导数与圆锥曲线内容总结

合集下载

圆锥曲线的导数知识点总结

圆锥曲线的导数知识点总结

圆锥曲线的导数知识点总结在微积分中,导数是一个非常重要的概念。

导数可以用来描述曲线在某一点的斜率,以及曲线在该点的变化率。

在这篇文章中,我们将讨论圆锥曲线的导数,并总结相关的知识点。

圆锥曲线是指由一个平面直线在一个固定的点上旋转而成的曲线。

常见的圆锥曲线包括圆、椭圆、抛物线和双曲线。

在这篇文章中,我们将讨论这些不同类型的圆锥曲线的导数,并总结它们的特点。

首先,让我们来看看圆的导数。

圆的方程可以表示为 x^2 + y^2 = r^2,其中 r 表示圆的半径。

我们可以使用隐式求导法来求得圆在任意点的导数。

首先,我们对方程两边同时对 x求导,得到 2x + 2y(dy/dx) = 0。

然后,解出 dy/dx,得到 dy/dx = -x/y。

这就是圆在任意点的导数公式。

从这个式子中我们可以看出,圆的导数是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。

接下来,让我们来看看椭圆的导数。

椭圆的一般方程可以表示为 x^2/a^2 + y^2/b^2 = 1。

我们可以使用同样的方法来求得椭圆在任意点的导数。

首先,对方程两边分别对 x 和 y 求导,得到 2x/a^2 + 2y/b^2(dy/dx) = 0。

然后,解出 dy/dx,得到 dy/dx = -x(a^2/b^2)/y。

和圆一样,椭圆的导数也是一个关于 x 和 y 的函数,它随着坐标点的不同而不同。

抛物线是另一种常见的圆锥曲线。

对于一般的抛物线方程 y = ax^2 + bx + c,我们可以使用求导法则来求得抛物线在任意点的导数。

对 y 关于 x 求导,得到 dy/dx = 2ax + b。

可以看出,抛物线的导数是一个关于 x 的线性函数。

这意味着抛物线在每个点的导数都是一条直线,斜率由抛物线的二次项系数 a 决定。

最后,让我们来看看双曲线的导数。

对于一般的双曲线方程 x^2/a^2 - y^2/b^2 = 1,我们可以使用同样的方法来求得双曲线在任意点的导数。

拉格朗日中值定理圆锥曲线-概述说明以及解释

拉格朗日中值定理圆锥曲线-概述说明以及解释

拉格朗日中值定理圆锥曲线-概述说明以及解释1.引言1.1 概述拉格朗日中值定理以及圆锥曲线作为数学中的两个重要概念,都在不同领域发挥着重要的作用。

拉格朗日中值定理是微积分中的一个基本定理,它为我们提供了一种有力的工具,用于研究函数在某个区间内的性质。

而圆锥曲线则是解析几何中的一个重要分支,它涉及到平面上的曲线形状与其代数方程之间的联系。

拉格朗日中值定理是法国数学家拉格朗日于18世纪所提出的,在微积分学中占据着举足轻重的地位。

它描述了函数在某个闭区间内连续且导数存在的条件下,必然存在着某个点,使得该点的导数等于函数在该区间两端点的函数值之差与两端点之差的比值。

也就是说,拉格朗日中值定理给出了函数在某个区间内平均变化率等于瞬时变化率的条件。

这个定理被广泛应用于微积分、最优化等领域,为我们研究函数的增减性、最值等问题提供了便利。

而圆锥曲线是一个由平面与一个圆锥相交所形成的曲线。

它的特点是在平面上的每个点,到一个定点和一个定直线的距离之比是一个常数,该常数称为离心率。

由于离心率的不同取值,圆锥曲线可以分为椭圆、抛物线和双曲线三种类型。

椭圆是离心率小于1的情况,抛物线是离心率等于1的情况,而双曲线是离心率大于1的情况。

圆锥曲线的研究在解析几何、物理学、工程学等领域中有着广泛的应用。

它们可以描述光学系统中的折射和反射现象,也可以用于建模天体运动的轨迹等。

通过对拉格朗日中值定理和圆锥曲线的研究,我们可以深入理解函数的变化规律以及几何形状的特性。

这两个概念的结合为我们提供了一种数学工具的扩展和应用的可能性。

在本文中,我们将首先介绍拉格朗日中值定理的基本原理和证明方法,然后探讨圆锥曲线的定义和性质,最后总结两者的研究意义。

通过这样的分析,我们可以更好地理解这两个概念在数学和相关学科中的重要性和应用价值。

1.2文章结构文章结构:本文主要分为引言、正文和结论三个部分。

1. 引言部分会对拉格朗日中值定理和圆锥曲线进行概述,明确文章的主要研究内容和目的。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。

