专题飞机飞行的力学原理
航空航天中的力学原理

航空航天中的力学原理航空航天是一项重要的现代科技,其发展离不开力学原理的支持。
力学是物理学的分支,研究物体运动的规律和力的作用。
在航空航天领域,力学原理的应用可以帮助人们更好地研究和掌握运动物体的行为,从而提高飞行安全和效率。
一、牛顿定律在航空航天中的应用牛顿定律是力学中最重要的定律之一,它描述了物体在受到外力作用下的运动状态。
在航空航天中,牛顿定律对于掌握机体经受力学条件下的运动状态非常重要。
以飞机为例,牛顿定律可以用来解释飞机飞行的原理。
在飞行中,飞机受到空气的阻力和升力作用。
空气的密度、温度和湍流等因素都会对空气力产生影响。
牛顿定律告诉我们,当一个物体受到外力作用时,它会产生加速度;反过来,当物体加速时,它会受到某些力的作用。
因此,飞机运动的加速和减速,都可以用牛顿定律来解释。
牛顿定律不仅可以解释飞机运动的原理,还可以用来设计和控制飞机的飞行轨迹。
飞机在空气中的运动受到重力和浮力的影响,飞行员可以通过飞机的机动性来控制飞机的速度和方向。
牛顿定律为飞行员提供了有效的控制手段,帮助他们合理地调整飞机的姿态。
二、空气动力学在航空航天中的应用空气动力学是力学的一个重要分支,研究由于流体作用而对物体产生的力的力学问题。
在航空航天领域,空气动力学广泛应用于飞机的设计和试验。
飞机在空气中运动时,空气会对飞机产生力的作用。
这些力根据方向和大小可以分为升力、阻力、侧向力和升力襟翼力等。
在设计飞机的过程中,空气动力学可以帮助人们了解飞机在不同飞行状态下受到的空气力作用。
通过模拟计算和实验检测,人们可以把飞机的性能优化到最佳状态,提高飞行的效率和安全性。
空气动力学的应用还可以看到飞行器的风洞试验。
风洞试验是飞机设计阶段最重要的实验测试方法之一,它可以模拟飞机在各种环境下的空气流动情况,对设计方案进行验证和改进。
三、弹性力学在航空航天中的应用弹性力学是研究物体在受到外力作用下产生弹性变形的力学分支。
在航空航天领域中,弹性力学可以帮助人们研究机体结构的强度和抗拉性能。
飞机可以起飞的原理

飞机可以起飞的原理飞机成功起飞的原理是应用了伯努利定律和牛顿第三定律。
关键在于飞机翼上形成的气流差异。
当飞机加速滑行,翼面上方的气流速度增加,气压减小,而翼面下方的气流速度减小,气压增大。
这种气流差异导致了翼面上的气流向下流动,形成了向上的升力。
当升力大于重力时,飞机便能够起飞。
空气动力学原理产生升力飞机起飞的基本原理是通过产生升力来克服重力。
而产生升力的根本原因是在飞机的机翼上方和下方空气的压强差异和流动速度差异。
当飞机的机翼形状和倾斜角度合适时,机翼上方的气流速度会比下方快,同时上方气流的压强也会比下方低。
飞机的机翼采用了弯曲的上表面和相对平直的下表面,这被称为卡门翼型。
当高速飞过机翼上方时,由于翼面的曲率,飞机上方气流的流动速度增加,气流发生了分流现象,流动快的部分与翼面分离,形成一片稀薄的气流;而相对平直的下表面上的气流流动相对缓慢,并保持粘附在翼面上。
由于上下表面气流速度和压强之间的差异,机翼上方气流的压强低于下方气流的压强,从而形成了上升的力量,即升力。
在起飞时,飞机的起飞速度逐渐增加。
当达到一定速度后,机翼上方气流的流动速度和压强的差异达到最大值,形成最大的升力。
此时,飞机将离开地面,开始腾空飞行。
飞机起飞所需的加速过程涉及到其他复杂的因素,如发动机的推力以及起落架的帮助等,但基本的升力原理是始终存在的。
在机翼上形成升力的基础上,飞机需要采用其他措施来实现平稳起飞。
一方面,飞机倾斜机身,借助升力使机身提前与地面分离。
另一方面,增加发动机的推力,以克服地面阻力,使飞机快速加速。
这些措施共同促使飞机脱离地面,进入升空阶段。
利用发动机提供足够的推力在起飞过程中,飞机要克服多重的力和阻力,从而获得足够的升力,使得飞机离开地面顺利起飞。
而飞机的起飞原理主要是基于发动机提供的推力。
我们来了解一下发动机的工作原理。
飞机通常使用喷气式发动机来提供推动力。
喷气式发动机的工作原理是,通过燃烧燃料产生高温高压的气体,然后将气体喷出,产生的喷射气流可以向后推动飞机。
飞机飞行的基本原理

