混频器设计
混频与鉴频器的设计

混频与鉴频器的设计混频器和鉴频器是无线通信系统中非常重要的组件,它们分别用于信号的混频和鉴频。
混频器的主要作用是将高频信号和低频信号相乘,从而将高频信号转换成中频或基带信号,以便进行信号处理。
而鉴频器则用于将调制信号解调为原始信号。
混频器的设计通常需要考虑以下几个方面:1.混频器的工作频率范围:混频器的工作频率范围决定了它在不同应用中的适用性。
设计中需要选择合适的转换技术和电路拓扑,以确保混频器在所需的频率范围内具有良好的性能。
2.混频器的转换损耗:混频器在信号转换过程中会引入一定的转换损耗,也就是信号的功率损失。
设计中需要通过合适的电路参数和材料选择来降低转换损耗,并提高混频器的效率。
3.混频器的非线性特性:混频器在工作时会引入非线性失真,例如互调失真和交调失真。
这些失真会导致频谱扩展和杂散分量增加,对无线通信系统的性能造成影响。
因此,设计时需要选择合适的电路结构和优化电路参数,以减少非线性失真。
4.混频器的隔离度和带外抑制:混频器在混频过程中会引入一些杂散分量,它们可能会干扰其他无线设备或频段的信号。
设计中需要通过增强隔离度和带外抑制能力,以降低对其他信号的干扰。
鉴频器的设计也需要考虑类似的因素,同时还需要关注以下几点:1.鉴频器的解调效率:鉴频器的解调效率决定了解调后的信号质量。
设计中需要选择合适的解调方法和电路参数,以提高鉴频器的解调效率。
2.鉴频器的带宽和选择性:鉴频器通常需要适应不同带宽的信号,例如窄带和宽带信号。
设计时需要选择合适的电路结构和调整电路参数,以实现所需的带宽和选择性。
3.防止锁定和抗混叠:鉴频器设计需要考虑避免频率偏移和频率混叠的问题。
通过合适的信号处理技术和滤波器设计,可以提高鉴频器的抗干扰能力。
4.鉴频器的抗噪声性能:鉴频器中通常存在一定的噪声,例如热噪声和杂散噪声。
设计时需要选择合适的放大器和滤波器来提高鉴频器的抗噪声性能。
总体而言,混频器和鉴频器的设计需要综合考虑频率范围、转换损耗、非线性特性、隔离度、带宽、选择性、解调效率、抗锁定和抗噪声性能等因素。
混频器设计与应用技术

混频器设计与应用技术混频器(Heterodyne Mixer)是一种常用于射频(RF)和微波(microwave)电路中的器件,用于将不同频率的信号进行混频处理。
本文将介绍混频器的设计原理、主要类型以及广泛应用的技术。
一、混频器设计原理混频器的设计原理基于频率混合的特性,利用非线性元件,如二极管或场效应晶体管(FET),将两个不同频率的信号进行混合。
通过混频器的非线性特性,原始信号的频率被转换成新的频率,即中频(intermediate frequency, IF)。
二、混频器的主要类型1. 非平衡混频器非平衡混频器是最简单和常见的混频器类型之一。
它通常由一个二极管和匹配网络组成。
非平衡混频器具有较低的转换增益和较高的转换损耗,适用于一些要求简单性能的应用场景。
2. 平衡混频器平衡混频器是由两个对称的非线性电路组成,可以抵消输入信号中的互调失真。
平衡混频器具有较好的抗互调能力和较高的转换增益,适用于一些性能要求较高的应用场景。
3. 双平衡混频器双平衡混频器是在平衡混频器的基础上增加了额外的平衡结构,可以进一步提高抗互调能力和转换增益。
双平衡混频器通常用于一些对性能要求非常高的应用,如通信系统中的高动态范围接收机。
4. 有源混频器有源混频器是将放大器与混频器集成在一起的混频器。
它具有较高的增益和较低的噪声性能,适用于需求较高的射频接收机和通信系统。
三、混频器的应用技术1. 超外差接收技术超外差接收技术是混频器的一种重要应用技术,用于将接收到的射频信号转换成中频信号进行后续处理。
通过使用合适的混频器和滤波器,可以实现高灵敏度、高选择性的无线通信接收系统。
2. 雷达系统混频器在雷达系统中广泛应用。
雷达系统通过发射和接收射频信号来探测目标。
混频器用于将接收到的回波信号和本振信号进行混频处理,提取出目标的距离、速度和角度等信息。
3. 通信系统在通信系统中,混频器用于频率转换、频谱分析和信号调制等关键步骤。
实验七混频器的仿真设计

混频器电路旳主要技术指标 • 变频损耗 • 噪声系数 • 端口隔离度 • 驻波比 • 动态范围 • 三阶交调系数 • 镜频克制度 • 交调失真
电流在工作点用泰勒级数展开:
i f (E0 UL cosLt US cosSt)
f (E0 UL cosLt) f '(E0 UL cosLt)US cosSt
Байду номын сангаас
1 2!