本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。

1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。

当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。

2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。

通过选取合适的参数,可以将曲线表示为一系列点的集合。

这种方法可以简化问题,使得求解过程更加直观和方便。

3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。

通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。

这种方法在求解对称性等问题时非常有用。

4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。

通过将数据点与曲线进行比较,可以得出曲线的参数和特性。

这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。

5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。

通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。

6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。

通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。

这种方法在求解对称性、求交点等问题时非常有用。

7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。

根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。

8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。

例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。

9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。

圆锥曲线解题技巧之八利用曲线的导数解题

圆锥曲线解题技巧之八利用曲线的导数解题

圆锥曲线解题技巧之八利用曲线的导数解题圆锥曲线解题技巧之八:利用曲线的导数解题圆锥曲线是高中数学中重要的内容之一,解题时我们常常会遇到需要利用曲线的导数进行求解的情况。

本文将介绍一些常见的圆锥曲线解题技巧,帮助读者更好地理解和掌握这一知识点。

一、圆锥曲线的导数概念回顾在解题之前,我们首先对圆锥曲线的导数概念进行回顾。

圆锥曲线的导数,可以理解为曲线在某点处的切线斜率。

利用导数,我们可以求解曲线的切线方程,进而分析曲线的性质和特点。

二、利用导数求解直线与圆锥曲线的交点有时我们需要求解直线与圆锥曲线的交点,可以利用导数来进行求解。

假设直线方程为y=kx+b,圆锥曲线方程为y=f(x),我们可以通过以下步骤进行求解:1. 将直线方程代入圆锥曲线方程,得到一个关于x的方程f(x)-kx-b=0。

