激光切割机工艺标准介绍材料
激光切割机工艺手册(完整资料).doc

此文档下载后即可编辑第一章激光切割方法1.1 激光熔化切割在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。
因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。
激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。
——激光熔化切割可以得到比气化切割更高的切割速度。
气化所需的能量通常高于把材料熔化所需的能量。
在激光熔化切割中,激光光束只被部分吸收。
——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。
在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。
——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。
——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。
1.2 激光火焰切割激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。
借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。
由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。
另一方面,该方法和熔化切割相比可能切口质量更差。
实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。
——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。
可以使用脉冲模式的激光来限制热影响。
——所用的激光功率决定切割速度。
在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。
1.3 激光气化切割在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。
为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。
该加工因而只适合于应用在必须避免有熔化材料排除的情况下。
该加工实际上只用于铁基合金很小的使用领域。
该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。
另外,这些材料通常要达到更厚的切口。
激光切割的工艺过程及其参数分析(精)

激光切割的工艺过程及其参数分析1激光设备激光设备采用Trumpf公司激光冲裁复合加工中心。
2激光束参数激光系统一般由激光器、激光传输系统、控制系统、运动系统、传感与检测系统组成,其核心为激光器。
激光器为CO2气体脉冲式激光器。
光束横截面上光强分布接近高斯分布.具有极好的光束质量,主要性能指标如下:激光波长:10.61xm脉冲功率:2.4kW;脉冲宽度;约l0ms功率密度:107W/cm2;激光发散角:1mrad激光功率稳定度:2%激光束焦点直径:Φ0.15-Φ0.30经1激光设备激光设备采用Trumpf公司激光冲裁复合加工中心。
2 激光束参数激光系统一般由激光器、激光传输系统、控制系统、运动系统、传感与检测系统组成,其核心为激光器。
激光器为CO2气体脉冲式激光器。
光束横截面上光强分布接近高斯分布.具有极好的光束质量,主要性能指标如下:激光波长:10.61xm脉冲功率:2.4kW;脉冲宽度;约l0ms功率密度:107W/cm2;激光发散角:1mrad激光功率稳定度:2%激光束焦点直径:Φ0.15-Φ0.30经实践验证,激光冲裁复合加工中心CO2激光切割加工&de lt a;0.5mm-δ6mm板材的工艺特点及相关参数是:图1 氧气切割碳钢切缝粗糙度与料厚的关系(1)切口宽度窄(一般为0.15-0.30mm)、精度高(一般孔中心距误差为0.01-0.05mm,轮廓尺寸误差为0.05-0.2mm)、切口表面粗糙度好(一般Rz为1.6-6.41μm),切缝一般不需再加工即可焊接。
由图1可以看出切缝粗糙度与料厚成正比。
(2)采用2kW激光功率,6mm厚不锈钢的切割速度为1.2m/min;δ2mm厚不锈钢的切割速度为3.6m/min,热影响区微小,变形极小。