f
''(E0
UL
cos Lt )(U S
cos St )2
…
定义二极管旳时变电导g(t)为
g
t
= di dv
= v=E0 +ULcosLt
i2 gnVs cos(nL s )t
i1 gnVs cos(nL s )t n
输出: i i2 i1 2gnVs cos 2i 1L s t
n为偶数旳高次谐波电流被完全抵消,只剩余奇次谐波电 流(n=2i+1),所以电路本身抵消了二分之一高次谐波电流 分量。
3、镜像回收混频器 (a)给出了分支线电桥旳信号和本振输入端都放置了平行耦合 镜像带阻滤波器,在该处它们镜像开路。因为该处距二极管 约为λSg/4, 因而在两个二极管输入接点处镜像信号被短路到 地。(b) 在接近连接二极管端口处有一耦合微带线作带阻滤波 器,该滤波器由两段1/4镜频波长旳短线构成,一段终端开路, 另一段与主传播线平行,形成平行耦合微带线。位置要调整 到刚好使镜频和本振二次混频后旳中频和一次混频旳中频同 相叠加,可回收镜频能量,提升混频器性能。
《混频器原理与设计》课件

3
LO-RF隔离度
LO-RF隔离度是指本振信号和射频信号
本振抑制度
4
之间的隔离程度。
本振抑制度是指混频器抑制本振信号的
能力。
5
拍频抑制度
拍频抑制度是指混频器抑制拍频信号的 能力。
第五章:混频器实验
实验装置
混频器实验通常需要使用特定的 实验装置和信号发生器。
操作步骤
混频器实验需要按照一定的步骤 进行,确保实验结果的准确性。
2 双晶体混频器电路设
计
双晶体混频器电路通常具 有更高的转换增益和更好 的本振抑制效果。
3 集成混频器电路设计
集成混频器电路具有体积 小、功耗低和可靠性高的 特点。
第四章:混频器性能指标
1
转换增益
转换增益是指混频器输入信号和输出信
端口匹配
2
号之间的功率差异。
端口匹配是指混频器输入和输出端口的频器实验结果进行分析,验 证混频器的性能指标。
第六章:混频器应用案例
航天器通信系统
混频器在航天器通信系统中 起到信号处理和频率变换的 关键作用。
葡萄酒品质检测
混频器可以用于葡萄酒品质 检测中的频率选择和信号处 理。
新能源电车智能充电系 统
混频器在新能源电车智能充 电系统中用于频率变换和充 电控制。
第二章:混频器的工作原理
简介
混频器将两个不同频率的信号进 行混合,产生新的频率差信号。
基本原理
混频器利用非线性元件的特性, 将输入信号进行非线性变换。
本振抑制
混频器通过抑制本振信号,避免 对输入信号的干扰。
第三章:混频器电路设计
1 单晶体混频器电路设
计
设计单晶体混频器电路时 需要考虑元件特性和稳定 性。
混频器电路设计

混频器电路设计
混频器电路是一种广泛应用于通信、雷达、测量等领域的电路,主要功能是将两路不同频率的信号合并成一路,以获得混频信号。
混频器电路的设计主要涉及以下几个方面:
1. 混频器类型选择:混频器电路通常可以选择三种类型的混频器,即互补式、抑制式和反向式混频器。
不同类型的混频器具有不同的性能特点和优缺点,需要根据具体应用场景选择。
2. 设计频率选择:混频器的输入频率范围和输出频率范围需要根据具体应用需求确定,同时考虑到混频器的增益和带宽等参数。
3. 传输线设计:混频器电路中的传输线设计对混频器的性能有很大影响。
传输线具有传输延时、传输损耗等参数,需要合理选择设计参数来优化混频器电路的性能。
4. 滤波器设计:混频器电路常常需要加入滤波器,去除不需要的频率分量,保留所需频率分量,以提高混频器电路的选择性和干扰抑制能力。
5. 电路布局与封装:混频器电路的布局和封装方式对混频器电路的性能和可靠性有很大影响,需要合理设计和选择。
综上所述,混频器电路的设计需要综合考虑电路类型、频率、传输线、滤波器及电路布局等因素,以达到优化性能、选择性和干扰抑制能力的目的。
混频器的设计(RFID)

混频器的基本介绍定义:变频,是将信号频率由一个量值变换为另一个量值的过程。