2. 求解方程f(x)-kx-b=0,得到曲线与直线的交点的横坐标x。

3. 将求得的横坐标x代入直线方程,得到交点的纵坐标y。

三、利用导数求解切线方程在解题过程中,有时我们需要求解曲线某点处的切线方程。

我们可以利用导数来求解切线方程,具体步骤如下:1. 求取曲线方程的导数,得到导函数。

2. 将导函数的值与给定点的坐标代入切线方程的公式y-y₁=k(x-x₁),其中k为导函数的值。

通过以上步骤,我们可以得到曲线某点处的切线方程,进而分析曲线在该点的切线斜率和特性。

四、利用导数求解曲线的凹凸性和拐点曲线的凹凸性和拐点是研究曲线特性的重要内容。

我们可以利用导数来求解曲线的凹凸性和拐点:1. 求取曲线方程的二阶导数,得到二阶导函数。

2. 判断二阶导函数的正负性:若二阶导函数大于0,则曲线在该点凹向上;若二阶导函数小于0,则曲线在该点凹向下。

3. 求解二阶导函数等于0的点,这些点即为曲线的拐点。

通过以上步骤,我们可以分析曲线的凹凸性和拐点,进一步掌握曲线的性质以及解题过程中的一些特殊情况。

结语本文介绍了利用圆锥曲线的导数进行解题的一些技巧和方法。

圆锥曲线不联立 导数压轴不求导

圆锥曲线不联立 导数压轴不求导

圆锥曲线不联立导数压轴不求导在数学领域,圆锥曲线和导数都是非常重要且广泛应用的概念。

然而,很多人在学习过程中都会对圆锥曲线的联立和导数的压轴求导感到困惑。

本文将从简到繁地分析这两个主题,帮助读者更深入地理解它们的内涵和应用。

一、圆锥曲线不联立圆锥曲线是指平面上由一个固定点F(称为焦点)和一个固定直线L (称为准线)决定的点P到焦点和准线的距离之比是一个常数e(离心率)的点集合。

圆锥曲线包括椭圆、双曲线和抛物线三种类型。

在解析几何和微积分中,研究圆锥曲线的方程和性质对于理解曲线的形状和运动规律起着至关重要的作用。

然而,在学习圆锥曲线时,很多人会感到困惑的一个重要问题就是联立。

联立是指将两个或多个方程进行组合,通过求解共同满足的解来研究曲线的交点、相切点等问题。

而有些情况下,圆锥曲线并不需要进行联立,例如在研究特定类型的曲线时,可以直接利用曲线的性质和方程来解决问题,无需进行联立。

以双曲线为例,其方程为x^2 /a^2 - y^2 /b^2 = 1。

我们要求证曲线上一点处的切线斜率不等于2。

这时,我们可以直接利用双曲线的导数性质而无需进行联立方程。

这种情况下,圆锥曲线不需要联立,通过直接利用曲线的性质即可解决问题。

二、导数压轴不求导导数是微积分中的一个非常重要的概念,它描述了函数在某一点的变化率。

求导是微积分中的一个核心技能,通过求导可以研究函数的增减性、凹凸性、极值等重要性质。

然而,在实际应用中,有时候我们并不需要通过求导来得到导数的具体数值,而是通过导数的性质和变化规律来分析问题。

当我们要研究函数的增减性或曲线的凹凸性时,可以通过导数的符号和零点来分析,而无需进行具体的导数计算。

这就是所谓的“导数压轴不求导”,即在分析问题时,可以通过导数的性质和规律来得到结论,而无需进行具体的导数计算。

另外,有时候我们也可以通过导数的定义和极限的性质来得到导数的性质和应用,而无需进行具体的导数计算。

这种情况下,导数的计算变得次要,而导数的性质和变化规律成为了重要的研究对象。

圆锥曲线和导数

圆锥曲线和导数

圆锥曲线和导数圆锥曲线1.位置关系的判定方法一般有两种:(1)代数方法:转化为方程根个数的判定(2)几何方法:通过图形本身的特征,寻找存在交点个数的位置关系,列等量(不等)关系式.2. 直线与椭圆(双曲线)的综合(1)设:设交点A(x1,y1),B(x1,y1),设直线l:y=kx+b,椭圆(双曲线)C:mx2+ny2=1(mn>0椭圆,mn<0双曲线);(2)联(硬解定理):联立直线方程与椭圆(双曲线)方程{mx2+ny2=1,消去y得:{y=kx+b(nk2+m)x2+2kbnx+nb2-1=0Δ=nk2-mnb2+m>0,{x1+x2=-2kbn/nk2+m,{y1+y2=2mb/nk2+m,{x1x2=nb2-1/nk2+m {y1y2=mb2-k2/nk2+m根系关系是一种设而不求的思想(设点不求点,用系数代替),其目的是代入到与交点有关的关系式中,实现多元归一.(3)化:条件(结论)几何性质转化为几何等量关系再转化为坐标运算弦长公式,|EF|=√(x1+x2)2+(y1-y2)2=√1+k2|x1-x2|=√1+k2•√(x1+x2)2-4x1x2;|EF|=√(x1+x2)2+(y1-y2)2=√1+k2•√Δ/|nk2+m|=√1+k2•√nk2-mnb2+m/|nk2+m|(硬解定理).以AB为直径的圆经过原点O⇒OE⊥OF⇒x1x2+y1y2=0⇒nb2-1+mb2-k2/nk2+m=0,即(n+m)b2=1+k2(硬解定理).