飞机飞行的基本原理飞机飞行的基本原理主要包括三个方面:升力、阻力和重力。
1.升力:升力是由空气动力学原理产生的,它是由翼面上的气流产生的。
当翼面运动时,空气会在翼面上形成高压区和低压区,高压区下方产生升力,使飞机向上升。
2.阻力:阻力是飞机穿过空气时产生的阻碍力,包括空气阻力和摩擦阻力。
空气阻力是由飞机前进时空气对飞机表面的摩擦产生的,而摩擦阻力则是由飞机表面摩擦空气产生的。
3.重力:重力是由地球对物体产生的向下的引力。
飞机在飞行过程中需要不断产生升力来抵消重力的作用,以维持飞行。
当飞机的升力大于阻力和重力的总和时,飞机就会上升,而当升力小于阻力和重力的总和时,飞机就会下降。
飞机的驾驶员通过调整飞机的姿态和动力系统来控制飞机的升降和飞行速度。
除了升力、阻力和重力这三个基本原理之外,飞机飞行还需要考虑其他因素。
4.气流:空气的流动对飞机的飞行有重要影响。
飞机在飞行中会遇到不同类型的气流,如下推气流、上升气流和下沉气流等。
飞机的驾驶员需要根据气流的类型和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
5.气压: 气压的变化会对飞机的飞行产生影响。
飞机在飞行中会经历高气压和低气压,高气压会使飞机升高,而低气压则会降低飞机。
飞机的驾驶员需要根据气压的变化来调整飞机的姿态和动力系统。
6.温度:温度的变化也会对飞机的飞行产生影响。
高温会使飞机升高,而低温则会降低飞机。
飞机的驾驶员需要根据温度的变化来调整飞机的姿态和动力系统。
7.风:风的方向和强度会对飞机的飞行产生影响。
飞机的驾驶员需要根据风的方向和强度来调整飞机的姿态和动力系统,以确保飞机的安全飞行。
这些因素都需要飞行员经过严格的训练和经验积累来掌握,并在飞行过程中不断监测和调整,以确保飞机的安全飞行。
另外,飞机的结构和控制系统也对飞行有重要影响。
飞机的翼和机尾设计会影响飞机的升降和飞行速度,而飞机的动力系统会影响飞机的推进力和油耗。
总之,飞机飞行的基本原理需要结合空气动力学、气象学、航空工程等多个领域的知识来理解和掌握。
飞机的飞行原理

飞机的飞行原理
飞机的飞行原理是基于空气动力学的原理,主要包括升力、重力、推力和阻力四个方面。
升力是飞行的主要原理之一,它是指飞机通过翼面的作用,将空气向下压,导致上升力的产生。
在飞机飞行时,由于翼面上表面和下表面的长度不同,所以空气在两侧产生了不同的速度,形成强度不等的压力,从而形成升力。
重力是飞机飞行过程中的重要影响因素,也是一直存在的力,此外,在飞机起飞、爬升、下降和着陆等飞行阶段,还伴随着其他的重力影响。
推力是飞机飞行的动力来源之一,通常由发动机提供。
推力越大则速度就越快。
阻力是飞机飞行中产生的无法避免的损失,同时也是制约飞机速度的主要因素。
飞机在空气中有的是阻力,而有的是飞行的反作用力。
最终这四个因素共同作用,让飞机产生合适大小的升力
与重力的相等,支撑其在空中飞行。
为了保持在空中的稳定,在不同的飞行阶段会有不同的角度和速度的调整以维持稳定的飞行状态。
简述飞机飞行的基本原理

简述飞机飞行的基本原理
飞机飞行的基本原理是利用流体力学中的力学原理,以及液体流动和腔体发动机的性能,来实现水平飞行和升降。
首先,飞机机翼应用升力原理,利用动量定律和能量定律,形成“升力翼”,充分利
用空气运动把飞机抬升到空中,且平衡在平衡面之上稳定飞行,升力是由空气运动产生的,接着飞行控制系统将调整翼面形状,实现空中存在的飞行保证,升力的大小直接关系到飞
机的高度和速度。
其次,飞机的推进力也是飞行的基础。
推进力是发动机和机翼滑翔所需要的。
它包括
推回爆射力和抵抗力。
发动机产生的是抵抗力,使机翼运动发生抵抗作用;机翼则通过升
力克服抵抗力,使机身可以有效地向前运动,从而实现飞行的推进。
最后,在飞行过程中,飞机的重力会降低它的高度和推进力,这则要求飞行控制人员
及时调整推进量和调整机翼升力,以调整飞机的实际飞行行程和高度,使其按照预定的路
线稳定、安全地飞行。
飞机飞行的基本原理,就是将升力、推进力,以及飞行控制系统有效而协调地配合使用,让飞机可以稳定、安全、有效地飞行,实现它所要达到的目的。
飞机在天上飞的原理