具有这种功能的电路称为变频器(或混频器)。
混频器是一个3端口器件,其中两个端口输入,一个端口输出。
混频器采用非线性或时变参量元件,可以将两个不同频率的输入信号变为一系列不同频率的输出信号,输出频率分别为两个输入频率的和频、差频及谐波。
混频器是射频系统中用于频率变换的部件,具有广泛的应用领域,可以将输入信号的频率升高或降低而不改变原信号的特性。
混频器的典型应用是在射频的接收系统中,混频器可以将较高频率的射频输入信号变换为频率较低的中频输出信号,以便更容易对信号进行后续的调整和处理。
1.混频器的特性混频器的符号和功能如图4-60所示。
图4-60(a)是上变频的工作状况,两个输入端分别称为本振端(LO)和中频端(IF),输出端称为射频端(RF)。
图4-60(b)是下变频的工作状况,两个输入端分别称为本振端(LO)和射频端(RF),输出端称为中频端(IF)。
上变频:上变频就是把基带信号调制到一个载波上,或者把调制在低频载波上的信号变换到高频载波上。
在超外差式接收机中,如果经过混频后得到的中频信号比原始信号高,那么此种混频方式叫做上变频。
下变频:在超外差式接收机中,如果经过混频后得到的中频信号比原始信号低,那么此种混频方式叫做下变频。
下变频的目的是为了降低信号的载波频率或是直接去除载波频率得到基带信号。
混频器的变频损耗混频器的变频损耗定义为可用RF 输入功率与可用IF 输出功率之比,用dB 表示为变频损耗的典型值为4~7dB 。
变频损耗包括二极管的阻抗损耗、混频器端口的失配损耗和谐波分量引起的损耗。
电阻性负载会吸收能量,产生阻抗损耗。
混频器输出只选和频或差频,谐波不是所需的输出信号,导致了谐波损耗。
2.单端二极管混频器定义:用一个二极管产生所需IF 信号的混频器称为单端二极管混频器。
框图及其解释:单端二极管混频器如图4-62所示。
混频器设计

4
4.2 4.4 4.6 4.8
Frequency (GHz)
输出端耦合度
200 100
0 -100
bridge phase
Ang(S[3,1]) (Deg) 3db bridge Ang(S[4,1]) (Deg) 3db bridge Ang(S[3,2]) (Deg) 3db bridge Ang(S[4,2]) (Deg) 3db bridge
1
-90
3
0
0
-90
2
4
端口特性测量
bridge Power Split
-3
-4 -5 -6 -7 -8
3
DB(|S[3,1]|) 3db bridge
DB(|S[4,1]|) 3db bridge
DB(|S[3,2]|) 3db bridge
DB(|S[4,2]|) 3db bridge
3.2 3.4 3.6 3.8
SUBCKT ID=S1
NET="LPF"
1
2
PORT P=3
Z=50 Ohm
SDIODE ID=SD2
AFAC=1
MSUB Er=4.2 H=0.5 mm T=0.005 mm
Rho=1 Tand=0.0003 ErNom=4.2 Name=SUB1
HB测试1(扫描LO功率)
❖ 创建原理图,命名为test
内容说明
❖ 设计一个90°平衡混频器,具体内容包括: ❖ 3dB分支桥定向耦合器设计 ❖ 低通滤波器电路设计 ❖ 输入、输出匹配电路设计 ❖ 混频器总电路特性测试:变频增益,隔离度,
IF输出功率,输出频谱,NF,IP3等。(分两类
情况测试:扫描LO功率,扫描LO频率。)
混频器设计开题报告

混频器设计开题报告混频器设计开题报告一、引言混频器(Mixer)是无线通信系统中重要的组成部分,用于将不同频率的信号进行混合,产生新的频率。
在现代通信系统中,混频器广泛应用于频谱分析仪、雷达、卫星通信等领域。
本开题报告旨在介绍混频器的设计原理和方法,探讨如何提高混频器的性能。
二、混频器的基本原理混频器是一种非线性电路,其基本原理是利用非线性元件的特性将两个或多个不同频率的信号进行混合,产生新的频率。
