实验二 定量资料的统计推断

合集下载

研究生统计学讲义第2讲第3章定量资料的统计描述

研究生统计学讲义第2讲第3章定量资料的统计描述
左边μ=100,σ=10,X<90 右边μ=0,σ=1,u<-1.0,注 意刻度不同
现在我们把 X 转换为标准正态变量,因为μ=100, σ=10,所以
u X 90 100 1.0
10
因此90分能够用平均值下的1个标准差表示,见图 右图
P (X < 90)=P ( u <-1.0 )
附表3从u=0.00到u=4.99以增量0.01编成标准正态分布 的CDF表,沿着表的左边按所给u的一个小数找到u ,再从表的顶端找到u的第二位小数,在表内主要部
x2=78.6g/L时,u2 = (78.6-73.8)/3.9=1.23
2.查标准正态曲线下面积表(附表3):u= -0.46时 ,在表的左侧找到-0.4,在表的上方找到0.06,二者相 交处为0.3228,标准正态曲线下,横轴上u值小于- 0.46的面积为Ф(-0.46)= P(U<-0.46)=32.28%,即标 准正态变量u值小于-0.46的概率为32.28%;同样查 得u=1.23时,标准正态曲线下,横轴上u值小于1.23的 面积为Ф(1.23) =P(U<1.23)= 0.8907,即u值小于1.23的 概率为89.07% 。
图3.16左边μ=100,σ=10,X≥125 右边μ=0,σ=1, u≥2.5,注意刻度不同
只有0.62%的得分将是125或更高.
补例2 假设女高血压患者舒张压大约集中在100mmHg
,标准差是16mmHg ,血压是正态分布.求:
1.P (X<90) 2.P (X>124) 3.P (96<X<104) 4.求
2.中位数M (Median)
中位数M是排序观察值的中间值.当一组数据按照 从小到大的顺序排列起来时,值的深度d=(n+1)/2, 是它相对于极端值(末端)所在的位置.它不是由全 部观察值综合计算出来的,而是由居中位置的观察值 所决定,因此它不受个别特小或特大的观察值的影响 ,应用范围较广。

定量资料的统计描述 (2)

定量资料的统计描述 (2)

频数
338.7 402.6 379.4 329.6 354.6 331.4 349.6 419.5 324.6
270~
2
313.6
3382.785~328.6正291.3
329.7
361.8 392.4 9
414.9
319.7
289.4 3663.200~387.4正2正98.4 408.7 389.8 11362.5 354.9 352.7
累计频数
(4) 3
10 26 59 83 97 101 102 —
累计频率(%) (5) 2.94 9.80 25.49 57.84 81.37 95.10 99.02
100.00 —
2002年某市150名20~29岁正常成年男子的尿酸浓度(umol/L)
362.6 359.7 285.9 300.2 333.6 334.0 288.8 338.5 341.9 344.6 337.5 298.3 364.2 367.1 338.1 316.9 332.7 324.0 282.6 369.8 398.7 338.7 308.9 392.1 368.7 352.6 378.2 346.1 278.6 318.3 323.2 322.6 382.1 322.6 309.6 352.0 372.5 399.8 335.6 341.1 371.0 355.9 362.7 368.1 332.4 405.6 328.8 358.8 405.9 362.7 316.3 338.7 402.6 379.4 329.6 354.6 331.4 349.6 419.5 324.6 329.8 357.8 312.0 313.6 338.7 328.6 291.3 329.7 361.8 392.4 414.9 319.7 327.6 395.8 358.9 289.4 366.2 387.4 298.4 408.7 389.8 362.5 354.9 352.7 316.6 348.9 348.7 401.6 334.6 308.9 367.0 345.6 401.6 357.1 304.6 338.5 388.2 355.8 329.4 321.1 320.4 313.5 339.8 409.4 387.4 378.5 392.0 352.7 376.2 388.4 344.6 308.6 347.0 428.7 369.1 311.4 376.3 349.4 289.2 366.8 371.0 387.5 413.6 348.7 392.7 401.0 313.6 366.8 387.2 319.7 329.4 357.5 348.5 346.8 406.6 357.6 338.7 341.6 349.8 289.4 366.2 357.5 298.4 336.8 387.5 342.3 366.7 387.6 332.7 329.4

