为q 的等比数列,得(a 4+3)2=a 2(a 6+6),即(a 1+3d +3)2=(a 1+d )·(a 1+5d +6),化简得(2d +3)2=0,解得d =-32.所以q =a 4+3a 2=a 1-92+3a 1-32=a 1-32a 1-32=1.故选A.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1016个浮雕,这些浮雕构成一幅优美的图案,若从最下层往上,浮雕的数量构成一个数列{a n },则log 2(a 3a 5)的值为( )A.8B.10C.12D.16解析:选C 依题意得,数列{a n }是以2为公比的等比数列, 因为最下层的浮雕的数量为a 1,所以S 7=a 1(1-27)1-2=1016,解得a 1=8,所以a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *),所以a 3=25,a 5=27,从而a 3×a 5=25×27=212, 所以log 2(a 3a 5)=log 2212=12,故选C.6.(2019·洛阳市统考)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2a n(2a n -1)(2a n +1-1),若k >T n 恒成立,则k 的最小值为( )A.17 B.149 C.49D.8441解析:选B ∵6S n =a 2n +3a n ,∴6S n +1=a 2n +1+3a n +1, ∴6a n +1=(a n +1+a n )(a n +1-a n )+3(a n +1-a n ), ∴(a n +1+a n )(a n +1-a n )=3(a n +1+a n ), ∵a n >0,∴a n +1+a n >0,∴a n +1-a n =3, 又6a 1=a 21+3a 1,a 1>0,∴a 1=3.∴{a n }是以3为首项,3为公差的等差数列,∴a n =3n ,∴b n =17·⎝ ⎛⎭⎪⎫18n -1-18n +1-1,∴T n =17·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -1-18n +1-1=17·⎝ ⎛⎭⎪⎫17-18n +1-1<149, ∴k ≥149,∴k 的最小值为149,故选B.二、填空题7.在各项都为正数的等比数列{a n }中,已知a 1=2,a 2n +2+4a 2n =4a 2n +1,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q >0,因为a 1=2,a 2n +2+4a 2n =4a 2n +1, 所以(a n q 2)2+4a 2n =4(a n q )2,化为q 4-4q 2+4=0, 解得q 2=2,q >0,解得q = 2.则数列{a n }的通项公式a n =2×(2)n -1=2n +12.答案:2n +128.(2019·安徽合肥一模改编)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为________. 解析:设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1.∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).答案:2n +1n4(n +1)9.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,∴数列{a n }是等比数列,首项是1,公比是2,所以a n =2n -1.因为a n b n =-n 2+9n -20,所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6} 三、解答题10.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.11.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n2n +2n .(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n +1-2-2n +2=2n,当n =1时,a 1=S 1=2,所以a n =2n .(2)∵b n =a n2n +2n =2n +1,∴a n b n =(2n +1)·2n.∴T n =3×2+5×22+7×23+…+(2n +1)·2n, 2T n =3×22+5×23+7×24+…+(2n +1)·2n +1,∴-T n =6+23+24+…+2n +1-(2n +1)·2n +1=6+23(1-2n -1)1-2-(2n +1)2n +1=-2-(2n -1)·2n +1.∴T n =(2n -1)·2n +1+2.12.(2019·郑州市第二次质量预测)数列{a n }满足:a 12+a 23+…+a nn +1=n 2+n ,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1a n ,数列{b n }的前n 项和为S n ,求满足S n >920的最小正整数n .解:(1)由题意知,a 12+a 23+…+a nn +1=n 2+n ,当n ≥2时,a 12+a 23+…+a n -1n =(n -1)2+n -1,两式相减得,a nn +1=2n ,a n =2n (n +1)(n ≥2).当n =1时,a 1=4也符合,所以a n =2n (n +1),n ∈N *. (2)b n =1a n=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1), 由S n =n 2(n +1)>920得n >9,所以满足条件的最小正整数n 为10.B 组——大题专攻强化练1.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得a 1=S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 1=1,所以a n =n -n -1.(2)b n =(-1)na n =(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. ∴S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,∴(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, ∴a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1-12n +1=-2n +22n +1.∴T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.3.(2019·江苏高考题节选)定义首项为1且公比为正数的等比数列为“M ­数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M ­数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0, 解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M ­数列”.(2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). 4.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,所以当n ≥2时,(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,所以b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,即b n =2-12n -1(n ≥2),易知b 1=1满足上式,所以b n =2-12n -1(n ∈N *).(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1,①12T n =121+222+323+…+n2n ,② 由①-②得,12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n 2n =2-n +22n . 所以T n =4-n +22n -1.所以数列{a n }的前n 项和S n =n (n +1)-4+n +22n -1.[思维流程——找突破口][典例] 已知数列{a n }满足a 1=1,na n +1=2(n +1)·a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [快审题][稳解题] (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 理由如下: 由条件可得a n +1n +1=2a nn, 即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[题后悟道] 等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等.[针对训练]已知正数数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式.(2)设b n =(1-a n )2-a (1-a n ),若b n +1>b n 对任意n ∈N *恒成立,求实数a 的取值范围.。

2020新课标高考数学(理)二轮总复习课件:1-2-3 数列的综合应用

2020新课标高考数学(理)二轮总复习课件:1-2-3 数列的综合应用

上一页
返回导航
下一页
所以 Tn=b1+b2+b3+…+bn =1-12+12-13+…+1n-n+1 1 =1-n+1 1<1.,
新课标高考第二轮总复习•理科数学
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
【悟方法·善于总结】 等差数列与不等式的结合,一般涉及等差数列的通项公式、求和公式以及等差数 列的常用性质,①通项公式的推广 an=am+(n-m)d; ②若{an} 为等差数列,且 p +q=m+n=2r ,则 ap+aq=am+an=2ar ;③若{an}是等差数列,公差为 d,则 ak,ak+m,ak+2m,…是公差为 md 的等差数列;④若等差数列{an}的前 n 项和为 Sn, 则数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列.在解决等差数列的运算问题时, 要注意采用“巧用性质、整体考虑、减少运算量”的方法.
专题二 数列 第三讲 数列的综合应用
栏目 导航
解答题专项练 选择填空题专项练 题型专项练
专题限时训练
新课标高考第二轮总复习•理科数学
数列与不等式中常见的放缩变形: (1)1n-n+1 1=nn1+1<__n1_2___<n-11n=n-1 1-1n.
(2)n12<n2-1 1=12n-1 1-n+1 1.
[例 1] (本题满分 12 分)设数列{an}的各项均为正数,其前 n 项和为 Sn,已知 a1= 1,4Sn=a2n+1-4n-1(n∈N*). (1)求数列{an}的通项公式; [解析] (1)因为 4Sn=a2n+1-4n-1,所以 4Sn-1=a2n-4n+3(n≥2), 两式相减,得 4an=a2n+1-a2n-4,即 a2n+1=(an+2)2.因为 an>0,所以 an+1=an+ 2(n≥2).(3 分)