混频器通常由非线性元件、输入端口和输出端口组成。
三、混频器设计的挑战混频器设计面临着多个挑战,其中包括:1. 频率转换损耗:混频器在将不同频率的信号进行混合时,会引入一定的损耗。
设计师需要在平衡损耗和性能之间进行权衡。
2. 非线性失真:由于混频器是一种非线性电路,会引入非线性失真。
设计师需要采取措施来减小非线性失真对系统性能的影响。
3. 噪声:混频器在信号混合过程中会引入噪声。
设计师需要优化电路结构和参数,以降低噪声水平。
4. 带宽限制:混频器的带宽限制会影响其工作频率范围。
设计师需要综合考虑带宽和性能需求,进行合理的设计。
四、混频器设计的方法在混频器设计中,有多种方法可供选择,其中包括:1. 有源混频器:有源混频器采用放大器作为非线性元件,可以提供较高的增益和较低的噪声。
然而,有源混频器的功耗较高,对电源要求较高。
2. 无源混频器:无源混频器采用二极管或场效应晶体管等被动元件作为非线性元件,功耗较低。
但是,无源混频器的增益和噪声性能较有源混频器差。
3. 双平衡混频器:双平衡混频器通过使用两个非线性元件,可以抵消一部分非线性失真和噪声。
这种设计方法可以提高混频器的性能。
五、混频器设计的优化为了优化混频器的性能,设计师可以采取以下方法:1. 选择合适的非线性元件:不同的非线性元件具有不同的特性,设计师需要根据具体应用选择合适的非线性元件。
2. 优化电路结构:通过优化电路结构和参数,可以降低非线性失真和噪声水平,提高混频器的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图9-5 混频 器频谱分布
四、双频三阶交调与线性度
1、混频器三阶交调系数 三阶交调系数 Mi 的定义为
13
骣 P ç三阶交调分量功率 ÷= 10 lg wm 3 M i (dB )= 10 lg ç ÷ ç 有用信号功率 ÷ Pif 桫
其值为负分贝数,单位常用 dBc,其物理含义是三阶交 调功率比有用中频信号功率 小的分贝数。三阶交调功率 Pwm 3 随输入微波信号功率 Ps 的变化斜率较大,而中频功 率 Pif 随 Ps 的变化呈正比关 系,基本规律是 Ps 每减小 1dB,Mi 就改善 2dB,如图 7、6 所示。
Pno F= Pns
(9-1)
式中 Pno——-当系统输入端噪声温度在所有频率上都是标准温 度T0 = 290K时,系统传输到输出端的总噪声资用功率; Pns——仅由有用信号输入所产生的那一部分输出的噪声资用功 率。 根据混频器具体用途不同,噪声系数有两种。
一、噪声系数和等效噪声温度比 3
1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率 fs 端口的信源热噪声是 kT0∆f,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是
a r (dB )= 10 lg
(r s + 1)
4r s
2
+ 10 lg
(r i + 1)
4r i
2
(9-9)
混频器微波输入口驻波比ρs 一般为 2 以下。αρ的典型值约为 0.5~1dB。
二、变频损耗
2、混频二极管的管芯结损耗 管芯的结损耗主要由电阻 Rs 和电容 Cj 引起,参见图 9-2。在混频过程 中,只有加在非线性结电阻 Rj 上的信号功率才参与频率变换,而 Rs 和 Cj 对 Rj 的分压和旁路作用将使信号功率被消耗一部分。结损耗可表示为
8
骣 R ÷ ç a r (dB )= 10 lg ç1 + s + ws2C 2 Rs R j ÷ (dB) ÷ j ç R ÷ ç 桫 j
混频器工作时,Cj 和 Rj 值都随本振激励功率 Pp 大小而变化。Pp 很小时, Rj 很大,Cj 的分流损耗大;随着 Pp 加强,Rj 减小,Cj 的分流减小,但 Rs 的分压损耗要增长。因此将存在一个最佳激励功率。当调整本振功率,使 Rj = l/ωsCj 时,可以获得最低结损耗,即