(4)整:抓住元,将结论表示成某参(一般为斜率或点坐标等)的函数式;(5)算:根据结论不同问法选取不同的求解策略求解取值范围一般有两种解题策略:①利用题设中或明或暗的不等式关系构造不等式解得范围;②选择合适的参数构造目标函数,转化为函数值域问题.对于比较复杂的动态过程,理顺动态因素之间的从属关系、先后关系.3. 一般性质结论在平面直角坐标系中,A、B、C为平面内不共线的三点,向量CA=(x1,y2),向量CB=(x2,y2),则S△ABC=1/2|x1y2-x2y1|.在平面直角坐标系中,A、B、C为平面内不共线的三点,且三点坐标分别为A(x1,y2),B(x2,y2),C(x0,y0),O为坐标原点,则S⇒AOB=1/2|x1y2-x2y1|,S⇒ABC=1/2|(x1-x0)(y2-y0)-(x2-x0)(y1-y0)|.对椭圆x2/a2+y2/b2=1,过原点的两条直线l1和l2分别与椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S,若直线l1与l2的斜率之积为-b2/a2(在x轴)或-a2/b2(在y轴),则(1)x12+x22=a2;(2)y12+y22=b2;(3)S=2ab.(在x轴)或(1)x12+x22=b2;(2)y12+y22=a2;(3)S=2ab.(在y轴)4.焦点三角形的相关结论以椭圆x2/a2+y2/b2=1(a>b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若∠F1PF2=θ,则(1)|PF1|+|PF2|=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1+cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan(θ/2).以双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y O)(y O≠0)和焦点F1(-c,0),F2(c,0)为顶点的⇒PF1F2(焦点三角形)中,若⇒F1PF2=θ,则(1)||PF1|-|PF2||=2a.(2)4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cosθ.(3)|PF1|•|PF2|=2b2/1-cosθ.(4)S⇒PF1F2=1/2|PF1|•|PF2|•sinθ=b2tan-1(θ/2).4. 结论:抛物线E:x2=2py第一象限上一动点P的切线,与椭圆C:x2/a2+y2/b2=1(a>b>0)交于不同的两点A、B,线段AB中点为D,直线OD与过点P且垂直于x轴的直线交于点M,则点M在定直线y=-pb2/a2上,当且仅当a2=4b2时,S1/S2的最大值为定值9/4;5.曲线一般性质总结:圆锥曲线:过圆锥曲线E:ax2+bxy+cy2+dx+ey+f=0上任一点P(x0,y0)引两条弦PA、PB,若k PA k PB=k或k PA+k PB=k(k≠a/c椭圆双曲线,k≠0抛物线),则直线AB经过定点.曲线过定点题型方法归纳:①参数元关法②探索定点③关系法6.[答题模板]第一步:假设结论存在.第二步:以存在为条件,进行推理求解.第三步:明确规范表述结论,若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设.第四步:反思回顾,查看关键点、易错点及解题规范.7. 椭圆与双曲线焦点弦性质总结:圆锥曲线上的一点P(x0,y0)到焦点的线段称为焦半径.焦半径常考公式;焦半径公式(I):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=|a+ex0|,|PF2|=|a-ex0|.焦半径公式(Ⅱ):对左、右焦点分别为F1(-c,0),F2(c,0)的椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)上一点P(x0,y0),有|PF1|=b2/a-ccosα(椭圆)或|PF1|=b2/|a+ccosα|(双曲线),|PF2|=b2/a+ccosβ(椭圆)或|PF2|=b2/|a-ccosβ|(双曲线),其中α、β为焦半径PF1、PF2与x轴正半轴所成的角焦点弦长公式:若椭圆x2/a2+y2/b2=1(a>b>0)或双曲线x2/a2-y2/b2=1(a,b>0)的焦点弦AB,设其倾斜角为α,有|AB|=2ab2/|a2-c2•cos2α|.焦点弦定理已知焦点在x轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF= λ向量FB,则曲线C的离心率e满足等式:|ecosθ|=|λ-1/λ+1|,e=√1+k2|λ-1/λ+1|推论已知焦点在y轴上的圆锥曲线C,经过其焦点F的直线交曲线于A、B两点,直线AB的倾斜角为θ,斜率为k(k≠0),向量AF=λ向量FB,则曲线C的离心率e满足等式:|esinθ|=|λ-1/λ+1|,e=√1+k-2|λ-1/λ+1|.8.