2020年高考数学二轮复习《数列》讲义案及拔高题型归纳附答案解析

2020年高考数学二轮复习《数列》讲义案及拔高题型归纳附答案解析

(1)求数列{an}的通项公式;
(2)设数列{bn}的前
n
项和为
Tn
且Tn
+
an+1 2n
=
λ(λ为常数).令
cn=b2n(n∈N*)求数列{cn}的前
n 项和 Rn.
【 解 答 】 解 : (1) 设 等 差 数 列 {an} 的 首 项 为 a1, 公 差 为 d, 由 a2n=2an+1, 取 n=1, 得 a2=2a1+1,即 a1﹣d+1=0①
=(n−1)2d+2a

. c(n−1)2d+2a
n2+c

1
若{bn}是等差数列,则{bn}的通项公式是 bn=An+B 型.
观察①式后一项,分子幂低于分母幂,
故有:c(nn−12)2+dc+2a
=
0,即
c
(n−1)d+2a 2
=
0,而(n−1)2d+2a

0,
故 c=0.
经检验,当 c=0 时{bn}是等差数列.
③﹣④得:3
4
Rn
=
1 4
+
1 42
(I)求an 的通项公式;
(II)若数列bn 满足 anbn log3 an ,求bn 的前 n 项和T n .
【解析】(I)因为 2Sn 3n 3
所以, 2a1 3 3 ,故 a1 3,
当 n 1 时, 2Sn1 3n1 3,
此时, 2an 2Sn 2Sn1 3n 3n1, 即 an 3n1,
(2)是否存在 a1, d ,使得 a1, a22 , a33, a44 依次成等比数列,并说明理由;