飞机在天上飞的原理
飞机在天上飞的原理基于物理学中的气流动力学和牛顿三大定律。
以下是飞机飞行的主要原理:
1. 升力:飞机的机翼设计成了一个对空气施加上(向上)升力的形状。
当空气通过机翼时,由于机翼的上表面相对较长,空气在上表面流动速度更快,而下表面流动速度较慢。
根据伯努利定律,流动速度更快的气体将产生较低的压力,而流动速度较慢的气体将产生较高的压力。
这种压力差将产生向上的推力,即升力,使飞机能够浮空。
2. 推力:飞机引擎产生的推力使飞机能够向前移动。
大多数飞机使用喷气发动机或螺旋桨发动机。
喷气发动机将空气吸入,经过压缩和燃烧后排出高速喷气,产生向后的推力。
螺旋桨发动机则通过旋转的螺旋桨产生推力。
推力和阻力之间的平衡使飞机能够保持恒定的速度。
3. 阻力:阻力是飞机的运动中需要克服的力量。
阻力由多个因素产生,包括空气摩擦、空气阻力和重力。
飞机需要产生足够的推力来克服阻力,以保持飞行速度。
4. 重力:重力是地球对飞机施加的向下的力。
飞机需要产生足够的升力来抵消重力,以保持在空中飞行。
综上所述,飞机在天上飞的原理基于通过产生升力抵消重力,并通过产生足够的推力克服阻力和推动飞机前进。
飞机飞行原理基础知识

飞机飞行原理基础知识飞机的飞行原理主要涉及到气动力学和动力学两个方面。
气动力学研究飞行器在空气中的运动规律,而动力学则研究飞行器的动力来源和推进系统。
1.升力和重力:飞机的升力是使其能够在空中飞行的重要因素。
根据伯努利定律和牛顿第三定律,当飞机的机翼产生升力时,空气在机翼上方的流速增加,而在机翼下方的流速减小,使得上方的气压降低,而下方的气压增加。
这种气压差会使机翼受到一个向上的力,即升力。
升力的大小取决于机翼的气动性能、机翼的面积、飞机的速度和气流的密度。
升力的作用是克服飞机自身的重力,使飞机能够在空中飞行。
2.阻力和推力:飞机在飞行过程中会受到阻力的作用,阻力是与飞机的速度和空气的密度有关的。
阻力分为各种各样的形式,包括:空气摩擦阻力、气动阻力(主要是飞机的机身和其他外形部件的气动产生的阻力)、重力分量和升力分量等。
飞机需要通过推力来克服阻力,推力是由飞机发动机产生的。
3.推进力和动力系统:推进力是飞机向前飞行所需要的力量,通过推进系统提供。
推进力主要由发动机产生,可以采用喷气发动机、螺旋桨发动机等。
喷气发动机通过将空气吸入并喷出来产生推力,而螺旋桨发动机则通过旋转桨叶产生推力。
飞机的推进力要大于阻力,才能保持飞行速度。
4.操纵和控制:飞机的操纵和控制是指飞行员通过操纵飞机的控制面(如副翼、升降舵、方向舵等)来改变飞机的姿态和飞行状态。
通过控制面的升降、俯仰、滚转和偏航等运动,飞行员可以控制飞机的上升、下降、转弯等动作。
总结起来,飞机的飞行原理基于气动力学和动力学的基础,通过升力和推力来克服重力和阻力,实现在空中的飞行。
飞行员通过操纵飞机的控制面来控制飞机的运动。
这些基础知识是飞行原理的核心,对于理解飞机的飞行过程和性能具有重要意义。
飞行原理