以上优点足以证明:CO2激光切割成为发展迅速的一种先进加工方法。
由图2可以看出材料的最大切割速度与料厚成反比。
图2 几种常见材料的最大切割速度与料厚的关系3 工艺过程及工艺参数3.1 数控编制切割工艺用Trumpf公司激光冲裁复合加工中心附带的TOPS300工艺编程软件进行数控编程,同时完成材料的下料尺寸计算、排样、工艺参数设定。
激光切割机工艺参数表大全

激光切割机工艺参数表大全
1. 工艺参数表格式说明
在使用激光切割机进行加工时,合理设置工艺参数是确保切割质量和效率的重
要因素。
下面是一个激光切割机工艺参数表的大全,我们将按照以下格式进行展示:•参数名称:列出各种工艺参数的名称,如切割速度、切割厚度等。
•参数描述:简要说明该参数的作用和影响。
•推荐数值范围:合理的参数取值范围,以便用户根据具体情况进行设置。
2. 激光切割机工艺参数表
2.1 切割速度
•参数描述:切割速度是指激光束在工件表面移动的速度,直接影响切割质量和效率。
•推荐数值范围:50mm/s - 200mm/s
2.2 激光功率
•参数描述:激光功率决定激光束的能量大小,直接影响切割的深度和速度。
•推荐数值范围:1000W - 4000W
2.3 切割厚度
•参数描述:切割厚度是指材料能够有效切割的最大厚度。
•推荐数值范围:0.5mm - 25mm
2.4 激光波长
•参数描述:激光波长是激光束的波长大小,不同波长激光适用于不同材料的切割。
•推荐数值范围:1064nm
2.5 激光介质
•参数描述:激光介质通常为二氧化碳,在工件切割过程中起到传导激光的作用。
•推荐数值范围:二氧化碳
3. 总结
通过合理设置激光切割机的工艺参数,可以有效提高切割质量和生产效率。
对于不同材料和切割要求,需要针对性地调整工艺参数,以获得最佳的加工效果。
希望以上激光切割机工艺参数表的大全能够为您的加工工作提供参考,提高工作效率和产品质量。
激光切割机工艺参数指导书

激光切割机工艺参数指导书一、工艺参数概述激光切割机作为一种高精度、高效率的切割设备,在使用过程中需要合理设置工艺参数,以确保切割效果和设备性能达到最佳状态。
本文将针对激光切割机的工艺参数进行详细的介绍和指导,帮助操作人员更好地掌握切割工艺。
二、切割速度切割速度是指激光束在工件表面移动的速度,通常以毫米/分钟为单位。
合适的切割速度可以保证切割质量和切割效率。
在设置切割速度时,需考虑材料的种类、厚度以及激光功率等因素,进行合理调整。
三、激光功率激光功率是影响切割质量的重要参数之一。
功率过低会导致切割不彻底,功率过高则会造成材料熔化过度。
因此,在设定激光功率时,需要根据材料性质和厚度进行适当调节,以达到最佳切割效果。
四、焦距焦距是指激光聚焦头焦点到材料表面的距离。
合理的焦距可以保证激光束在材料表面聚焦达到最佳效果。
一般情况下,焦距越短,切割质量越好,但也要考虑焦点的稳定性和材料的厚度等因素。
五、气体类型和气压激光切割机通常需要使用辅助气体,如氧气、氮气等,来吹扫切割区域,帮助排出熔化的材料。
不同的气体类型和气压对切割效果有明显影响,需要根据材料的特性和要求进行选择和调整。
六、加工参数调试在切割过程中,操作人员需要不断进行加工参数的调试和优化,以适应不同材料和要求的切割。
可以通过试验和实践相结合的方式,逐步确定最佳的工艺参数,提高切割效率和质量。
七、安全注意事项在使用激光切割机时,必须严格遵守相关的安全规定,避免发生激光辐射、化学品危害等意外事故。
操作人员应穿戴好个人防护装备,确保设备周围没有其他人员,保证操作环境安全。
八、总结激光切割机工艺参数的合理设置对于切割效果和设备性能至关重要。
通过本指导书的学习和实践,操作人员能够更好地掌握激光切割机的工艺参数调节方法,提高切割效率和质量,确保安全生产。
以上是关于激光切割机工艺参数的指导书,希望能对您的工作有所帮助。
如有任何疑问或需要进一步了解,请随时咨询相关专业人员。
激光切割机培训·切割工艺.PDF

原因:①速度偏快; ②气压偏低; ③焦点在表面之下,需要
往表面上部调整。
局部有过烧
原因:①板材含有杂质、表面材 质不均匀;
②气压偏大 。
接口过烧
原因:检查是否用圆弧引入,建 议R为1.5毫米直线等于圆的半径 如有背面过烧需要留料。
注意:如调整后效果还不理想请 参考激光切割工艺
激光切割机·切割工艺
4边都有硬 毛刺
1
切割速度单位m/min,未注单位mm。
激光切割机·切割工艺·碳钢
厚度
10 12 16 20
焦距
7.5 7.5 7.5 7.5
焦点位置