2020浙江新高考数学二轮复习专题三 3 第3讲 数列的综合问题 【精品解析】

2020浙江新高考数学二轮复习专题三 3 第3讲 数列的综合问题 【精品解析】

第3讲 数列的综合问题数列不等式的证明[核心提炼]数列不等式的证明问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.与数列有关的不等式除利用数学归纳法证明外,还可以借助以下方法:若所证数列不等式能够转化为函数,可借助函数的单调性证明;若所证数列不等式两边均是整式多项式,可以借助比较法;若所证数列能够求和,且所证不等式与和式有关,可先求出其和,再借助放缩法证明.[典型例题]已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2. 【证明】 (1)用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若x k +1≤0时,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾,故x k +1>0. 因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *). (2)由x n =x n +1+ln(1+x n +1)得,x n x n +1-4x n +1+2x n =x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1). 记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+x x +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).(3)因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1,所以x n ≥12n -1.由x n x n +12≥2x n +1-x n 得1x n +1-12≥2⎝⎛⎭⎫1x n -12>0, 所以1x n -12≥2⎝⎛⎭⎫1x n -1-12≥…≥2n -1⎝⎛⎭⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).证明数列不等式常用的四种方法(1)构造函数,结合数列的单调性证明.(2)若待证不等式的两边均为关于n 的整式多项式,常用作差比较法证明数列不等式. (3)与数列前n 项和有关的不等式的证明方法主要有两种:一是若数列的通项能够直接求和,则先求和后,再根据和的性质证明不等式;二是若数列的通项不能够直接求和,则先放缩后再求和证明.(4)当待证不等式随n 的变化呈现的规律较明显,且初始值n 0易于确定时,用数学归纳法证明.[对点训练]1.设数列{a n }满足⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎫32n,n ∈N *,证明:|a n|≤2,n ∈N *. 证明:(1)由⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,所以|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|a 2+⎝⎛⎭⎫|a 2|22=|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1, 因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n , |a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+ ⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝⎛⎭⎫32m·2n =2+⎝⎛⎭⎫34m·2n.从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m·2n .① 由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2,取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,则2n 0·⎝⎛⎭⎫34m<2n 0·⎝⎛⎭⎫34log 34|a n 0|-22n 0=|an 0|-2,与①式矛盾,综上,对于任意n ∈N *,均有|a n |≤2. 2.已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13.证明:(1)由已知得a n +1=1a n +12,计算a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立,所以对任意n ∈N *,都有23≤a n ≤1.(2)当n =1时,|a 1-a 2|=13,当n ≥2时,因为(a n +12)(a n -1+12)=(a n +12)·1a n =1+12a n ≥1+12=32,所以|a n +1-a n |=⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|(a n +12)(a n -1+12)≤23|a n -a n -1|≤…≤⎝⎛⎭⎫23n -1|a 2-a 1|=13·⎝⎛⎭⎫23n -1<13.综上知,|a n +1-a n |≤13.数列中的交汇创新问题[核心提炼]数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化为特殊数列求解,一些题目常与函数、向量、三角函数、解析几何、不等式等知识交汇结合,考查数列的基本运算与应用.[典型例题](1)(2018·高考浙江卷)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4(2)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. ①求数列{x n }的通项公式;②如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .【解】 (1)选B.法一:因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4≤-1,又a 1>1,所以等比数列的公比q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,而a 1+a 2+a 3≥a 1>1,所以ln(a 1+a 2+a 3)>0,与ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4≤0矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3≥a 1,a 2<a 4,故选B.法二:因为e x ≥x +1,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),所以e a 1+a 2+a 3+a 4=a 1+a 2+a 3≥a 1+a 2+a 3+a 4+1,则a 4≤-1,又a 1>1,所以等比数列的公比q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,而a 1+a 2+a 3≥a 1>1,所以ln(a 1+a 2+a 3)>0,与ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4≤0矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3,a 2<a 4,故选B.(2)①设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0, 所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.②过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由①得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.(i) 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.(ii) (i)-(ii)得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.数列与函数的综合问题主要有两类(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法等对式子进行化简变形.[对点训练]已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值; (2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30.解:(1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z ,解得ω=2,φ=2k π-2π3,k ∈Z ,因为|φ|<π,所以φ=-2π3.(2)因为a n =2n sin ⎝⎛⎭⎫2n π3-2π3(n ∈N *),数列⎩⎨⎧⎭⎬⎫2sin ⎝⎛⎭⎫2n π3-2π3 (n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.数列中的探索性问题[核心提炼]探索性问题是指根据已知条件(或给出的结论),探求相应结论(或条件)是否存在的一类问题,主要包括结论存在型,结论探索型,条件探索型,综合探索型.[典型例题]已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.要判断在某些确定条件下的某一数学对象是否存在或某一结论是否成立,“是否存在”的问题的命题形式有两种:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.[对点训练]数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)数列{a n }是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由. 解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…),且a 1=1, 所以当a 2=-1时,得-1=2-λ,故λ=3. 从而a 3=(22+2-3)×(-1)=-3.(2)数列{a n }不可能为等差数列,理由如下:由a 1=1,a n +1=(n 2+n -λ)a n ,得a 2=2-λ,a 3=(6-λ)·(2-λ),a 4=(12-λ)(6-λ)(2-λ). 若存在λ,使{a n }为等差数列,则a 3-a 2=a 2-a 1, 即(5-λ)(2-λ)=1-λ,解得λ=3.于是a 2-a 1=1-λ=-2,a 4-a 3=(11-λ)(6-λ)(2-λ)=-24.这与{a n }为等差数列矛盾,所以,对任意λ,{a n }都不可能是等差数列.专题强化训练1.(2019·台州市高三期末考试)在正项数列{a n }中,已知a 1=1,且满足a n +1=2a n -1a n +1(n ∈N *).(1)求a 2,a 3; (2)证明:a n ≥(32)n -1.解:(1)因为在正项数列{a n }中,a 1=1,且满足a n +1=2a n -1a n +1(n ∈N *),所以a 2=2×1-11+1=32,a 3=2×32-132+1=135.(2)证明:①当n =1时,由已知a 1=1≥(32)1-1=1,不等式成立;②假设当n =k 时,不等式成立,即a k ≥(32)k -1,因为f (x )=2x -1x +1在(0,+∞)上是增函数,所以a k +1=2a k -1a k +1≥2(32)k -1-1(32)k -1+1=(32)k +13(32)k -1(32)k -1+1 =(32)k +13(32)2k -1+13(32)k-1(32)k -1+1 =(32)k +19[(32)k +3][2×(32)k -3](32)k -1+1, 因为k ≥1,所以2×(32)k -3≥2×32-3=0,所以a k +1≥(32)k ,即当n =k +1时,不等式也成立. 根据①②知不等式对任何n ∈N *都成立.2.(2019·嘉兴调研)已知S n 为各项均为正数的数列{a n }的前n 项和,a 1∈(0,2),a 2n +3a n+2=6S n .(1)求{a n }的通项公式;(2)设b n =1a n a n +1,数列{b n }的前n 项和为T n ,若对任意的n ∈N *,t ≤4T n 恒成立,求实数t 的最大值.解:(1)当n =1时,由a 2n +3a n +2=6S n ,得a 21+3a 1+2=6a 1,即a 21-3a 1+2=0. 又a 1∈(0,2),解得a 1=1.由a 2n +3a n +2=6S n ,可知a 2n +1+3a n +1+2=6S n +1.两式相减,得a 2n +1-a 2n +3(a n +1-a n )=6a n +1,即(a n +1+a n )(a n +1-a n -3)=0.由于a n >0,可得a n +1-a n -3=0,即a n +1-a n =3,所以{a n }是首项为1,公差为3的等差数列,所以a n =1+3(n -1)=3n -2. (2)由a n =3n -2 ,可得b n =1a n a n +1=1(3n -2)(3n +1)=13⎝⎛⎭⎫13n -2-13n +1, T n =b 1+b 2+…+b n=13⎣⎡⎝⎛⎭⎫1-14+⎝⎛⎭⎫14-17+…⎦⎤+⎝⎛⎭⎫13n -2-13n +1=n3n +1. 因为T n =n 3n +1=13-133n +1随着n 的增大而增大,所以数列{T n }是递增数列,所以t ≤4T n ⇔t 4≤T n ⇔t 4≤T 1=14⇔t ≤1,所以实数t 的最大值是1.3.(2019·金华模拟)已知数列{a n }满足a 1=12,a n +1a n =2a n +1-1(n ∈N *),令b n =a n -1.(1)求数列{b n }的通项公式;(2)令c n =a 2n +1a 2n ,求证:c 1+c 2+…+c n <n +724.解:(1)因为a n +1a n =2a n +1-1(n ∈N *),b n =a n -1,即a n =b n +1. 所以(b n +1+1)(b n +1)=2(b n +1+1)-1,化为:1b n +1-1b n =-1,所以数列{1b n }是等差数列,首项为-2,公差为-1.所以1b n =-2-(n -1)=-1-n ,所以b n =-1n +1.(2)证明:由(1)可得:a n =b n +1=1-1n +1=n n +1.所以c n =a 2n +1a 2n =2n +12n +1+12n 2n +1=(2n +1)22n (2n +2)=1+12⎝⎛⎭⎫12n -12n +2,因为n ≥2时,2n +2≤2n +1-1, 所以12n -12n +2<12n -1-12n +1-1,所以c 1+c 2+…+c n <n +12⎝⎛⎭⎫12-14+ 12⎝⎛⎭⎫122-1-12n +1-1=n +724-12(2n +1-1)<n +724. 4.(2019·绍兴市高三教学质量调测)已知数列{a n }满足a n >0,a 1=2,且(n +1)a 2n +1=na 2n +a n (n ∈N *).(1)证明:a n >1;(2)证明:a 224+a 239+…+a 2nn 2<95(n ≥2).证明:(1)由题得(n +1)·a 2n +1-(n +1)=na 2n -n +a n -1,故(a n +1-1)(a n +1+1)(n +1)=(a n -1)(na n +n +1),由a n >0,n ∈N *,可知(a n +1+1)(n +1)>0,na n +n +1>0, 所以a n +1-1与a n -1同号,又a 1-1=1>0,故a n >1.(2)由(1)知a n >1,故(n +1)a 2n +1=na 2n +a n <(n +1)a 2n ,所以a n +1<a n ,1<a n ≤2.又由题可得a n =(n +1)a 2n +1-na 2n ,所以,a 1=2a 22-a 21,a 2=3a 23-2a 22,…,a n =(n +1)·a 2n +1-na 2n ,相加得a 1+a 2+…+a n =(n +1)a 2n +1-4≤2n , 所以a 2n +1≤2n +4n +1,即a 2n ≤2n +2n (n ≥2), a 2n n 2≤2n 2+2n 3≤2⎝⎛⎭⎫1n -1-1n +⎝⎛⎭⎫1n -1-2n +1n +1(n ≥2). 当n =2时,a 2222=34<95.当n =3时,a 2222+a 2332≤34+232+233<34+13<95.当n ≥4时,a 224+a 239+a 2416+…+a 2nn2<2⎝⎛⎭⎫14+19+116+14+⎝⎛⎭⎫14+227+13-14 =1+29+18+14+227+112<95.从而,原命题得证.5.(2019·台州市高考一模)已知数列{a n }满足:a n >0,a n +1+1a n <2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).证明:(1)由a n >0,a n +1+1a n <2,所以a n +1<2-1a n <2,因为2>a n +2+1a n +1≥2a n +2a n +1, 所以a n +2<a n +1<2.(2)假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1, 根据a n +1-1<1-1a n =a n -1a n <0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1.于是1a N +2-1>1+1a N +1-1, …1a N +n -1>1+1a N +n -1-1. 累加可得1a N +n -1>n -1+1a N +1-1(*), 由(1)可得a N +n -1<0,而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0, 因此有1a N +n -1<n -1+1a N +1-1, 这显然与(*)矛盾,所以a n >1(n ∈N *).6.(2019·金丽衢十二校高三联考)已知f n (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,且f n (-1)=(-1)n ·n ,n =1,2,3,….(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式;(3)当k >7且k ∈N *时,证明:对任意n ∈N *都有2a n +1+2a n +1+1+2a n +2+1+…+2a nk -1+1>32成立.解:(1)由f 1(-1)=-a 1=-1得a 1=1,由f 2(-1)=-a 1+a 2=2,得a 2=3,又因为f 3(-1)=-a 1+a 2-a 3=-3,所以a 3=5.(2)由题意得:f n (-1)=-a 1+a 2-a 3+…+(-1)n a n =(-1)n ·n ,f n -1(-1)=-a 1+a 2-a 3+…+(-1)n -1a n -1=(-1)n -1·(n -1),n ≥2,两式相减得:(-1)n a n =(-1)n ·n -(-1)n -1·(n -1)=(-1)n (2n -1),得当n ≥2时,a n =2n -1,又a 1=1符合,所以a n =2n -1(n ∈N *).(3)证明:令b n =a n +12=n , 则S =1b n +1b n +1+1b n +2+…+1b nk -1=1n +1n +1+1n +2+…+1nk -1, 所以2S =⎝⎛⎭⎫1n +1nk -1+⎝⎛⎭⎫1n +1+1nk -2+⎝⎛⎭⎫1n +2+1nk -3+…+⎝⎛⎭⎫1nk -1+1n .(*) 当x >0,y >0时,x +y ≥2xy ,1x +1y ≥21xy,所以(x +y )⎝⎛⎭⎫1x +1y ≥4,所以1x +1y ≥4x +y,当且仅当x =y 时等号成立,上述(*)式中,k >7,n >0,n +1,n +2,…,nk -1全为正,所以2S >4n +nk -1+4n +1+nk -2+4n +2+nk -3+…+4nk -1+n =4n (k -1)n +nk -1, 所以S >2(k -1)1+k -1n>2(k -1)k +1=2⎝⎛⎭⎫1-2k +1 >2⎝⎛⎭⎫1-27+1=32,得证. 7.(2019·宁波市诺丁汉大学附中高三期中考试)已知数列{a n }满足a 1=3,a n +1=a 2n +2a n ,n ∈N *,设b n =log 2(a n +1).(1)求{a n }的通项公式;(2)求证:1+12+13+…+1b n -1<n (n ≥2); (3)若2c n =b n ,求证:2≤(c n +1c n)n <3. 解:(1)由a n +1=a 2n +2a n ,则a n +1+1=a 2n +2a n +1=(a n +1)2,由a 1=3,则a n >0,两边取对数得到log 2(a n +1+1)=log 2(a n +1)2=2 log 2(a n +1),即b n +1=2b n .又b 1=log 2(a 1+1)=2≠0,所以{b n }是以2为公比的等比数列.即b n =2n .又因为b n =log 2(a n +1),所以a n =22n -1.(2)证明:用数学归纳法证明:①当n =2时,左边为1+12+13=116<2=右边,此时不等式成立;②假设当n =k (k ≥2,k ∈N *)时,不等式成立,则当n =k +1时,左边=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +12k +12k +1+…+12k +1-1<k +12k +12k +…+12k 2k 个,<k +1=右边, 所以当n =k +1时,不等式成立.综上可得:对一切n ∈N *,n ≥2,命题成立.(3)证明:由2c n =b n 得c n =n ,所以(c n +1c n )n =(1+n n )n =(1+1n)n , 首先(1+1n )n =C 0n +C 1n 1n +C 2n 1n 2+…+ C k n 1n k +…+C n n 1n n ≥2, 其次因为C k n 1n k =n (n -1)…(n -k +1)k !n k <1k !≤1k (k -1)=1k -1-1k(k ≥2), 所以(1+1n )n =C 0n +C 1n 1n +C 2n 1n 2+…+ C k n 1n k +…+C n n 1n n , <1+1+1-12+12-13+…+1n -1-1n=3-1n <3, 当n =1时显然成立.所以得证.8.数列{a n }满足a 1=14,a n =a n -1(-1)n a n -1-2(n ≥2,n ∈N ). (1)试判断数列⎩⎨⎧⎭⎬⎫1a n +(-1)n 是否为等比数列,并说明理由; (2)设b n =a n sin (2n -1)π2,数列{b n }的前n 项和为T n ,求证:对任意的n ∈N *,T n <47. 解:(1)a n =a n -1(-1)n a n -1-2⇒1a n =(-1)n a n -1-2a n -1=(-1)n -2a n -1, 所以1a n +(-1)n =2·(-1)n -2a n -1⇒所以1a n +(-1)n =(-2)·⎣⎡⎦⎤(-1)n -1+1a n -1, 所以⎩⎨⎧⎭⎬⎫1a n +(-1)n 为公比是-2的等比数列. (2)证明:1a 1+(-1)1=3,由(1)可得 1a n+(-1)n =⎣⎡⎦⎤1a 1+(-1)1·(-2)n -1=3·(-2)n -1, 所以a n =13·(-2)n -1-(-1)n. 而sin (2n -1)π2=(-1)n -1, 所以b n =a n ·sin (2n -1)π2=(-1)n -13·(-2)n -1-(-1)n =13·2n -1+1,所以b n =13·2n -1+1<13·2n -1, 当n ≥3时,T n =b 1+b 2+…+b n <(b 1+b 2)+13·22+13·23+…+13·2n -1=14+17+112⎣⎡⎦⎤1-⎝⎛⎭⎫12n -21-12<14+17+16=4784<47. 因为{b n }为正项数列,所以T 1<T 2<T 3<…<T n ,所以n ∈N *,T n <47.。

