土力学-第三章地基中的应力计算1
第三章 土体中的应力计算(1-3节)

3.均质、等向问题 理想弹性体是均质且各向同性的。天然
地基是各向异性的。但当土层性质变化 不大时,这样假定对竖直应力分布引起 的误差通常在容许范围之内。
5
二、地基中的几种应力状态
1.三维应力状态(空间应力状态)
局部荷载作用下,地基中的应力状态属 三维应力状态。每一点的应力可写成矩 阵形式
24
25
在空间将z相同的点连 接成曲面即形成应力泡。
当地基表面作用有几个集中力时,根据弹 性体应力叠加原理求出附加应力的总和
26
(二)水平集中力作用-西罗提解
z
3Ph
2
xz 2 R5
(3- 9)
27
28
二、矩形面积上各种分布荷载作用下的附 加应力计算
(一)矩形面积竖直均布荷载 1.角点下的应力
x
K
s x
p
τ
xz
K
s xz
p
(3- 25) (3- 26)
剪Kx应s和力K分xzs布分系别数为(水表平3向-5应)力,m分布x ,系n 数z和。
BB
55
P
56
57
(三)条形面积竖直三角形分布荷载 条形面积上竖直三角形分布荷载在地基
内引起的应力也可利用应力叠加原理, 通过积分求得。
zM ' (KsI KsII KsIII KsIV ) p
(3 -13a)
37
第二种情况:计算矩形面积外任一点M’ 下深度为z的附加应力(图3-17b)。设法使 M’点为几个小矩形的公共角点,然后将 其应力进行代数迭加。
zM ' (KsI KsII KsIII KsIV ) p
29
土力学与地基基础(土中的应力计算)

矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1
地基中的应力计算

地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。
在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。
本文将介绍地基中应力计算的方法和计算公式。
首先,需要了解地基中的应力是如何形成的。
地基承受的主要应力有自重应力、活载荷载应力和附加应力。
自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。
活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。
附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。
接下来,我们介绍如何计算地基中的应力。
地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。
下面以均质土壤的地基为例,介绍几种常用的应力计算方法。
1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。
首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。
根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。
2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。
首先,在地基中进行试孔,并记录试孔的深度和直径。
然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。
3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。
首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。
综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。
在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。
地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。
土力学与地基基础-第三章.土中应力分布及计算解析

从上式可知,自重应力随深度z线性增
加,呈三角形分布图形。
2019/8/25
土中自重应力的计算
8
3.2 土中自重应力的计算
2. 成层土的压力计算
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为 ,则在i 深度z处土的自重应力计算公式 为:
n
cz ihi i 1
剪应力
xy
yx
3Q xyz
2
R5
1 2 3
xy(2R z)
R3
(
R
z)2
yz
zy
3Q 2
yz 2 R5
ZX
XZ
3Q 2
xz 2 R5
3.4 集中力作用下土中应力计算
X、Y、Z轴方向的位移
分别为:
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外 力的增大,其形状相应改变。如下图
2019/8/25
基础底面压力的分布和计算
15
3.3 基础底面压力的分布和计算
2019/8/25
基础底面压力的分布和计算
16
3.3 基础底面压力的分布和计算
2. 地基反力的简化计算方法