+1.5 +2 +3 +4
切割功率
切割速度
O2压力
喷嘴直 径(复合)
喷嘴 高度
2000
1000
1.3
1.5
1
2000
1000
1
1.5 1.0
2200
800
1
2
1.0
激光切割机·切割工艺
薄低碳钢 聚焦于表面
厚低碳钢 聚焦于表面上部
不锈钢 铝
镍合金 聚焦于表面之下
激光切割机·切割工艺 材料切割
(氮气) 不锈钢
(氧气) 低碳钢
单层割嘴 复合割嘴
激光切割机·切割工艺
激光加工方式
脉冲切割 打点
外绕切割 打标十字线
打标 需要外绕切割
激光切割机·切割工艺
底面有熔 点和毛刺
原因:速度速偏慢,气压偏低; 焦点在表面上部,需要往
表面之下调整。
局部有硬毛刺
4边都有软 毛刺
原因:还需要按照上述精调。 注意:
如调整后效果还不理想请参 考激光切割工艺。
激光切割机工艺设计手册范本

第一章激光切割方法1.1 激光熔化切割在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。
因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。
激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。
——激光熔化切割可以得到比气化切割更高的切割速度。
气化所需的能量通常高于把材料熔化所需的能量。
在激光熔化切割中,激光光束只被部分吸收。
——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。
在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。
——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。
——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。
1.2 激光火焰切割激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。
借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。
由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。
另一方面,该方法和熔化切割相比可能切口质量更差。
实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。
——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。
可以使用脉冲模式的激光来限制热影响。
——所用的激光功率决定切割速度。
在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。
1.3 激光气化切割在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。
为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。
该加工因而只适合于应用在必须避免有熔化材料排除的情况下。
该加工实际上只用于铁基合金很小的使用领域。
该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。
另外,这些材料通常要达到更厚的切口。
激光切割工艺介绍

激光切割工艺的介绍:
1.工作原理:激光切割工艺的工作原理是将高能激光束照射到
材料表面,通过瞬间的高温使材料熔化、汽化或达到燃点,同时用高速气流将熔化或燃烧的材料吹走,从而实现切割。
2.特点:激光切割具有高精度、高效率、高自动化等优点,可
以实现快速、准确的切割,尤其适合于薄板材料和精密零件的加工。
此外,激光切割还可以通过改变激光参数或采用不同的辅助气体来切割不同材料。
3.分类:激光切割工艺可以根据不同的分类方式进行分类。
根
据切割方式,可以分为激光熔化切割、激光划片切割和激光控制断裂切割等。
根据激光器类型,可以分为固体激光切割和气体激光切割等。
4.应用范围:激光切割工艺广泛应用于汽车、航空、石油、化
工、轻工、食品等领域,可以加工各种金属材料和非金属材料,如不锈钢、碳钢、铝、铜、陶瓷、玻璃等。
5.发展趋势:随着科技的不断发展,激光切割工艺也在不断进
步和完善。