二、变频损耗
3、混频器的非线性电导净变频损耗 净变频损耗αg取决于非线性器件中各 谐波能量的分配关系,严格的计算要 用计算机按多频多端口网络进行数值 分析;但从宏观来看,净变频损耗将 受混频二极管非线性特性、混频管电
9
图9-3 变频损耗、噪声 系数对本振功率的关系
路对各谐波端接情况,以及本振功率强度等影响。当混频管参 数及电路结构固定时,净变频损耗将随本振功率增加而降低, 如图9-3所示。本振功率过大时,由于混频管电流散弹噪声加大, 从而引起混频管噪声系数变坏。对于一般的肖特基势垒二极管, 正向电流为l~3mA时,噪声性能较好,变频损耗也不大。
微波混频器技术指标与特性分析 2
一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但 是混频器中存在多个频率,是多频率多端口网络。为适应多频 多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基 础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单 频线性网络,也可适用于多频响应的外差电路系统,即
wm 3 = w p - (2ws 2 - ws1 )
三阶交调分量出现在输出中频附近的地方。当ωs1 和ωs2 相距很近时,ωm3 将落 入中频放大器工作额带内,造成很大干扰。这种情况在微波多路通信系统中是 一个严重问题,如果各话路副载波之间有交叉调制,将造成串话和干扰。上述 频谱关系如图 9-5 所示。图中∆ωif 是中频带宽。
a r min (dB )= 10 lg ( + 2ws C j Rs ) (dB) 1
可以看出,管芯结损耗随工作频率而增加,也随 Rs 和 Cj 而增加。 表示二极管损耗的另一个参数是截止频率 fc 为
图9-2 混频管 芯等效电路
fc =
1 2p Rs C j
通常,混频管的截止频率 fc 要足够高,希望达到 f c » ( ~ 20) f s 。比如 fc = 20fs 时,将有 10 αrmin = 0.4dB。 根据实际经验,硅混频二极管的结损耗最低点相应的本振功率大约为 1~2mW,砷化镓混频二极 管最小结损耗相应的本振功率约为 3~5mW。
第九讲 混频器设计
1
重要性:混频器是微波集成电路接收系统中必不可少的部件。不论是 重要性 微波通信、雷达、遥控、遥感、还是侦察与电子对抗,以及许多微波 测量系统,都必须把微波信号用混频器降到中低频来进行处理。 集成电路混频器是主流:主要是因为集成式混频器体积小,性能稳定 集成电路混频器是主流 可靠,设计技术成熟,而且结构灵活多样,可以适合各种特殊应用。 采用肖特基势垒二极管做变频元件:虽然二极管混频必不可免有变频 采用肖特基势垒二极管做变频元件 损耗,但是它结构简单,便于集成化,工作频带宽,可能达到几个甚 至几十个倍频程。它的噪声较低而且工作稳定,动态范围大,不容易 出现饱和。 电路结构形式:混频器有单管式混频,两管平衡式混频和多管式混频。 电路结构形式 单管混频只用一支二极管,结构简单,成本低,但噪声高,抑制干扰 能力差,在要求不高处可以采用;平衡式混频器借助于平衡电桥可使 本机振荡器的噪声抵消,因而噪声性能得到改善,电桥又使信号与本 振之间达到良好隔离,因此平衡混频器是最普遍采用的形式;还有多 二极管的混频器,比如管堆式双平衡混频器,镜频抑制混频器等是为 特殊要求而设计的,可用于多倍频程设备、镜频能量回收或自动抑制 镜频干扰等。
一、噪声系数和等效噪声温度比 6
2、双边带噪声系数 在商品混频器技术指标中常给出整机噪声系数,这是指包括中频放大 器噪声在内的总噪声系数。 由于各类用户的中频放大器噪声系数并不相同, 因此通常还注明该指标是在中频放大器噪声系数多大时所测得的。 #43; Fif - 1)