键入文档标题]關十言2013/8/111)流体力学基础对于亚音速气流,若流管面积减小,则流速增大,而超音速则刚好相反。
流体的伯努利原理表明,不管是超音速还是亚音速气流,只要流速增加,则压强就会减小。
由于飞机的翼型上表面向上弯曲的稍多一些,因此从整体上来说飞机下表面的流管截面积要大于上表面,使得亚音速飞机的下表面气流流动比上表面慢,压强则比上表面大,从而产生升力。
音速是微弱扰动的传播速度,与气体的种类和温度有关,随温度的升高而增加。
飞机的飞行马赫数是飞机真空速大小与飞行高度上音速之比,飞机的临界马赫数是当机翼上翼面低压力点的局部速度达到音速时的来流马赫数。
超音速气流流过外折角,则会在折点处形成膨胀波,使得气流经过膨胀波后的速度增加、压强减小;流过一个折角很小的二维内折翼面,会在折点处形成斜激波,如果折角比较大,则会形成曲面激波或者正激波。
超音速气流经过激波后压强、温度和密度会突然增大,速度会突然减小。
从飞机阻力增加的程度来讲,三种激波的影响从大到小依次是正激波、曲面激波和斜激波。
静止的流体中不会产生摩擦力(粘性力),只有运动的实际流体才会产生粘性力。
物体在流体中运动时所受的惯性力与粘性力之比就是雷诺数,雷诺数越大,说明粘性对飞机的影响就越小。
机翼表面受粘性影响比较大的区域叫做附面层,在附面层边界上,粘性使得该处的局部速度受到1%的影响,在附面层内需要考虑粘性的影响,之外则可以不考虑。
2)飞机的升阻力特性飞机的定常飞行中,升力等于重力,推力等于阻力。
飞机的升力与速度、大气密度、机翼面积、升力系数等有关。
升力系数随着飞机迎角的增大,起初会线性增加,达到斗振升力后,开始曲线增加,一直到最大升力系数(临界迎角),然后开始减小。
在其他条件一定时,飞机的升力系数随粘性增大而减小,随后掠角增大而减小。
临界迎角对应飞机的失速速度。
飞机在转弯时,升力的垂直分量需要平衡重力,使得飞机的升力随转弯坡度增加而增加,因此大坡度转弯时飞机的升力系数(迎角)较大,可能会引起飞机的抖动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 飞机飞行的力学原理
♦ 飞机用途
民用(运输、勘探、农用、消防、拯救等)
军用(歼击、轰炸、侦察、反潜、运输等)
♦ 飞机动力
螺桨式(活塞螺桨、涡轮螺桨、涡轮轴)
喷气式(涡轮喷气、涡轮风扇、、冲压、火箭等)
♦ 机翼类型
固定翼(双翼、单翼、矩形翼、后掠翼、前掠翼、三角翼、双三角翼、鸭翼、可变后掠翼等)
旋翼(单旋翼、双旋翼、可倾转旋翼等)
♦ 举例
歼10飞机:军用歼击机,采用涡轮风扇发动机,机翼类型为鸭翼。
飞机的机翼在飞行中产生升力和阻力
机翼的升力:
221Sv C F Y Y ρ= 机翼的阻力: 221Sv C F X X ρ=
升力系数C Y 和阻力系数C X :
C Y和C X都与气流方向和机翼运动方向(航向)的夹角有关,这一角度称为迎角。
一般来说,迎角越大,升力和升力系数越大,阻力和阻力系数也越大。
当迎角大于某一角度时,升力和升力系数会急剧下降。
这一角度称为失速角。
飞机飞行的受力分析:质点情况
♦考虑飞机为一质点,其受力情况为:
升力F Y
阻力F X
重力mg
发动机的推力(或拉力)F
♦若飞机在水平方向进行匀速直线运动,则:
F = F X
F Y = mg
若飞机进行滑翔飞行,其受力情况为:
升力 F Y
阻力 F X
重力 mg
很明显,在理想情况下,升力、阻力、重力三者矢量和为零,滑翔飞机做匀速直线运动。
即: R F F mg Y X =+=
22
一点奥秘 ♦由于:221Sv C F Y Y ρ= 22
1Sv C F X X ρ=
在稳定飞行时:F Y = mg F = F X ♦结论:
♦ 高速飞行器的翼面积较小,低速飞机的翼面积较大。
♦ 重型飞机的翼面积较大,轻型飞机的翼面积较小。
♦ 高速飞行器阻力系数较小,升力系数也不大。
♦ 低速飞行器升力系数较大,阻力系数也较大。
速度和升阻比的测量和计算
1、 速度计算
由于: 221Sv C F Y Y ρ= 22
1Sv C F X X ρ= 根据受力平衡:
mg F F Y X =+22
也即:
mg C C Sv Y X =+2222
1ρ 故:
22
2Y X C C S mg
v +=ρ
2、 升阻比计算
由于:
θρcos 2
12mg Sv C F Y Y ==
θρsin 212mg Sv C F X X == 很明显:
θtan =Y
X C C 设:飞机的投掷高度为H ,滑翔距离为L ,则:
θtan =L
H 即:
H
L C C X Y 测量投掷高度为H 和滑翔距离为L ,就可以计算出升阻比C Y /C X 。
也可利用相似三角形的关系推导出以上结论。
一个特例:直升飞机
♦ 直升飞机通过旋翼的旋转运动产生升力
♦ 旋翼旋转时机体可保持静止——悬停
♦ 固定翼飞机的机体与机翼刚性连接。
机翼运动产生升力,机体也随之运动。
因
此无法悬停。