医学统计学-实习二定量资料的统计推断

医学统计学-实习二定量资料的统计推断

a. Lilliefors Significance Correction
Sig. .466 .482
2.方差齐性检验、
两样本比较的t 检验:
结果输出:
Independent Samples Test
Levene's Test for
Equality of Variances
t-test for Equality of Means
95%置信区间
结果输出:
二、定量资料的 差异性检验
有关样本资料的差异性比较
数据类型
定量资料
设计类型
不满足t 检验/方 差分析条件的
定性资料
设计
类型
设计类型
单 样 本
配 对 设 计
两 独 立 样
多 独 立 样
本本
随析重 机因复 区设测 组计量 资资资 料料料
单 样 本
配 对 设 计
两 多 独 立 样 本
a. Not corrected for ties.
b. Grouping Variable: group
【例6.4】为研究某种抗癌新药对小白鼠移植性肉瘤S180 的抑瘤效果,将20只小白鼠按性别、体重、窝别配成对子。 每对中随机抽取一只服用抗癌新药,另一只作为阴性对照, 服用生理盐水,观察其对小白鼠移植性肉瘤S180的抑瘤效 果,经过一定时间,测得小白鼠瘤重如表4所示。问小白 鼠服用抗癌新药和生理盐水后平均瘤重有无不同?
Std. Error M ea n 184.699
140.079
Pair 1 甲 组 - 乙 组
Paired Samples Test
M ea n 795.000
Paired Differences

《医学统计学》实习指导

《医学统计学》实习指导
9
内曲线下面积 C. 对于同一自由度,单侧尾部面积为 0.05 时所对应的 t 值小于双侧尾
部面积为 0.05 的所对应的 t 值 D. t 分布的标准差小于 1 (5)用大量来自同一总体的独立样本对总体参数作估计时, 关于 95%可信 区间(CI), 正确的说法是: A. 大约有 95%的样本的 CI 覆盖了总体参数 B. 对于每一个 CI 而言, 总体参数约有 95%的可能性落在其内 C. 各个样本的 CI 是相同的 D. 对于每一个 CI 而言,有 95%的可能性覆盖总体参数
6. 若正常成人血铅含量近似对数正态分布,拟用 300 名正常成人血铅值
确定 99%参考值范围, 最好采用____
A X ±2.58S
B lg-1( X lgX+2.58SlgX)
C
P99=L+
i fx
( 300 × 99 100

ΣfL )
D lg-1( X lgX+2.33SlgX)
作业: P326: 第 2 题、第 4 题
1. 频数表的编制
Range(max-min)
length of the interval(10-15)
set
groups
counting the numbers
Histogram
(以便观察资料的分布;容易估计集中趋势与变异性;发现异常值)
2. 描述分布的指标
1) average(平均数):the position of the distribution or
二、讨论内容
1. 抽样误差是如何产生的? 2. 正态分布的图形有何特征? 3.t 分布的图形有何特征?与正态分布有何关系? 4.制定正常值范围的方法有哪些? 如何选用?为什么有时用双侧, 有时用

定量资料的统计描述

定量资料的统计描述

中位数
各种分布类型的资料,特别是偏峰分布资料; 分布一端或两端无确切数值的资料; 分布类型不明
百分位数 各种分布类型的资料
离散趋势
指标
应用条件
极差
对资料类型没有要求
四分位数 间距
方差与标 准差
变异系数
各种分布类型的资料,特别是偏峰分布资料
对称分布,特别是正态或近似正态分布 观察指标单位不同时变异程度的比较; 均数相差较大时变异程度的比较
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分 1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )
End Thanks
写出组段
输出结果
输出结果
如果只需获得频数分布图,且对组段与组距没有什么特殊要求,可以通过如下操作 来完成。
输出结果
描述性统计指标
集中趋势:描述定量变量的平均水平 离散趋势:描述定量变量的变异情况
集中趋势
指标
应用条件
算术均数 对称分布,特别是正态或近似正态分布
几何均数 对数正态分布 等比数据资料(如抗体滴度资料)
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差