Pno = kT0D f / a m + kT0D f / a m + Pnd
一、噪声系数和等效噪声温度比 4
1、单边带噪声系数
Pno = kT0D f / a m + kT0D f / a m + Pnd
把 Pno 等效为混频器输出电阻在温度为 Tm 时产生的热噪声功率, Pno = kTm∆f, 即 Tm 称混频器等效噪声温度。kTm∆f 和理想电阻热噪声功率之比定义为混频器噪声温 度比,即
kTmD f = a m tm FSSB = kT0D f Lm
一、噪声系数和等效噪声温度比 5
2、双边带噪声系数 在遥感探测、射电天文等领域,接收信号是均匀谱辐射信号,存在于两个边带,这 种应用时的噪声系数称为双边带噪声系数。 此时上下两个边带都有噪声输入,因此 Pns = kT0∆f/αm。按定义可写出双边带噪声 系数
图9-1 混频器热 噪声谱
kT0D f am
式中 ∆f——中频放大器频带宽度;αm——混频器变频损耗;T0——环境温度, T0 = 293K。 (2)由于热噪声是均匀白色频谱,因此在镜频 fi 附近∆f 内的热噪声与本振频 率 fp 之差为中频,也将变换成中频噪声输出,如图 9-1 所示。这部分噪声功率也是 kT0∆f/αm。 (3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡 器所携带相位噪声都将变换成输出噪声。这部分噪声可用 Pnd 表示。 这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率 Pno
二、变频损耗
a m (dB )= 10 lg 微波输入信号功率 中频输入信号功率 = a b (dB )+ a r (dB )+ a g (dB )
7
混频器的变频损耗定义是: 混频器输入端的微波信号功率与输出端中频功 率之比,以分贝为单位时,表示式是 (9-8)
混频器的变频损耗由三部分组成:包括电路失配损耗αβ,混频二极管芯的结损 耗αr 和非线性电导净变频损耗αg。 1、失配损耗 失配损耗αρ取决于混频器微波输入和中频输出两个端口的匹配程度。 如果 微波输入端口的电压驻波比为ρs,中频输出端口的电压驻波比为ρi,则电路失 配损耗是
式中 Fif——中频放大器噪声系数;αm——混频器变频损耗;tm——混频 器等效噪声温度比。 tm 值主要由混频器性能决定,也和电路端接负载有关。tm 的范围大约 是 厘米波段 tm = 1.1~1.2 毫米波段 tm = 1.2~1.5 在厘米波段,由于 tm ≈ 1,所以可粗估整机噪声是
F0 = a m Fif
tm =
Pno T = m kT0D f T0
按照定义公式(9-1)规定,可得混频器单边带工作时的噪声系数为
FSSB =
Pno kTmD f = Pns Pns
在混频器技术手册中常用 FSSB 表示单边带噪声系数,其中 SSB 是 Singal Side Band 的缩写。Pns 是信号边带热噪声(随信号一起进入混频器)传到输出端的噪声 功率,它等于 kT0∆f/αm。因此可得单边带噪声系数是
Pmin = 10创 1.38 10- 23 创 300 (4创 1.258) (5 6 ) 10 = 1.03 - 12 W 10 ? 90 (dBm)
在不同应用环境中,动态范围下限是不一样的。比如在辐射计中由于采用了 调制技术,能接收远低于热噪声电平的弱信号。雷达脉冲信号则要高于热噪 声约 8dB,而调频系统中接收信号载噪比约需要 8~12dB。数字微波通信信号 取决于要求的误码率,一般情况下比特信噪比也要在 10~15dB 以上。
三、动态范围
10
动态范围是混频器正常工作时的微波输入功率范围。 (1)动态范围的下限通常指信号与基噪声电平相比拟时的功率。可用下 式表示