2020高考数学二轮专题复习 第3讲数列课件 精品

2020高考数学二轮专题复习 第3讲数列课件 精品

1 n 1
1 n
,②an
1 nn
k
1 k
(1 n
n
1
k
),
③an
1
n n1
n 1
n,形如这样的数列每
一项可以分为两项,先后相互相消求和.
4 并项求和法. 5 倒序相加法. 6 公式法.
【1】(2011g4月绍兴一中模拟)已知数列an中,a1 1,
an 1
2an 2 an
(n
N*
(1)求数列{an}的通项公式;
(2)证明: 1 1 L 1 1.
a2 a1 a3 a2
an1 an
【1】►(2011·江西)已知两个等比数列{an}、{bn}满足 a1=a(a>0), b1-a1=1,b2-a2=2,b3-a3=3.
a1
1,
an1
3an
2an
3
,
求an .
取倒
6.若数列an满足 a1 1, an1 2an 2 n1 , 求an. 除幂
7.若数列an满足 a1 1, an1 3an 2,求an.
可转化型
an1 ban c b 1
一次函数型
同加= c
b 1
由递推公式求通项(2)
8.已知数列an中a1=3,且an+1=an2,求an. 取对数
An Bn

7n+5 n+3

则使得 an 为整数的正整数的n的个数是_____ bn
6.(2010·浙江)设 a1,d 为实数,首项为 a1,公差为 d 的等差数列{an}的前 n
项和为 Sn,满足 S5S6+15=0,则 d 的取值范围是________.

专题二 数列(难点突破 数列的函数特征)2023年高考数学二轮复习(全国通用)

专题二 数列(难点突破  数列的函数特征)2023年高考数学二轮复习(全国通用)
又 也满足上式,所以 .(2)由(1)得 ,所以 .由 ,得 ,即 ,即 ,因为 ,所以 ,即 .故满足 的最小正整数 的值为10.
令 ,得 ;令 ,得 ,所以 在 上单调递增,在 上单调递减.因为 , ,所以当 时, ,即 ,故实数 的取值范围为 .
突破点3 数列的最值
例3 (2022·枣庄二模)在① 是 与 的等差中项,② 是 与 的等比中项,③数列 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知 是公差为2的等差数列,其前 项和为 , .
因为 ,所以 是首项为 ,公差为4的等差数列.由 的前5项和为65,得 ,解得 ,所以 .(2)不存在 ,使得 .理由如下:由(1)可得 ,因为 ,
所以 ; .所以 ,所以 中的最大项为 .显然 ,所以对任意的 , ,所以不存在 ,使得 .
提分秘籍 数列作为特殊的函数,数列的周期性可以通过归纳得到.数列的最值问题可利用函数的单调性求解,当然要注意数比较大小一般要求两个数均为正数.
(1)求数列 的通项公式.
(2)设 ,是否存在 ,使得 ?若存在,求出 的值;若不存在,请说明理由.
▶思维导图
[解析] (1)若选① 是 与 的等差中项,则 ,即 ,解得 ,所以 .若选② 是 与 的等比中项,则 ,即 ,解得 ,所以 .若选③数列 的前5项和为65,则 .
◎难点精练
1.(2022·湖北模拟)数列 <m></m> 满足 <m></m> 且 <m></m> 是递增数列,则实数 <m></m> 的取值范围是______.
[解析] ∵数列 满足 且 是递增数列,∴需满足 即 解得 ,即实数 的取值范围是 .