抛物线性质总结:过抛物线C:y2=2px(p>0)的焦点F作直线l交抛物线于A(x1,y1),B(x2,y2)两点,且A在x轴上方,直线l的倾斜角为θ,A、B在准线上的射影分别为P,Q,线段PQ的中点为R,AB的中点为M.(1)y1•y2=-p2;x1•x2=p2/4;(2)k2=2p/y1+y2;(3)|AF|=x1+p/2=p/1-cosθ,|BF|=x1+p/2=p/1+cosθ(4)|AF|-1+|BF|-1=2/p;(5)|AB|=2p/sin2θ (6)S△OAB=p2/2sinθ;在直角梯形APQB中;(7)⇒PFQ=90o(以PQ为直径的圆与AB相切),⇒ARB=90o(以AB为直径的圆与准线相切);①|AF|,|RF|,|BF|成等比数列;②|AF|,|AR|,|AB|成等比数列;③|BF|,|BR|,|AB|成等比数列;(8)直角梯形APQB对角线过原点O;(9)以AF(或BF)为直径的圆与y轴相切;若过焦点作直线l的垂线n交抛物线于C、D两点,倾斜角为α.(10)|AB|-1+|CD|-1=1/2p;(11)|AB|+|CD|=8p/sin22α⇒[8p,+∞);(12)|AB|•|CD|=16p2/sin22α⇒[16p2,+∞);(13)⇒APF的面积,⇒PFQ的面积的一半,⇒BQF的面积,成等比数列;(12)若向量AF=λ向量FB,则cosθ=|λ-1|/|λ+1|,√1+k l2=|λ+1|/|λ-1|9.曲线性质总结:曲线C:x2=2py与直线l:y=kx+b(b>0)交于M、N两点.结论1:曲线C在点M、N处的切线的交点Q的横坐标与两点的横坐标成等差数列,即2x Q=x m+x N.结论2:曲线C在点M、N处的切线的交点Q的轨迹为y=-b;结论3:过直线y=-b上任一点做曲线C的切线,切点分别为M、N,则直线MN恒过定点T(0,b);结论4:当直线l经过曲线C的焦点时,有MQ⊥NQ.10.结论已知椭圆C:x2/a2+y2/b2=1或y2/a2+x2/b2=1(a>b>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A、B,线段AB 的中点为M.(1)直线OM的斜率与l的斜率的乘积为定值-b2/a2或-a2/b2;(2)若l过点(a,b),延长线段OM与C交于点P,当四边形OAPB 为平行四边形时,则直线l的斜率k l=(4±√7)/3•b/a或k l=(4±√7)/3•a/b.11. 一般性结论:已知椭圆C:x2/a2+y2/b2=1(a>b>0),点A为椭圆上的动点,点B为直线y=ab/c上的动点,若OA丄OB,则直线AB与圆x2+y2=b2相切. 导数1.求过某点处的切线方程解题过程①确定切点P(x0,y0);②求导f'(x);③求斜率k=f'(x0);④点斜式y-y0=k(x-x0)(*)⑤将点P代入切线;⑥将求得的切点代入(*).三次函数切线条数:过三次函数f(x)=ax3+bx2+cx+d(a≠O)图象的对称中心作切线l,则坐标平面被切线l和函数f(x)的图象分割为四个区域,有以下结论:(1)当定点P在中心N或在I和Ⅲ区域时,过点P的切线有1条;(2)当定点P在函数f(x)或切线l上且不在N时,过点P的切线有2条;(3)当定点P在Ⅱ或在Ⅳ区域时,过点P的切线有3条.记法:内一,上二,外三2.隐零点估值与代换解法(1)分而治之寻找充分条件,逐个求解不等式;(2)找点过程中放缩的出发点是使不等式能解,易解;(3)结合“点”所在的区间,以及各部分的“阶”,进行放缩.3. 极值点偏移对数不等式lnx1-lnx2>2(x1-x2)/x1+x2偏移.4.构造法的经验总结有两点:①因为图象y=e x变化递增的速度比y=lnx快,所以才去“分家”构造新函数的形式,而此时的关键是构造怎样的函数形式.②联想到常见幂函数、指数函数、对数函数两两组合构成的新函数. (1)幂函数与指数函数的组合:y=x+e x,y=x-e x,y=xe x,y=e x/x,y=x/e x,y=x n e x,y=e x/x n,y=x n/e x;(2)幂函数与对数函数的组合:y=x+lnx,y=xlnx,y=x/lnx,y=lnx/x,y=x n lnx,y=lnx/x n,y=x n/lnx.5.(1)以导数为工具证明超越不等式大致有三种不同的思路:①直接化为最值(或确界);②调整结构,分离函数,证最小值大于最大值;③部分放缩与函数逼近.(2)证明超越不等式的通性通法为直接化为最值,会涉及导函数的隐零点,也就是无法求出导函数具体零点,这时一般有两个处理方式:①整体代入化为代数式;②缩小导函数隐零点的范围,从而达到确定最值符号.。