未来,激光切割工艺将朝着高速度、高精度、高质量、智能化的方向发展,同时随着新材料的不断涌现,对激光切割工艺的要求也将不断提高。
激光切割机切割工艺参数

激光切割机切割工艺参数(原创版)目录一、激光切割机概述二、激光切割机的工艺参数1.激光功率2.切割速度3.雕刻面积4.机器尺寸5.雕刻速度6.重复定位精度7.工作电压8.总功率三、激光切割机的切割参数1.碳钢切割参数2.不锈钢切割参数四、激光切割机的优势1.高精度切割2.切口光滑平整3.热影响区小4.板材变形小5.无机械应力6.重复性好7.不损伤材料表面五、激光切割机的应用领域1.金属切割2.非金属切割正文一、激光切割机概述激光切割机是一种利用激光束进行材料切割的设备,具有高精度、切割快速、不局限于切割图案限制、自动排版节省材料、切口平滑、加工成本低等特点。
随着激光技术的发展,激光切割机在金属和非金属领域的应用越来越广泛,逐渐改进或取代于传统的切割工艺设备。
二、激光切割机的工艺参数激光切割机的工艺参数主要包括激光功率、切割速度、雕刻面积、机器尺寸、雕刻速度、重复定位精度、工作电压和总功率等。
这些参数决定了激光切割机的切割能力和切割效果。
1.激光功率:激光功率是激光切割机的核心参数,决定了切割机的切割能力和切割深度。
激光功率越大,切割能力越强,切割深度也越大。
2.切割速度:切割速度是激光切割机切割过程中的速度,决定了切割效率和切割质量。
切割速度越快,切割效率越高,但切割质量可能会受到影响。
3.雕刻面积:雕刻面积决定了激光切割机可以切割的材料大小。
雕刻面积越大,切割材料越大。
4.机器尺寸:机器尺寸决定了激光切割机的占地面积和空间大小,影响生产布局和生产效率。
5.雕刻速度:雕刻速度是激光切割机在雕刻过程中的速度,决定了雕刻质量和雕刻效率。
6.重复定位精度:重复定位精度决定了激光切割机在多次切割过程中的切割位置精度,影响切割质量。
7.工作电压:工作电压是激光切割机的电源参数,影响切割机的性能和稳定性。
8.总功率:总功率是激光切割机的总能耗,影响生产成本和能源利用率。
三、激光切割机的切割参数激光切割机的切割参数主要根据切割材料和切割厚度来选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章激光切割方法1.1 激光熔化切割在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。
因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。
激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。
——激光熔化切割可以得到比气化切割更高的切割速度。
气化所需的能量通常高于把材料熔化所需的能量。
在激光熔化切割中,激光光束只被部分吸收。
——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。
在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。
——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。
——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。
1.2 激光火焰切割激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。
借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。
由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。
另一方面,该方法和熔化切割相比可能切口质量更差。
实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。
——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。
可以使用脉冲模式的激光来限制热影响。
——所用的激光功率决定切割速度。
在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。
1.3 激光气化切割在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。
为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。