2020版新高考二轮复习理科数学课件:3-2 数列

2020版新高考二轮复习理科数学课件:3-2 数列

【例3】 [2019·天津卷]设{an}是等差数列,{bn}是等比数列.已知a1=4,b1=6, b2=2a2-2,b3=2a3+4.
(1)求{an}和{bn}的通项公式;
(2)设数列{cn}满足c1=1,cn=1b,k,2nk<=n2<k2,k+1,
其中k∈N*.
①求数列
的通项公式;
②求
(2)①因为S1n=b2n-bn2+1,所以bn≠0. 由b1=1,S1=b1,得11=21-b22,则b2=2. 由S1n=b2n-bn2+1,得Sn=2bbnn+b1n-+1bn, 当n≥2时,由bn=Sn-Sn-1, 得bn=2bbnn+b1n-+1bn-2bbnn--1bbnn-1, 整理得bn+1+bn-1=2bn. 所以数列{bn}是首项和公差均为1的等差数列. 因此,数列{bn}的通项公式为bn=n(n∈N*).
②由①知,bk=k,k∈N*. 因为数列{cn}为“M-数列”, 设公比为q,所以c1=1,q>0. 因为ck≤bk≤ck+1,所以qk-1≤k≤qk,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有lnkk≤lnq≤kl-nk1. 设f(x)=lnxx(x>1),则f′(x)=1-x2lnx.
解:(1)设等差数列{an}的公差为d,d≠0, 由2an+1=λan+4(n∈N*),① 得2an=λan-1+4(n∈N*,n≥2),②
两式相减得,2d=λd,又d≠0,所以λ=2.
将λ=2代入①可得an+1-an=2,即d=2,
又a1=1,所以an=1+(n-1)×2=2n-1.
(2)由(1)可得a2n-n=2(2n-n)-1=2n+1-(2n+1),
(2)cn= 2abnn= 2n2nn-+21= 我们用数学归纳法证明.