(同步讲解)圆锥曲线知识点总结

(同步讲解)圆锥曲线知识点总结

圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视圆锥曲线性质与数列的有机结合。

(3).重视解析几何与立体几何的有机结合。

高考再现:2011年(文22)在平面直角坐标系x O y中,已知椭圆C:+ y2 = 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x = -3于点D(-3,m).(1)求m2 + k2的最小值;(2)若∣OG∣2 =∣OD∣·∣OE∣, ①求证:直线l过定点;②试问点B、G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+ = 1相交于P(x1,y1),Q(x2,y 2)两个不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(1)证明:+和+均为定值;(2)设线段PQ 的中点为M ,求∣OM ∣·∣PQ ∣的最大值;(3)椭圆C 上是否存在三点D, E, G ,使得S △ODE = S △ODG = S △OEG =?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009年山东卷)设m ∈R,在平面直角坐标系中,已知向量a =(mx,y+1),向量b =(x,y-1),a⊥b ,动点M(x,y)的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA⊥OB(O 为坐标原点),并求出该圆的方程; (3)已知m=1/4,设直线l 与圆C:x 2+y 2=R 2(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值. 一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于)的点的轨迹叫做椭圆。

[圆锥曲线与导数]文字素材1 新人教a版选修1-1

[圆锥曲线与导数]文字素材1 新人教a版选修1-1

圆锥曲线与导数的专题复习建议圆锥曲线和导数这两块内容在高考中的地位不言而喻,经过第一轮的复习学生关于圆锥曲线和导数的基础知识有了较为系统的认识,那么在第二轮复习中应着重强调本章综合题型解题方法的归纳与总结及与其他知识点的交汇处命题的研究与探讨,本文结合圆锥曲线与导数的特点就专题复习提出自己的一些个人建议,供广大同行参考。

【圆锥曲线的专题复习】解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。

而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。

所以,如何做好这章的专题复习是每位高三数学教师的当务之急。

(一)圆锥曲线的特点研究圆锥曲线,无外乎抓住其方程和曲线两大特征。

它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。

高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。

结合历届高考对本章的考查以及历届学生对本章的反映,此专题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。

因此,在很大程度上成为学生能力和心理上的一道难以逾越的障碍。

(二)考纲对圆锥曲线的阐述考试内容:椭圆及其标准方程,椭圆的简单几何性质,椭圆的参数方程。

双曲线及其标准方程,双曲线的简单几何性质。

抛物线及其标准方程,抛物线的简单几何性质。

考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。

(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。

(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。

(4)了解圆锥曲线的初步应用。

(三)圆锥曲线专题复习的备课基于圆锥曲线的特点,我们在复习之前的备课非常关键。

涉及圆锥曲线的题型相对比较集中,如圆锥曲线的弦长求法,标准方程的求法,与圆锥曲线有关的几何性质问题、最值问题、证明问题、角的问题以及圆锥曲线的综合应用问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下学期期中复习一、导数1.导数的概念:f ′(x )= 0lim→∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. ⑴函数f(x)在点x 0处有导数,则函数f(x)的曲线在该点处必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x 0处有切线,函数f(x)在该点处不一定可导。

如f(x)=x 在x=0有切线,但不可导。

⑵函数y=f(x)在点x 0处的导数的几何意义是指:曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率,即曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率是f ′(x 0),切线方程为y -f(x 0)=f ′(x 0)(x -x 0)如:①(2004年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______.(2x -y +4=0).②点P 在曲线y =x 3-x +32上移动,设点P 处切线的倾斜角为α,求α的范围. 解:∵tan α=3x 2-1, ∴tan α∈[-1,+∞). 当tan α∈[0,+∞)时,α∈[0,2π); 当tan α∈[-1,0)时,α∈[43π,π).∴α∈[0,2π)∪[43π,π).3.求导公式:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x)′=e x; (a x)′=a xln a ;(ln x )′=x 1;(log a x )′=x1log a e.. 4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ),[c ·f (x )]'=c f '(x ). ;(uv )′=u ′v +uv ′;(v u )′=2vv u v u '-' (v ≠0). 5.导数的应用:(一).用导数求函数单调区间的一般步骤. ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f ′(x);⑶令f ′(x)>0,或者“0≥”所得x 的范围(区间)为函数f(x)的单调增区间; 令f ′(x)<0,或者“0≤”得单调减区间.特别注意:已知函数式求其单调性与已知单调区间求参数的范围的区别。