根据弹性理论的圣维南原理及土中实测结果,当作用在 基础上的总载荷为定值时,地基反力分布的形状对土中 应力分布的影响,只在一定深度范围内,当基底的深度 超过基础宽度的1.5-2.0倍时,它的影响已不显著。因此, 在实用上采用材料力学方法,即将地基反力分布认为是 线性分布的简化计算方法。
因此,基底附加压力p0是上部结构和基础传到基底的地基反力 与基底处原先存在于土中的自重应力之差(新增加的应力)(如图)
土力学-地基中的应力计算概述

基础传至地 基的荷载
地基
基础 埋深
(1)集中荷载作用下的解 ( Boussinesq 解,1885 )
P
x
r
y
x
y
R
z
z
• 位移解
ux4PG[R xz3(12)R(Rxz)]
uz
4PG[R z23
(1)1]
R
Valentin Joseph Boussinesq (1842-1929)
法国著名物理家和数学 家,对数学物理、流体力学 和固体力学都有贡献。
a
a
a
b
角点
b
p
b
中心点
1
2
34
任意点
z
z
z
k(a , b
z) b
p
z
z
z
4k(a, b
2z) b
p
z z
k k1 k2 k3 k4
z k p
3)矩形线性荷载 (角点下)
角点
b
角点
p
z
a
z
p
z
k(b , a
z) a
p
查表计算
3. 应力计算小结
(1)自重应力及均匀满布荷载作用下的附加应力,可利用平衡方程 等通过简单方法获得。
(2)线状荷载作用下的应力(Flamant解)
p
1)属平面应变问题,即:
a. 应变 y 0 。
dP pdy
b. 位移、应力等量仅与坐标
x、z有关。
x
2)利用Boussinesq解,通过 沿荷载分布线积分得到应力。
x - dx=2p(x2x2zz2)2
y
xz
2p
土力学-第三章地基中的应力计算1

σ z : τ zy : τ zx = z : y : x
P σz = k ⋅ 2 z
3 1 3 1 k= = 2 5/ 2 2π [1 + (r / z) ] 2π [1 + tg2β ]5/ 2
查表3 查表3-1
集中力作用下的 应力分布系数
z
σ x τxy τxz σ ij = τyx σ y τyz τzx τzy σ z
∞ ∞ ∞ ∞
σ y σ z τ yx 学关于力的方向的规定
τzx
材料力学
σz +
正应力
剪应力 顺时针为正 逆时针为负
-
τzx
土力学
σz +
τxz
2. 竖直集中力作用下的附加应力计算 根据布辛涅斯克解
3 P 3P z3 2 cos β = σz = 2 2 πR 2π R5
3P yz2 τzy = 2π R5 3P xz2 τzx = 2π R5
R 2 = r 2 + z 2 = x2 + y 2 + z 2
3P z3 3 1 P σz = = 5 2π R 2π [1 + (r / z)2 ]5/ 2 z2
γ
γ′
均质地基
γ1 (γ
1
< γ2 )
γ2 γ′ 2
成层地基
算例分析
某地基的地 质剖面如图 所示,求各 层土界面上 竖向的自重应 力,并画出分 布图。
答案: 根据土层和地下水位将上述地质剖面分为4层 根据土层和地下水位将上述地质剖面分为 层
γ ′ = γ sat − γ w σ 0z = 0 σ 1 z = γ 1 h1 = 17.5kPa
γ xy = γ yz = γ zx = 0
第三章土和地基中的应力及分布
§3.1 土中一点的应力状态和应力平衡方程
一、地基中应力的种类
1、土体自重产生的自重应力(self-weight stress) 2、建筑物荷载引起的附加应力(stress in aground)
二、 应力(stress)—应 变(strain)关系的假定
土体中的应力分布,主要取决 于应力—应变关系特性。真实的应 力—应变关系非常复杂,为简化计 算,假定土体为均质、各向同性的 半无限线弹性体(semi-infinite elastic body),其应力应变关系 如图。
在一般情况下,饱和土体所受总应力由孔隙水和土骨架承担,即总应力等于 孔隙水压力和有效压力。当总压力σ不变,u的减小就意味着σ的增加,反之亦然。 如饱和粘土在地下水面以下,孔隙水压力乃为地下水面以下水柱压力。由外力 引起的附加孔隙水压力,称为超静水压力。还有一种作用在骨架单位体积上的 力,它也能使骨架变形,这是一种体力,一般称为有效力。如地下水面上的容 重,地下水面以下的浮容重 =sat - w。
图A压力作用下孔隙水上,砂层不产生压缩,图B压力作用在土骨架上,应 力通过土骨架传递下去,砂层产生压缩变形。
1 、几个概念
(1)有效应力(effectives stress):凡使骨架产生变形的力, 称为有效应力σ。
(2)孔隙水压力(pore water pressure):孔隙水所承担压力 称为孔隙水压力或孔隙压力,也称为中性压力,用u表示。
地基中的几种应力状态 计算地基应力时,将
地基当作半无限空间弹 性体。 1. 三维应力状态
ij yxxx
xy yy
xz yz
zx zy zz
矩阵表达式
每一点的应力状态都可用9个应力分量(独立的有6个)
土力学-第三章-地基中的应力状态、有效应力原理1 张丙印
智者乐水 仁者乐山
应力状态及应力应变关系
有效应力原理 自重应力 基底压力计算 附加应力
修建筑物以前,地基中由 土体重量所产生的应力
建筑物重量等外荷载在地 基中引起的应力增量
土体中的应力计算
3
第三章:本章概要
智者乐水 仁者乐山
3-1(假定水位骤降后,黏土和粉质黏土