2020版高考数学二轮复习第2部分专题2数列解密高考2数列问题重在“归”——化归课件文

2020版高考数学二轮复习第2部分专题2数列解密高考2数列问题重在“归”——化归课件文

母题示例:2019 年全国卷Ⅰ,本小题满分 12 分
记Байду номын сангаасSn 为等差数列{an}的前 n 项和.已知 本题考查:等差数列的基本
S9=-a5.
运算,学生的数学运算及转
(1)若 a3=4,求{an}的通项公式;
化化归能力,学生的逻辑推
(2)若 a1>0,求使得 Sn≥an 的 n 的取值范 理及数学运算核心素养.
根据题意有9a1+9×2 8d=-a1+4d, a1+2d=4,
解得ad1==-8,2, ······························4 分 所以 an=8+(n-1)×(-2)=-2n+10. 所以等差数列{an}的通项公式为 an=-2n+10. ········6 分
第二部分 讲练篇
解密高考② 数列问题重在“归”——化 归
—————[思维导图]—————
—————[技法指津]————— 化归的常用策略
利用化归思想可探索一些一般数列的简单性质.等差数列与等比 数列是数列中的两个特殊的基本数列,高考中通常考查的是非等差、 等比数列问题,应对的策略就是通过化归思想,将其转化为这两种数 列.
可得 a24=a1a13,即(3+3d)2=3(3+12d), 解得 d=2,即 an=2n+1. 等差数列{bn}的公差设为 m,前 n 项和为 Sn,且 S4=16,S6=36, 可得 4b1+6m=16,6b1+15m=36, 解得 b1=1,m=2, 则 bn=2n-1.
(2)an1bn=2n-112n+1=122n1-1-2n1+1, 则 Tn=a11b1+a21b2+…+an1bn=121-13+13-15+…+2n1-1-2n1+1 =121-2n1+1=2nn+1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 数列的综合问题「考情研析」 1.从具体内容上,数列的综合问题,主要考查:①数列与函数、不等式结合,探求数列中的最值或证明不等式.②以等差数列、等比数列为背景,利用函数观点探求参数的值或范围. 2.从高考特点上,常在选填题型的最后两题及解答题第17题中出现,分值一般为5~8分.核心知识回顾数列综合应用主要体现在以下两点:(1)以数列知识为纽带,在数列与函数、方程、不等式、解析几何的交汇处命题,主要考查利用函数观点、不等式的方法解决数列问题,往往涉及与数列相关的不等式证明、参数的范围等.(2)以数列知识为背景的新概念、创新型问题,除了需要用到数列知识外,还要运用函数、不等式等相关知识和方法,特别是题目条件中的“新知识”是解题的钥匙,此类问题体现了即时学习,灵活运用知识的能力.热点考向探究考向1 数列与函数的综合问题例 1 (2019·上海市青浦区高三二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),且不等式|f (x )|≤2019|2x -x 2|对任意的x ∈[0,10]都成立,数列{a n }是以7+a 为首项,公差为1的等差数列(n ∈N *).(1)当x ∈[0,10]时,写出方程2x-x 2=0的解,并写出数列{a n }的通项公式(不必证明);(2)若b n =a n ·⎝ ⎛⎭⎪⎫13an (n ∈N *),数列{b n }的前n 项和为S n ,对任意的n ∈N *,都有S n <m 成立,求m 的取值范围.解 (1)因为x ∈[0,10]时,易知方程2x -x 2=0的解为x =2,x =4,由不等式|f (x )|≤2019|2x-x 2|对任意的x ∈[0,10]都成立,可得⎩⎪⎨⎪⎧|f (2)|≤0,|f (4)|≤0,即⎩⎪⎨⎪⎧f (2)=4+2a +b =0,f (4)=16+4a +b =0,解得⎩⎪⎨⎪⎧a =-6,b =8,所以f (x )=x 2-6x +8,又数列{a n }是以7+a =1为首项,公差为1的等差数列,所以a n=n .(2)由(1)知b n =a n ·⎝ ⎛⎭⎪⎫13an =n ·⎝ ⎛⎭⎪⎫13n,所以S n =b 1+b 2+…+b n =1·13+2·⎝ ⎛⎭⎪⎫132+3·⎝ ⎛⎭⎪⎫133+…+n ·⎝ ⎛⎭⎪⎫13n,①1 3S n=1·⎝⎛⎭⎪⎫132+2·⎝⎛⎭⎪⎫133+3·⎝⎛⎭⎪⎫134+…+n·⎝⎛⎭⎪⎫13n+1,②①-②得,23S n=13+⎝⎛⎭⎪⎫132+⎝⎛⎭⎪⎫133+…+⎝⎛⎭⎪⎫13n-n·⎝⎛⎭⎪⎫13n+1=13⎝⎛⎭⎪⎫1-13n1-13-n·⎝⎛⎭⎪⎫13n+1=12⎝⎛⎭⎪⎫1-13n-n3n+1,整理得,S n=34-2n+34·3n,由2n+34·3n>0可得S n<34,由S n<m恒成立,可得m≥34.数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.已知数列{a n}的前n项和为S n,向量a=(S n,1),b=⎝⎛⎭⎪⎫2n-1,12,满足条件a∥b.(1)求数列{a n}的通项公式;(2)设函数f(x)=⎝⎛⎭⎪⎫12x,数列{bn}满足条件b1=1,f(b n+1)=1f(-b n-1).①求数列{b n}的通项公式;②设c n=b na n,求数列{c n}的前n项和T n.解(1)∵a∥b,∴12S n=2n-1,S n=2n+1-2.当n≥2时,a n=S n-S n-1=2n;当n=1时,a1=S1=2,满足上式,∴a n=2n.(2)①∵f(x)=⎝⎛⎭⎪⎫12x,f(bn+1)=1f(-1-b n),∴⎝⎛⎭⎪⎫12b n+1=1⎝⎛⎭⎪⎫12-1-bn,∴12bn+1=121+bn.∴b n+1=b n+1,即b n+1-b n=1.又∵b1=1,∴{b n}是以1为首项,1为公差的等差数列,∴b n=n.②c n =b n a n =n 2n ,T n =121+222+…+n -12n -1+n 2n ,两边同乘12得,12T n =122+223+…+n -12n +n 2n +1,上述两式相减得12T n =121+122+123+…+12n -n2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-n +22n +1,∴T n =2-n +22n(n ∈N *).考向2 数列与不等式的综合问题例2 (2019·云南玉溪第一中学高三第五次调研)若数列{a n }的前n 项和为S n ,首项a 1>0且2S n =a 2n +a n (n ∈N *).(1)求数列{a n }的通项公式; (2)若a n >0,令b n =4a n (a n +2),数列{b n }的前n 项和为T n ,若T n <m 恒成立,m ∈Z ,求m 的最小值.解 (1)当n =1时,2S 1=a 21+a 1,又a 1>0,则a 1=1, 当n ≥2时,a n =S n -S n -1=a 2n +a n 2-a 2n -1+a n -12,即(a n +a n -1)(a n -a n -1-1)=0⇒a n =-a n -1或a n =a n -1+1, ∴a n =(-1)n -1或a n =n (n ≥2),又a 1=1满足上式,∴a n =(-1)n -1或a n =n ,n ∈N *.(2)由a n >0,∴a n =n ,b n =4n (n +2)=2⎝ ⎛⎭⎪⎫1n -1n +2,T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1n +2=2⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=3-4n +6(n +1)(n +2)<3,若T n <m 恒成立,则m ≥3,又m ∈Z ,∴m min =3.(1)数列中的不等式证明,大多是不等式的一端为一个数列的前n 项和,另一端为常数的形式,证明的关键是放缩:①如果不等式一端的和式可以通过公式法、裂项法、错位相减法求得,则先求和再放缩;②如果不等式一端的和式无法求和,则要通过对数列通项的合适放缩使之能够求和,这时先放缩再求和,最后再放缩.(2)注意放缩的尺度:如1n 2<1n (n -1),1n 2<1n 2-1.(2019·安徽黄山高三第二次质检)已知数列⎩⎨⎧⎭⎬⎫n a n -1的前n 项和S n =n ,n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =2n +1(a n -1)2(a n +1-1)2,数列{b n }的前n 项和为T n ,求证:对于任意的n ∈N *,都有T n <1.解 (1)因为S n =n , ① 当n ≥2时,S n -1=n -1, ② 由①-②,得na n -1=1,故a n =n +1,又因为a 1=2适合上式,所以a n =n +1(n ∈N *). (2)证明:由(1)知,b n =2n +1(a n -1)2(a n +1-1)2=2n +1n 2(n +1)2=1n 2-1(n +1)2,T n =⎝ ⎛⎭⎪⎫112-122+⎝ ⎛⎭⎪⎫122-132+…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2=1-1(n +1)2,所以T n <1.考向3 奇(偶)数项和问题例3 设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *. (1)证明:a n +2=3a n ; (2)求S n .解 (1)证明:由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1.故对一切n ∈N *,a n +2=3a n . (2)由(1)知,a n ≠0,所以a n +2a n=3. 于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列; 数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1)=3(1+3+…+3n -1)=3(3n-1)2,从而S 2n -1=S 2n -a 2n =3(3n-1)2-2×3n -1=32(5×3n -2-1).