如:1.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是A.0B.1C.2D.3 解析:f '(x )=3x 2-a 在[1,+∞ )上,f '(x )≥0恒成立,即a ≤3x 2在[1,+∞)上恒成立,∴a ≤3. 答案:D ,评述:f (x )在该区间上为增(减)函数⇒f '(x )≥0(≤0)在该区间上恒成立,. 2..若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________.解析:y ′=-4x 2+b ,若y ′值有正、有负,则b >0. 答案:b >03.设f (x )=x 3-22x -2x +5.(1)求f (x )的单调区间;(2)当x ∈[1,2]时,f (x )<m 恒成立,求实数m 的取值范围.解:(1)f '(x )=3x 2-x -2=0,得x =1,-32.在(-∞,-32)和[1,+∞)上'()f x >0,f (x )为增函数;在[-32,1]上f '(x )<0,f (x )为减函数.所以所求f (x )的单调增区间为(-∞,-32]和[1,+∞),单调减区间为[-32,1].(2)当x ∈[1,2]时,显然f '(x )>0,f (x )为增函数,f (x )≤f (2)=7.∴m >7.(二).用导数求函数极值与最值的一般步骤.1.若函数f (x )有导数,它的极值可在方程f '(x )=0的根处来考查,求函数y =f (x )的极值方法如下: ①求函数的定义域②求导数f '(x );③求方程f '(x )=0的根;④检查f '(x )在方程f '(x )=0的根的左右的值的符号,如果左负右正,那么函数y =f (x )在这个根处取得极小值;如果左正右负,那么函数y =f (x )在这个根处取得极大值.2.比较函数在闭区间[a ,b ]内所有的极值,以及f (a )和f (b ),最大者为最大值,最小者为最小值.如:.直线y =a 与函数f (x )=x 3-3x 的图象有三个互不相同的公共点,求a 的取值范围. 解:先求函数f (x )的单调区间,由f '(x )=3x 2-3=0,得x =±1.当x <-1或x >1时,f '(x )>0;当-1<x <1时,f '(x )<0. ∴在(-∞,-1)和(1,+∞)上,f (x )=x 3-3x 是增函数;在(-1,1)上,f (x )=x 3-3x 是减函数,由此可以作出f (x )=x 3-3x 的草图(如图).由图可知,当且仅当-2<a <2时,直线y =a 与函数f (x )=x 3-3x 的图象有三个互不相同的公共点.(06.山东卷)设函数f (x )=a x -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间。

解:由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1ax f x a x -=≥-+ (1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减,(2)当0a >时,由'()0,f x =解得1.x a ='()f x 、()f x 随x 的变化情况如下表从上表可知当1(1,)x a ∈-时,'()0,f x <函数()f x 在1(1,)a-上单调递减. 当1(,)x a ∈+∞时,'()0,f x >函数()f x 在1(,)a+∞上单调递增. 综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.当0a >时,函数()f x 在1(1,)a -上单调递减,函数()f x 在1(,)a+∞上单调递增. 点评:分类讨论是高考的热点之一,要揣摩其分类的原因和标准。

四、定积分: 1.定积分定义:⎰∑=-=bai ni f nab dx x f )(lim )(1ξ,(一般了解即可) 2.定积分的几何意义: 当f(x)在[]b a ,上大于0时,⎰badx x f )(表示由直线0),(,=≠==y b a b x a x ,和曲线f(x)y =所围成曲边梯形的面积; 当f(x)在[]b a ,上小于0时,⎰badx x f )(表示由直线0),(,=≠==yb a b x a x ,和曲线f(x)y =所围成曲边梯形的面积的相反数.注意:有些定积分可通过几何意义求出,如求0-⎰,因为0-⎰表示41圆的面积,故-⎰=π.3.定积分的性质:①=⎰ba dx x kf )(k ⎰badx x f )(;②⎰±b a dx x f x f ])(21)([=⎰badx x f )(1±⎰badx x f )(2③⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )( (其中b c a <<)4.微积分基本定理:⎰badx x f )(=)()()(a F b F x F b a -=(其中)()(x f x F =').如:计算由直线4y x =-与曲线22y x =所围成的平面图形的面积(先求出交点坐标A (2,-2)B (8,4),法一对x 积分需要分段积分,法二对y 积分不需要分段积分,答案为:18)二、圆锥曲线1.圆锥曲线的两个定义:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)8=表示的曲线是_____(答:双曲线的左支) 抛物线的定义:平面上到定点的距离等于到定直线的距离的动点的轨迹。

特别要注意:解题时要尽量多的考虑使用定义。

如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>);焦点在y 轴上时2222b x a y +=1(0a b >>)。

如:已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为(答:11(3,)(,2)22---);(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

如(1)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=); (2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。

相关文档
最新文档