统计推断的基本解法

统计推断的基本解法

统计推断的基本解法统计推断是统计学的重要分支,用于从样本中推断总体特征。

在统计分析中,我们通常使用一些基础的解法来进行统计推断。

本文将介绍一些常用的基本解法。

点估计点估计是一种基本的统计推断方法,用于估计总体参数的值。

在点估计中,我们通过样本数据得到一个点估计量,作为总体参数的估计值。

例如,常见的点估计方法包括样本均值、样本方差和样本比例等。

区间估计区间估计是一种更精确的统计推断方法,用于估计总体参数的范围。

在区间估计中,我们通过样本数据得到一个区间估计量,包含了总体参数真值的可能范围。

例如,常见的区间估计方法包括置信区间和可信区间等。

假设检验假设检验是一种常用的统计推断方法,用于验证关于总体参数的假设。

在假设检验中,我们首先提出一个原假设和一个备择假设,然后使用样本数据来判断哪个假设更为合理。

例如,常见的假设检验方法包括单样本检验、双样本检验和方差分析等。

相关分析相关分析是一种用于研究变量之间关系的统计推断方法。

在相关分析中,我们通过计算相关系数来衡量变量之间的相关程度。

例如,常见的相关分析方法包括皮尔逊相关系数和斯皮尔曼相关系数等。

回归分析回归分析是一种用于预测和探索变量之间关系的统计推断方法。

在回归分析中,我们使用回归方程来建立变量之间的函数关系,并通过回归系数来解释这种关系。

例如,常见的回归分析方法包括线性回归和逻辑回归等。

综上所述,统计推断的基本解法包括点估计、区间估计、假设检验、相关分析和回归分析等。

这些方法在统计学领域中被广泛应用,帮助我们从样本中推断总体的特征和关系。

定量资料的统计描述

定量资料的统计描述
定量资料的统计描述
1.集中趋势 (算术)平均数: 几何均数: 中位数:
2.离散趋势 全距: 四分位数间距: 离均差平方和: 方差: 标准差: 变异系数:
3.正态分布 特征: (P16) 应用 估计频率分布
确定医学参考值范围
4.t 分布
(正态近似法和百分位数法)
质量控制 理论基础 特征: (P22) 应用 区间估计 假设检验
(P42)
Ni N
p NNi pi
标准组选取方法 有代表性的
(P42)
两组合并 择其一
定量资料(计量资料)统计推断
一、定量资料的参数估计 (P23)
1.点估计: X
2.区间估计 σ未知,n较小: Xt.SX
σ已知: Xu.X
σ未知但n足够大:
Xu.SX
二、定量资料的假设检验 (P26)
t
检验
单个样本t检验:
3. yˆ 的含义( P138或见讲义) 。
4.回归与相关的区别和联系(见讲义) 5.等级相关的适用范围(P147)。 6.直线回归的应用(P142~ P143 )。
统计表与统计图
1.统计表的分类(P255) 2.统计表的编制要求(P253) 3.统计表的改错(P255)
4.常用统计图的适用条件及要求
(P256 ~ P259 )
基本概念(见讲义)
1.总体和样本(P3) 2.参数和统计量(见讲义)
3.变异(见讲义)
4.抽样误差(见讲义) 5.概率(P4) 6.样本含量(P3) 7.定量资料(P4) 8.定性资料(P4)
9.正偏态分布(P8) 10.负偏态分布(P8) 11.中位数(P11) 12.百分位数(P13) 13. 医学参考值范围(P18) 14.统计推断(P20) 15. 标准误(P22) 16.参数估计(P23)

定量资料的统计描述

定量资料的统计描述

四分位数 间距
方差与标 准差 变异系数
频数分析(Frequencies )
下面我们结合人群的年龄(age)数据学习如何使用SPSS计算统计指 标。
部分中英文对照:
描述统计(Descriptives )
对于近似正态分布的资料,我们还可以通过Descriptives获取统计指 标。这是一组使用某法多次测定某水样中碳酸钙含量的数据,符从正态分 布,下面我们用Descriptives的方法计算这组数据的统计指标。
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差
确定组段数和组距
1.极差:R=95.7≈100
定量资料统计描述
定量变量
定量变量可以分为两种类型: 1.离散型变量:只能取整数值,例如,一个月中的
手术病人数,一年里的新生儿数。
2.连续型变量:可以取实数轴上的任何数值,例如, 血压,身高,体重等。
统计描述
统计描述是通过绘制统计表、统计图 或计算相应的统计指标来说明资料的分布 规律及其数量特征,是进一步统计推断的
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分
1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二定量资料的统计推断
(总体均数的估计及t检验、z检验、F检验)
一、随机抽样调查上海市区男孩出生体重(kg),得下表数据,问
1、99%的男孩出生体重在什么范围?
2、全市男孩出生体重均数在什么范围?
3、某男孩出生体重为4.5kg ,怎样评价?
4、在这些男孩中随机抽样,根据正态分布理论抽到体重≤2.15(kg)的男孩的可能性
是多少?
5、在这些男孩中随机抽查10人,抽到出生体重均数为≤3.2(kg)的样本的可能性约有多少?
体重人数
2.0~ 1
2.2~ 2
2.4~ 5
2.6~ 10
2.8~ 12
3.0~ 24
3.2~ 23
3.4~ 22
3.6~ 17
3.8~ 7
4.0~ 3
4.2~ 2
4.4~4.6 1
二、将20名某病患者随机分为两组,分别用甲、乙两药治疗,测得治疗前后(治后一月)的血沉(㎜/小时)如下表。