该加工因而只适合于应用在必须避免有熔化材料排除的情况下。
该加工实际上只用于铁基合金很小的使用领域。
该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。
另外,这些材料通常要达到更厚的切口。
——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。
——激光功率和气化热对最优焦点位置只有一定的影响。
——在板材厚度一定的情况下,最大切割速度反比于材料的气化温度。
——所需的激光功率密度要大于108W/cm2,并且取决于材料、切割深度和光束焦点位置。
——在板材厚度一定的情况下,假设有足够的激光功率,最大切割速度受到气体射流速度的限制。
第二章加工过程“加工过程”指激光光束、加工气体和工件之间的相互作用。
2.1 切割过程该过程发生的区域是切割之前。
作用在该切割之前的激光必须加热工件到把材料熔化和气化所需的温度。
切割平面由一个几乎垂直的平面组成,该平面被吸收的激光辐射加热并熔化。
——在激光火焰切割中,该熔化区被进入割缝的氧气流进一步加热,达到接近沸点的温度。
产生的气化把材料移走。
同时,借助于加工气体,液化材料从工件下部排出。
——在激光熔化切割中,液化材料随气体排出,该气体也保护割缝以防氧化。
连续的熔化区沿着切割方向逐渐滑移。
因而得到一条连续割缝。
激光切割过程的许多重要活动发生在该区域。
对这些活动的分析可以得到激光切割的重要信息。
这样,就可以计算切割速度并解释牵引线特性的形成。
2.2 材料特性在工件上进行切割活动的结果可能是整洁的切口,或者相反,边缘粗糙或过烧。
影响切割质量最重要的因数是:——合金成份——材料的微观结构——表面质量——表面粗糙度——表面处理——光束反射——热传导率——熔点——热熔解——气化温度合金成份合金成份在一定程度上影响着材料的强度、比重、可焊接性、抗氧化能力和酸性。
铁合金材料中的一些重要元素有:碳、铬、镍、镁和锌。
碳含量越高,材料越难切(临界值认为是含碳0.8%)。
以下型号碳钢用激光切割效果是很好的:St 37-2,StW 22,DIN 1.203。
材料的基本微观结构一般来说,组成材料的颗粒越细,切割边缘的质量越好。
表面质量和粗糙度如果表面有生锈区域或氧化层,那么切割的轮廓将不规则并出现许多破损点。
如果要切割波纹板,就选择最大厚度切割参数。
表面处理最常用的表面处理有镀锌、聚焦镀锌、涂漆、阳极电镀或覆盖分层塑料胶片。
——用锌处理过的板材易于在边缘出现挂渣。
——对于涂漆的板材,切割质量依赖于所涂产品成份的组成。
如何进行涂漆材料的加工:第一趟选择一组功率小(雕刻)的用于对处理表面作预烧打标的参数。
第二趟选择一组用于材料切割的参数。
有分层材料涂层的板材非常适合激光切割。
为了使电容式探测无故障工作,让分层涂层得到最优粘合,(避免产生浮泡),分层边必须总是在切割工件的上部。
光束反射光束在工件表面如何反射取决于基本材料、表面粗糙度和处理。
一些铝合金、铜、黄铜和不锈钢板材具有高反射率的特点。
切割这些材料时,要特别注意调节好焦点位置。
热传导率焊接时,低热传导率的材料,和高热传导率的材料相比,需要更小的功率。
比如,对于铬镍合金钢,所需的功率要小于结构钢的,对加工产生的热的吸收也更少。
另一方面,比如铜、铝和黄铜这些材料散失掉一大部分通过吸收激光产生的热。
因为热从光束目标点处传导开了,所以热影响区的材料更难熔化了。
热影响区激光火焰切割和激光熔化切割会导致切割材料边缘区域发生材料变异。
关于热影响区域的范围与基本材料和材料厚度的之间关系,下表列出了一些参考数值。
——当加工低碳钢或无氧钢时,热影响区的淬火减少了。
——对于高碳钢(比如Ck60),会出现边缘区域变硬的现象。
——对于硬轧铝合金,热影响区甚至会比其余部分稍微软一些。
2.3 不同材料的可加工性结构钢该材料用氧气切割时会得到较好的结果。
使用CW模式激光。
当加工非常小的曲线控制系统改变进给速率时,它通过调节使激光功率和轴进给速率相适应。
当用氧气作为加工气体时,切割边缘会轻微氧化。
对于厚度达4mm的板材,可以用氮气作为加工气体进行高压切割。
这种情况下,切割边缘不会被氧化。
复杂轮廓和小孔(直径小于材料厚度)应该用脉冲模式切割。
这样可以避免切掉尖角。
——碳含量越高,切割边缘越易淬火,拐角越易过烧。
——合金含量高的板材比低的更难切割。
——氧化或喷砂处理过的表面会得到更差的切割质量。
——板材表面的余热对切割结果有负面影响。