当n 为偶数时,数列中的奇数项与偶数项相同,分别为n2项;当n 为奇数时,数列中的奇数项比偶数项多一项,此时偶数项为n -12项,奇数项为n -12+1=n +12项.已知函数f (x )=ln x +cos x -⎝ ⎛⎭⎪⎫6π-92x 的导数为f ′(x ),且数列{a n }满足a n +1+a n =nf ′⎝ ⎛⎭⎪⎫π6+3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)若对任意n ∈N *,都有a n +2n 2≥0成立,求a 1的取值范围. 解 f ′(x )=1x -sin x -6π+92,则f ′⎝ ⎛⎭⎪⎫π6=4,故a n +1+a n =4n +3. (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d ,a n +1=a 1+nd ,由a n +1+a n =4n +3得(a 1+nd )+[a 1+(n -1)d ]=4n +3,解得d =2,a 1=52.(2)由a n +1+a n =4n +3得a n +2+a n +1=4n +7,两式相减得a n +2-a n =4,故数列{a 2n -1}是首项为a 1,公差为4的等差数列;数列{a 2n }是首项为a 2,公差为4的等差数列,又a 1+a 2=7,a 2=7-a 1,所以a n =⎩⎪⎨⎪⎧2n -2+a 1(n 为奇数),2n +3-a 1(n 为偶数).①当n 为奇数时,a n =2n -2+a 1,a n +2n 2≥0,则有a 1≥-2n 2-2n +2对任意的奇数n 恒成立,令f (n )=-2n 2-2n +2=-2⎝ ⎛⎭⎪⎫n +122+52,n 为奇数,则f (n )max =f (1)=-2,所以a 1≥-2.②当n 为偶数时,a n =2n +3-a 1,a n +2n 2≥0,则有a 1≤2n 2+2n +3对任意的偶数n 恒成立,令g (n )=2n 2+2n +3=2⎝ ⎛⎭⎪⎫n +122+52,n 为偶数,则g (n )min =g (2)=15,故a 1≤15.综上,a 1的取值范围是[-2,15].真题押题『真题模拟』1.(2019·齐齐哈尔高三二模)已知等差数列{a n }的前n 项和为S n ,且S 10=120,a 2-a 1,a 4-a 2,a 1+a 2成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和,求满足T n >1522的最小的n 值.解 (1)设等差数列{a n }的公差为d , 由S 10=120得10a 1+45d =120,2a 1+9d =24, 由a 2-a 1,a 4-a 2,a 1+a 2成等比数列, 得d (2a 1+d )=4d 2且d ≠0, ∴2a 1=3d ,∴a 1=3,d =2,∴等差数列{a n }的通项公式为a n =a 1+(n -1)d =3+(n -1)·2=2n +1. (2)∵S n =na 1+n (n -1)d2=n (n +2),∴1S n=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,∴T n =12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2, 由T n >1522得1n +1+1n +2<322,n (3n -35)>60,∴n 的最小值为14.2.(2019·河北衡水中学高三下学期一调)已知数列{a n }的前n 项和S n 满足1S n -1-1S n-1S n S n -1=0,a 1=1.(1)求数列{a n }的通项公式;(2)在数列{a n }的前100项中,是否存在两项a m ,a t (m ,t ∈N *,且m <t ),使得1a 2,1a m ,1a t三项成等比数列?若存在,求出所有的m ,t 的取值;若不存在,请说明理由.解 (1)因为1S n -1-1S n-1S n S n -1=0,所以 S n -S n -1=1,所以数列{S n }是以1为首项,1为公差的等差数列,所以S n =1+(n -1)×1=n ,所以S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又2×1-1=1=a 1,所以a n =2n -1(n ∈N *). (2)若1a 2,1a m ,1a t三项成等比数列,则1a 2×1a t =⎝ ⎛⎭⎪⎫1a m 2,即13×12t -1=⎝ ⎛⎭⎪⎫12m -12, 即(2m -1)2=3(2t -1).因为t ≤100,所以(2m -1)2≤597,又m ∈N *,所以2m -1≤24,所以m ≤12. 又2m -1为3的奇数倍,所以m =2,5,8,11,验证得⎩⎪⎨⎪⎧m =5,t =14,⎩⎪⎨⎪⎧m =8,t =38,⎩⎪⎨⎪⎧m =11,t =74.3.(2019·浙江高考)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式; (2)记c n =a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2n ,n ∈N *. 解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧a 1+2d =4,a 1+3d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=0,d =2.从而a n =2n -2,n ∈N *.所以S n =n 2-n ,n ∈N *. 由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列,得 (S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1d(S 2n +1-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明:c n =a n2b n = 2n -22n (n +1)=n -1n (n +1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立;②假设当n =k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2k .那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2k +k(k +1)(k +2)<2k +1k +1<2k +2k +1+k=2k +2(k +1-k )=2k +1,即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2n 对任意n ∈N *成立.『金版押题』4.已知函数f (x )=3cosπx -sinπx (x ∈R )的所有正的零点构成递增数列{a n }(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =⎝ ⎛⎭⎪⎫12n ⎝ ⎛⎭⎪⎫a n +23,求数列{b n }的前n 项和T n .解 (1)f (x )=3cosπx -sinπx =2cos ⎝ ⎛⎭⎪⎫πx +π6,由题意令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ).又函数f (x )的所有正的零点构成递增数列{a n },所以{a n }是以13为首项,1为公差的等差数列,所以a n =n -23(n ∈N *).(2)由(1)知b n =⎝ ⎛⎭⎪⎫12n ⎝ ⎛⎭⎪⎫a n +23=n ·⎝ ⎛⎭⎪⎫12n,则T n =1·⎝ ⎛⎭⎪⎫121+2·⎝ ⎛⎭⎪⎫122+3·⎝ ⎛⎭⎪⎫123+…+(n -1)·⎝ ⎛⎭⎪⎫12n -1+n ·⎝ ⎛⎭⎪⎫12n,①12T n =1·⎝ ⎛⎭⎪⎫122+2·⎝ ⎛⎭⎪⎫123+3·⎝ ⎛⎭⎪⎫124+…+(n -1)·⎝ ⎛⎭⎪⎫12n +n ·⎝ ⎛⎭⎪⎫12n +1,②①-②得,12T n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1=12-⎝ ⎛⎭⎪⎫12n ·121-12-n ·⎝ ⎛⎭⎪⎫12n +1=1-(n +2)·⎝ ⎛⎭⎪⎫12n +1,所以T n =2-(n +2)⎝ ⎛⎭⎪⎫12n.配套作业1.(2019·北京市海淀区高三4月模拟)已知等差数列{a n }的公差d =2,且a 2+a 5=2,{a n }的前n 项和为S n .(1)求{a n }的通项公式;(2)若S m ,a 9,a 15成等比数列,求m 的值.解 (1)因为a 5+a 2=2,d =2,所以2a 1+5d =2a 1+10=2,所以a 1=-4,所以a n =2n -6.(2)S m =(a 1+a m )m 2=m 2-5m ,又a 9=12,a 15=24,因为S m ,a 9,a 15是等比数列,所以a 29=S m a 15, 所以m 2-5m -6=0,m =6或m =-1, 因为m ∈N *,所以m =6.2.设数列{a n }的前n 项和是S n ,若点A n ⎝⎛⎭⎪⎫n ,S n n 在函数f (x )=-x +c 的图象上运动,其中c 是与x 无关的常数,且a 1=3.(1)求数列{a n }的通项公式;(2)记b n =aan ,求数列{b n }的前n 项和T n 的最小值.解 (1)因为点A n ⎝⎛⎭⎪⎫n ,S n n在函数f (x )=-x +c 的图象上运动,所以S n n=-n +c ,所以S n=-n 2+cn .因为a 1=3,所以c =4,所以S n =-n 2+4n ,所以a n =S n -S n -1=-2n +5(n ≥2). 又a 1=3满足上式,所以a n =-2n +5(n ∈N *).(2)由(1)知,b n =aan =-2a n +5=-2(-2n +5)+5=4n -5,所以{b n }为等差数列,所以T n =n (b 1+b n )2=2n 2-3n ,当n =1时,T n 取最小值,所以T n 的最小值是T 1=-1.3.