病人号甲治疗前药治疗后1 2 3 4 5 6 7 8 9 10 20 23 16 21 20 17 18 18 15 19 16 19 13 20 20 14 12 15 13 13
病人号乙治疗前药治疗后1 2 3 4 5 6 7 8 9 10 19 20 19 23 18 16 20 21 20 20 16 13 15 13 13 15 18 12 17 14
1、甲、乙两药是否均有效?
2、甲、乙两药的疗效有无差别?
三、某地抽样调查了部分健康成人的红细胞数和血红蛋白量,结果如下表:
2、分别计算男、女两项指标的抽样误差。

3、试估计该地健康成年男、女红细胞数的均数。

4、该地正常成年男、女血红蛋白含量有无差别?
5、该地成年男、女两项血液指标是否均低于上表地标准值?
四、为研究某药物的抑癌作用,使一批小白鼠致癌后,按完全随机设计的方法随机分为四组,A 、B 、C 三个试验组和一个对照组,分别接受不同的处理,A 、B 、C 三个试验组,分别注射0.5m1、1.0m1和1.5m1 30%的注射液,对照组不用药。

经一定时间以后,测定四组小白鼠的肿瘤重量(g),测量结果见下表。

问不同剂量药物注射液的抑癌作用有无差别?如有差别,请用SNK-q 检验方法作多重比较。

某药物对小白鼠抑癌作用(肿瘤重量,g)的试验结果
五、为研究注射不同剂量雌激素对大白鼠子宫重量的影响,取4窝不同种系的大白鼠,每窝3只,随机地分配到3个组内接受不同剂量雌激素的注射,然后测定其子宫重量,结果见下表。

问注射不同剂量的雌激素对大白鼠子宫重量是否有影响? 如有影响,请用Dunnett-t 检验方法作多重比较。

大白鼠注射不同剂量雌激素后的子宫重量(g)
大白鼠
种系
雌激素剂量(μg/100g) 0.25 0.5 0.75 A
108 112 142 B
46 64 116 C
70 96 134 D 43 65 98
六、思考题及名词解释
1、试述正态分布、z 分布及t 分布的联系和区别。

2、均数的可信区间与参考值范围有何不同?试比较95%参考值范围与95%总体均数可信区间。

3、抽样分布(数理统计)的中心极限定理的内容是什么?
4、试举例说明标准差与标准误(即均数的标准差)的区别与联系。

对照组 试 验 组 A B C
3.6 3.0 0.4 3.3
4.5 2.3 1.8 1.2 4.2 2.4 2.1 1.3
4.4 1.1 4.5 2.5 3.7 4.0 3.6 3.1
5.6 3.7 1.3 3.2
7.0 2.8 3.2 0.6 4.1 1.9 2.1 1.4
5.0 2.6 2.6 1.3
4.5 1.3 2.3 2.1
5、假设检验和区间估计有何区别与联系?
6、假设检验中a与P有何区别与联系?
7、怎样正确选用单侧检验和双侧检验?
8、第一类错误与第二类错误有何区别及联系?
9、假设检验时,一般当P<0.05时,则拒绝H0,理论根据是什么?
10、z检验、t检验的应用条件是什么?
11、为什么假设检验的结论不能绝对化?
12、能否说假设检验的P值越小,比较的指标间差异越大?为什么?
13、假设检验的基本步骤
14、方差分析的基本思想和应用条件是什么?
15、在完全随机设计方差分析中的SS组间、SS组内各表示什么含义?
16、随机区组设计的方差分析与完全随机设计方差分析在设计和变异分解上有什
么不同?
17、配对t检验与配伍组设计的ANOV A之间有何联系?两样本t检验与完全随机
设计的ANOV A又有何联系?
18、为什么在方差分析的结果为拒绝H0、接受H1之后,对多个样本均数的两两比
较要用多重比较的方法,而不能用多个两两比较的t检验替代?
19、多个样本均数的两两比较方法有哪些?
20、抽样分布抽样误差(均数的抽样误差)标准误(样本均数的标准误)参数估计区间估计(总体均数的可信区间)第一类错误与第二类错误单侧检验与双侧检验检验水准a与概率P值
H0与H1 小概率事件及小概率事件原理。

相关文档
最新文档