层中孔隙水压力近似为0)
3-2 3-3 3-4
智者乐水 仁者乐山
z zx xz x
εy γ yx γ yz
地基中的应力状态(2)
9
§3.1 地基中的应力状态
智者乐水 仁者乐山
二维应力状态(平面应变状态)
应变条件 εy
γ yx γ yz
εx
εij
0
0
γ
xz
0
0
γ
xz
0
εz
应力条件
εy
σy E
ν E
σx σz
独立变量 εx εy ; εz
σc 0
σ ij
0
σc
0 0
试 样
y
x
σx σy σc
0
εx 0 0
0
εij
0
εx
0
σz
0 0 εz
地基中的应力状态(1) 8
§3.1 地基中的应力状态
二维应力状态(平面应变状态)
o
y
z
x
y
z zx xy
yz
x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,l/b≧10 在x, z平面内可以变形,但在y方向没有变形
13
§3.1 应力状态及应力应变关系
智者乐水 仁者乐山
3地基中的应力计算
第三章 地基中的应力计算土中的应力按引起的原因可分为:(1)由土本身有效自重在地基内部引起的自重应力;(2)由外荷(静荷载或动荷载) 在地基内部引起的附加应力。
应力计算方法:1.假设地基土为连续、均匀、各向同性、半无限的线弹性体;2.弹性理论。
第一节 土中自重应力研究目的:确定土体的初始应力状态研究方法:土体简化为连续体,应用连续体力学 (例如弹性力学)方法来研究土中应力的分布。
假设天然土体是一个半无限体,地面以下土质均匀,天然重度为γ (kN/m3),则在天然地面下任意深度z (m)处的竖向自重应力σcz (kPa),可取作用于该深度水平面上任一单位面积上土柱的重量γz ⨯ l 计算,即: σcz= γzσcz 沿水平面均匀分布,且与z 成正比,即随深度按直线规律分布地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。
由于地基中的自重应力状态属于侧限应力状态,故εx=εy=0,且σcx = σcy ,根据广义虎克定理,侧向自重应力σcx 和σcy 应与σcz 成正比,而剪应力均为零,即σcx = σcy = K0σczτxy=τyz=τzx =0式中 K0 ―比例系数,称为土的侧压力系数或静止土压力系数。
它是侧限条件下土中水平向有效应力与竖直向有效应力之比。
(1) 土中任意截面都包括有骨架和孔隙的面积,所以在地基应力计算时考虑的是土中单z σsz = γz 天然地面σcy zσcx天然地面σcz位面积上的平均应力。
(2) 假设天然土体是一个半无限体,地基中的自重应力状态属于侧限应力状态,地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。
地基中任意竖直面和水平面上均无剪应力存在。
(3) 土中竖向和侧向的自重应力一般均指有效自重应力。
为了简便起见,把常用的竖向有效自重应力σcz ,简称为自重应力,并改用符号σc 表示。
成层地基土中自重应力因各层土具有不同的重度。
地基中的应力计算
pmax
min
P A
1
6e B
pmin
P A
1
6e B
pmax
min
P A
1
6e B
矩形面积单向偏心荷载
高耸结构物下可 能的的基底压力
P
P
P
土不能承受拉力
B
B
e
e
x
Lx
L
y
y
pmax
pmin 0 pmax
pmin 0
e<B/6: 梯形
e=B/6: 三角形
B
压力调整
Ke
基底
x
L
水平地基半无限空间体;
半无限弹性地基内的自重应
力只与Z有关;
土质点或土单元不可能有侧
向位移侧限应变条件;
y
任何竖直面都是对称面
▪应变条件
y x 0; xy yz zx 0
o x
A
B
z
sA sB
(4)侧限应力状态—— 一维问题
▪应变条件
y x 0;
xy yz zx 0
K
P z2
查表3-1
一. 竖直集中力作用下的附加应力计算
P
-布辛内斯克课题
P z K z2
o αr
y
x
x
M’
R βz
3
1
y
K 2 [1 (r / z)2]5 / 2
0.5
M
z
特点
0.4
1.σz与α无关,应力呈轴对称分布
0.3
2.σz:τzy:τzx= z:y:x, 合力过原点,与R同向
K
0.2
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、土中一点的的应力状态
5
一、土中一点的应力状态和应力平衡方程
1、土的应力-应变关系的假定
离散体
非线性 弹塑性
①连续介质
(宏观平均) Δσ
②线弹性体 (应力较小时)
成层土 各向异性
③均匀一致各向同性体 (土层性质变化不大时)
E、 与(x, y, z)无关
与方向无关
线弹性体
卸载
εp
εe
理论 ——弹性力学解求解“弹性”土体中的应力
- zx
z
+
材料力学
xz
x
- zx
z
+
土力学
xz
x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
8
(3)土体的应力平衡方程
弹性力学平衡方程: x xy xz X x y z
土体的平衡方程: x xy xz 0 x y z
xy y yz Y
2
学习要点:
1、自重应力的概念和计算方法 2、有效应力及有效应力原理 3、附加应力的概念和计算方法 4、基地压力的概念和简化计算方法
3
为什么要计算地基应力?