(2019·广东东莞高三二调)已知数列{a n }满足a 2=3,a n +1=2a n +1,设b n =a n +1. (1)求a 1,a 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求a 1+a 3+a 5+…+a 2n +1.解 (1)数列{a n }满足a 2=3,a n +1=2a n +1, 当n =1时,a 2=2a 1+1,解得a 1=1. 当n =2时,解得a 3=7. (2)当n =1时,b 1=2,所以b n +1b n =a n +1+1a n +1=2(常数), 则数列{b n }是以2为首项,2为公比的等比数列. (3)由(1)和(2)得a n =2n-1,所以a 1+a 3+…+a 2n +1=(21+23+…+22n +1)-(n +1)=2(4n +1-1)4-1-(n +1)=8×4n-3n -53.4.已知数列{a n }的前n 项和为S n ,若a 1=13,3S n +1=S n +1.(1)求数列{a n }的通项公式;(2)若b n =log 13a n ,数列{a n ·b n }的前n 项和为T n ,求T n .解 (1)当n =1时,3S 2=43,a 2=19,∴3a 2=a 1;当n ≥2时,3S n =S n -1+1,∴3a n +1=a n (n ≥2),故数列{a n }是以13为首项,13为公比的等比数列,则a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n.(2)由(1)知b n =log 13a n =n ,则a n ·b n =n ·⎝ ⎛⎭⎪⎫13n.从而T n =1×13+2×⎝ ⎛⎭⎪⎫132+…+(n -1)×⎝ ⎛⎭⎪⎫13n -1+n ·⎝ ⎛⎭⎪⎫13n,①13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ·⎝ ⎛⎭⎪⎫13n +1,②由①-②得,23T n =13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -n ·⎝ ⎛⎭⎪⎫13n +1=13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13-n ·⎝ ⎛⎭⎪⎫13n +1,因此T n =34-14(2n +3)·⎝ ⎛⎭⎪⎫13n.5.(2019·衡水第二中学高三上学期期中)已知等差数列{a n }与公比为正数的等比数列{b n }满足b 1=2a 1=2,a 2+b 3=10,a 3+b 2=7.(1)求{a n },{b n }的通项公式;(2)若c n =b n +1(a n +b n )·(a n +1+b n +1),求数列{c n }的前n 项和S n .解 (1)由题意a 1=1,b 1=2.设公差为d ,公比为q ,则⎩⎪⎨⎪⎧1+d +2q 2=10,1+2d +2q =7,解得⎩⎪⎨⎪⎧d =1,q =2.故a n =a 1+(n -1)d =n ,b n =b 1·qn -1=2n.(2)因为c n =b n +1(a n +b n )·(a n +1+b n +1),所以c n =2n+1(2n +n )(2n +1+n +1)=12n +n -12n +1+n +1,故S n =121+1-122+2+122+2-123+3+…+12n +n -12n +1+n +1=13-12n +1+n +1. 6.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . 解 (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2.所以d =a 8-a 7=2. 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)f ′(x )=2xln 2,f ′(a 2)=2a 2ln 2,故函数f (x )=2x的图象在(a 2,b 2)处的切线方程为y -2a 2=2a 2ln 2(x -a 2),它在x 轴上的截距为a 2-1ln 2. 由题意得,a 2-1ln 2=2-1ln 2,解得a 2=2. 所以d =a 2-a 1=1.从而a n =n ,b n =2n,a n b n =n2n .所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 7.(2019·安徽六安第一中学高三模拟)已知a ,b ,c 分别为△ABC 的三内角A ,B ,C 的对边,其面积S =3,B =60°,a 2+c 2=2b 2,在等差数列{a n }中,a 1=a ,公差d =b .数列{b n }的前n 项和为T n ,且T n -2b n +1=0,n ∈N *.(1)求数列{a n },{b n }的通项公式; (2)若c n =a n b n ,求数列{c n }的前n 项和S n . 解 (1)S =12ac sin B =12ac ·32=3,∴ac =4,又a 2+c 2=2b 2,b 2=a 2+c 2-2ac cos B , ∴b 2=ac =4,∴b =2,从而(a +c )2=a 2+c 2+2ac =16,得a +c =4, ∴a =c =2,故可得⎩⎪⎨⎪⎧a 1=2,d =2,∴a n =2+2(n -1)=2n .∵T n -2b n +1=0, ① ∴当n =1时,b 1=1;当n ≥2时,T n -1-2b n -1+1=0, ② ①-②,得b n =2b n -1(n ≥2), ∴数列{b n }为等比数列,∴b n =2n -1.(2)由(1)得c n =2n ·2n -1=n ·2n ,∴S n =a 1·b 1+a 2·b 2+…+a n ·b n =1×21+2×22+3×23+…+n ·2n, ③ ∴2S n =1×22+2×23+3×24+…+n ·2n +1, ④③-④得-S n =1×21+(22+23+ (2))-n ·2n +1,即-S n =(1-n )2n +1-2,∴S n =(n -1)2n +1+2.8.(2019·贵州凯里第一中学高三下学期模拟)在等差数列{a n }中,已知a 3+a 4=84-a 5,a 8=36.(1)求数列{a n }的通项公式a n ; (2)记S n 为数列{a n }的前n 项和,求S n +20n的最小值. 解 (1)由a 3+a 4=84-a 5,得a 4=28,∴由⎩⎪⎨⎪⎧a 1+3d =28,a 1+7d =36,得⎩⎪⎨⎪⎧a 1=22,d =2,即数列{a n }的通项公式为a n =22+(n -1)×2=2n +20. (2)由(1)得,S n =22n +n (n -1)2×2=n 2+21n ,∴S n +20n =n +20n +21,令f (x )=x +20x+21,n ∈N *, f ′(x )=1-20x2,当x ∈(0,25)时,f ′(x )<0;当x ∈(25,+∞)时,f ′(x )>0,则f (x )在(0,25)上单调递减,在(25,+∞)上单调递增,又n ∈N *,f (4)=f (5)=30,∴当n =4或5时,f (n )取到最小值30,即S n +20n的最小值为30.数列类解答题(12分)已知各项均不为零的数列{a n }的前n 项和为S n ,且对任意的n ∈N *,满足S n =13a 1(a n -1).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解题思路 (1)根据S n -S n -1=a n (n ≥2)及递推关系式化简得a n 和a n -1的关系式,从而求出a n ;(2)采用错位相减法求T n ,从而证明结论.解 (1)当n =1时,a 1=S 1=13a 1(a 1-1)=13a 21-13a 1,∵a 1≠0,∴a 1=4.(2分)∴S n =43(a n -1),∴当n ≥2时,S n -1=43(a n -1-1),两式相减得a n =4a n -1(n ≥2),(4分)∴数列{a n }是首项为4,公比为4的等比数列,∴a n =4n.(6分) (2)证明:∵a n b n =log 2a n =2n ,∴b n =2n4n ,(7分)∴T n =241+442+643+…+2n 4n ,14T n =242+443+644+ (2)4n +1,(8分) 两式相减得34T n =24+242+243+244+…+24n -2n 4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n 4n +1=23-6n +83×4n +1.(10分)∴T n =89-6n +89×4n <89.(12分)1.正确求出a 1的值给2分.2.利用a n 与S n 的关系构造等比数列给2分. 3.写出数列{a n }的通项公式给2分. 4.求出数列{b n }的通项公式给1分. 5.采取错位相减法给1分.6.两式相减后的正确化简计算给2分. 7.放缩法证明不等式给2分.1.由a n 与S n 的关系求通项公式,易忽略条件n ≥2而出错.2.错位相减法中两式相减后,一定成等比数列的有n -1项,整个式子共有n +1项. 3.放缩法证明不等式时,要注意放缩适度,放的过大或过小都不能达到证明的目的.[跟踪训练](2019·沈阳模拟)(12分)设S n 为数列{a n }的前n 项和,a 1=1,S 2n =a n ⎝ ⎛⎭⎪⎫S n -12(n ≥2).(1)求S n ; (2)设b n =S n2n +1,求数列{b n }的前n 项和T n . 解 (1)当n ≥2时,由S 2n =a n ⎝⎛⎭⎪⎫S n -12得,S 2n =(S n -S n -1)⎝⎛⎭⎪⎫S n -12,整理得,S n -1-S n =2S n -1S n ⇒1S n -1S n -1=2,(3分)又1S 1=1a 1=1,∴数列⎩⎨⎧⎭⎬⎫1S n 是以2为公差、以1为首项的等差数列,则1S n=1+2(n -1),故S n =12n -1.(6分) (2)由(1)知,b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,(9分)∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.(12分)。

相关文档
最新文档