——厚度在10mm以上的板材,对激光器使用特殊极板并且在加工中给工件表面涂油可以得到较好的效果。
油膜减少熔渣粘到表面并极大地帮助切割。
油膜不影响切割活动的效果。
——为了消除张力,只切割经二次处理过的钢板。
沸腾条件下熔化钢铁中的不纯成份实际上对切割结果有很大影响。
——为了切割表面洁净的结构钢,须遵循以下提示:·Si≤0.04%:首选,激光加工很好·Si <0.25%:某些情况下会得到稍微差点的切口·Si >0.25%:不适合激光切割,可能会得到更差的或不一致的结果。
注意:对于达到St52的钢铁,按照DIN标准的容许量为Si≤0.55%。
该指标对于激光加工来说太不精确了。
不锈钢切割不锈钢需要:——使用氧气,在边缘氧化不要紧的情况下。
——使用氮气以得到无氧化无毛刺的边缘,就不需要再作处理了。
——用可能得到的高激光功率,同时采用高压氮气,比用氧气可能会得到相当的或更高的切割速度。
——为了用氮气切4mm以上的不锈钢,并且无毛刺,调节焦点位置是必要的。
重新设焦点位置并降低速度,就可能得到洁净的切口,当然无法避免小毛刺。
——在板材表面涂层油膜会得到更好的穿孔效果,而不降低加工质量。
对于不锈钢,请选择:——氧气切割:对于5mm以上的厚板材,降低进给速度,激光采用脉冲模式。
——对于穿孔和切割采用同样的喷嘴高度。
铝铝及其合金更适宜用连续模式切割。
尽管有高反射率和热传导性,厚度6mm 以下的铝材可以切割,这取决于合金类型和激光器能力。
铝可以用氧切割或高压氮切割:当用氧切割时,切割表面粗糙而坚硬。
只产生一点火焰,但却难以消除。
——用氮气时,切割表面平滑。
当加工3mm以下的板材时,通过最优调整后可以得到事实上无毛刺的切口。
对于更厚的板材,会产生难以去除的毛刺。
——纯铝因为其高纯非常难切割。
——合金含量越高,材料越易切割。
建议:只有在系统上安装有“反射吸收”装置的时候才能切割铝材。
否则反射会毁坏光学组件。
钛钛板材用氩气和氮气作为加工气体来切割。
其它参数可以参考镍铬钢。
铜和黄铜——两种材料都具有高反射率和非常好的热传导性。
——厚度1mm以下的黄铜可以用氮气切割。
——厚度2mm以下的铜可以切割,加工气体必须用氧气。
建议:只有在系统上安装有“反射吸收”装置的时候才能切割铜和黄铜。
否则反射会毁坏光学组件。
合成材料危险:切割合成材料时要牢记切割的危险和可能排放的危险物质。
可加工的合成材料有:热塑性塑料、热硬化材料和人造橡胶。
用激光切割机来加工PVC或聚乙烯是不行的,因为释放的气体是有毒的。
对于这两种材料,最好使用水压切割。
丙烯酸玻璃可以用激光切割。
氮气用作加工气体,气压必须低于0.5bar。
这样可以得到平滑的切割表面。
有机物危险:在所有有机物切割中都存在着着火的危险(用氮气作为加工气体,也可以用压缩空气作为加工气体)。
木材、皮革、纸板和纸可以用激光切割。
切割边缘会烧焦(褐色)。
进给速度越高,碳化越少。
当加工胶合板时,不可能保证会有洁净的切口,因为每层胶根据其类型和种类而成份不同。
其它材料有关您感兴趣的其它材料的信息可以从我公司的用户工程服务部门得到。
材料的可切割厚度(生产值mm)最大可以切割的厚度只在最优的机床和参数调整的情况下才有可能(最大值mm)2.4 激光脉冲模式模式表示符号应用例子连续模式CW-低压切割-普通切割-高压切割→结构钢用O2→铝用N2→不锈钢用N2恒定功率切可得到相对精密的切割。
门脉冲GP-穿孔-细小轮廓→以结构钢为例:-轮廓上的小孔-小孔直径为材料厚度的一半-细轮廓超脉冲SP-穿孔-高反射率的材料→铜用N2→不锈钢用O2→耐热的碳钢用O2增加激光功率用100%CW+超脉冲(Inox+铝合金用N2)。
超强脉冲HP -穿孔穿孔时,效果和增加频率得到的相对:→厚板的快速穿孔,有少量碎屑→锌钢用O22.5 气体参数气体参数包括:——气体类型——气压——喷嘴直径和几何结构气压和喷嘴几何结构决定了边缘粗糙度和毛刺的生成。
加工气体消耗取决于喷嘴直径和气压。
关于加工气体的更多信息在“维修保养手册——气体控制”章节里。
——切割气压在5bar以下为低压,达20bar为高压。
——常用的切割喷嘴为锥体状的圆形口。
——保持喷嘴和工件表面之间的间距尽可能的小是必要的。
距离越小,有效冲击割缝壁的气体质量就越高。
经常使用0.5到1.5之间的间距。
第三章激光加工3.1 穿孔穿孔的参数值不同于切割的参数值。
连续模式穿孔优点:快速穿孔。
缺点:产生穿孔坑。
脉冲模式穿孔优点:小的穿孔洞。
缺点:耗时注意:板材厚度(mm)大约对应于穿孔时间(s)。