上部结构
基础 地基 地 基:受上部结构影响(受力、变形)的一定范围内的岩土体。 计算地基应力的目的 • 确定地基的承载力 • 确定地基的变形(压缩)
第三章 地基中的应力计算
1
主要内容
第一节 土中应力状态和应力平衡方程
第二节 饱和土有效应力及孔隙水压力 第三节 非饱和土孔隙压力及有效应力(自学) 第四节 孔隙压力系数(自学) 第五节 在简单条件下地基中的应力分布 第六节 地基的接触应力 第七节 刚性基础基地压力简化计算 第八节 弹性半无限体内的应力计算
15
二、地基中自重应力的计算
16
二、地基中自重应力的计算
地基中的应力可以分为:自重应力和附加应力
自重应力: 在修建建筑物以前,地基中 由土体本身的有效重量而产 生的应力。
地基内由于自重应力形成的变 形,一般已在地质历史过程中 完成,在建筑物沉降计算中不 必考虑,只是利用压缩曲线的 初始条件。
附加应力: 建筑物修建以后,建筑物重量 等外荷载在地基中引起的应力, 所谓的“附加”是指在原来自 重应力基础上增加的压力。
地基变形和建筑物沉降的主 要原因。
17
计算自重应力的目的:确定土体的初始应力状态
地基计算模型的基本假定:
半无限体 semi-infinite mass
y
线弹性 linear elastic 即满足胡克Hooker定律
均 质 homogeneous 各向同性 isotropic 地基中的应力为一维的侧限应力状态
加载
ε
6
2、土中一点的应力状态
z
(1) 土力学中应力符号的规定
地基:半无限空间
∞
o
∞
yz
xz
zx
zyxyxy Nhomakorabeayxx
x xy xz
y
土中一点
ij = yx y yz
∞
z
zx zy z
6个应力分量: x y z yx xy yz zy zx xz 7
(2)土力学关于力的方向的规定
x
半无限体
z
18
自重应力的计算
1.计算公式
均质地基 成层地基
竖直向: z z
z W A zA A z
水平向: x y K0 z
K0 1
竖直向: z i Hi z 1H1 2H2 3H3;
γ1 H1 水平向: x y K0 z K0 i Hi
方 程: 15个
平衡方程 equilibrium equations 3个: 协调方程 compatibility equations 6个:应变-位移关系 本构方程 constitutive equations 6个: 应力-应变关系
边界条件: 3个 (x、y、z 方向)
3种类型的边界: 位移边界 应力边界 混合边界
Z γ2 H2
γ3 H3
计算:地下水位以上用天然容重, 地下水位以下用浮容重
19
2. 分布规律
自重应力分布线的斜率是容重; 自重应力在等容重地基中随深度呈直线分布; 自重应力在成层地基中呈折线分布; 在土层分界面处和地下水位处发生转折。
x xy xz
ij = yx y yz
zx zy z
10
未知量:15个
应力stress分量6个: x、 y、 z、 yx ( xy )、 yz ( zy )、(zx xz) 应变strain分量6个: x、 y、 z、 yx ( xy )、 yz ( zy )、 (zx xz) 位移displacement分量3个: u、v、w
应变条件
y x 0;
xy yz zx 0
应力条件
独立变量
xy yz zx 0;
x y;
x
x
E
E
y z
0;
x y 1 z K0z;
z , z F(z)
K0:侧压力系数
0 00
ij = 0 0 0
0 0 z
x 0 0
ij= 0 y 0
0 0 z
理论研究和工程实践中广泛应用
x y z
xz yz z - Z
x y z
xy y yz 0
x y z
xz yz z
x y z
土体中仅存在Z向 的体积力γ
9
3、地基中常见的应力状态
(1)一般应力状态——三维问题 z
zx
o
y
z
x
xy
x
y yz
ij=
x xy xz yx y yz
zx zy z
zx 0
zx z
xz
x
x
12
(2) 平面应变条件——二维问题
应变条件
应力条件
y 0; xy yz 0; zx 0
y
y
E
E
x
z
0
y x z
独立变量
x , z , xz ; x , z , xz ; F(x, z)
x 0 xz
ij = 0 0 0
zx 0 z
ij=
x 0 xz
0 y 0 zx 0 z
13
(3)侧限应力状态——一维问题
基本假定:
水平地基半无限空间体;
半无限弹性地基内的自重应力
只与Z有关;
土质点或土单元不可能有侧向
y
位移侧限应变条件;
任何竖直面都是对称面。
o x
A
B
z
A B
▪应变条件 y x 0; xy yz zx 0
14
(3)侧限应力状态——一维问题
求解比较 困难,通 常要进行 条件简化。
11
(2) 平面应变条件——二维问题
基本假定: 沿长度方向有足够长度,L/B≧10; 垂直于y轴切出的任意断面的几何形状
均相同,其地基内的应力状态也相同; 平面应变条件下,土体在x, z平面内
可以变形,但在y方向没有变形。
o yz
y 0;
yx yz 0;