必修1《指数与对数运算》专题复习(精心整理)
高一数学必修一指数对数幂函数知识点汇总

指数函数与对数函数之间是反函数之间的关系★指数及指数幂的运算1.根式的概念a 的n 次方根的定义:一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n>1,n ∈N +当n 为奇数时,正数的n 次方根为正数,负数的n 次方根是负数,表示为;当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,n 叫做根指数,a 叫做被开方数.2.n 次方根的性质:(1)当n 为奇数时,;当n 为偶数时,(2)3.分数指数幂的意义:注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:★指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中x 是自变量,函数的定义域为R .n√a n =an √a n=|a|=a,a ≥0-a,a<0n√a +n √an√a (n √a )n =a a n =n √a m m(a>0,m,n ∈N,n>1);(a>0,m,n ∈N,n>1);a n1ma n =m(a>0,b>0,r,s ∈Q)(1)a r a s =a r+s (2)(a r )s =a rs (3)(ab)r =a r ·b ry=ax(a>0,且a ≠1)y=a x且★对数与对数运算1.对数的定义(1)若=N (a>0,a ≠0,N>0),则x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:x=log a N 等价于ax=N (a>0,a ≠0,N>0)2.几个重要的对数恒等式a x a x a x a x a xa x a xy=a xy=a x (a>0,且a ≠1)叫做指数函数log a 1=0,log a a=1,log a a b =log a (a b )=b3.常用对数与自然对数常用对数:lg N ,即log 10N ;自然对数:ln N ,即log e N (其中e=2.71828…).4.对数的运算性质如果a>0,a ≠1,M>0,N>0,那么①加法:log a M+log a N=log a (MN)②减法:log a M —log a N=log a ()③数乘:nlog a M=log a M n (n ∈R)④a=N⑤log M n =log aM (b ≠0,n ∈R)⑥换底公式:log a,b ≠1)★对数函数及其性质1.对数函数定义一般地,函数y=log a x(a>0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域.log a N M N a b n b且上是增函数上是减函数★幂函数1.幂函数概念形如的函数,叫做幂函数,其中α为常数.y=log a x>0(x>1)y=log a x=0(x=1)y=log a x<0(0<x<1)y=log a x(a>0,且a ≠1)叫做对数函数y=log a x<0(x>1)y=log a x=0(x=1)y=log a x>0(0<x<1)y=xα(α∈R)2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点(1,1).(3)单调性:如果α>0,则幂函数的图象过原点,并且在上为增函数.如果α<0,则幂函数的图象在上为减函数,在第一象限内,图象无限接近x 轴与y 轴.(4)奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当α=(其中p,q 互质,p 和q ∈Z ),若p 为奇数q 为奇数时,则y=x 是奇函数,若p 为奇数q 为偶数时,则y=x 是偶函数,若p 为偶数q 为奇数时,则y=x 是非奇非偶函数.(5)图象特征:幂函数y=x,x ∈,当α>1时,若0<x<1,其图象在直线y=x 下方,若x>1,其图象在直线y=x 上方,当α<1时,若0<x<1,其图象在直线y=x 上方,若x>1,其图象在直线y=x 下方.q pααααqp qp αy=xy=x -1y=x 2(没有左)1y=x 2y=x 3y=x 2(左)y=x 3(左)y=x -1(左)y=x(左)。
指数对数运算复习--精编版

一.指数与指数运算1、 指数式:形如b a N =,a 叫做底数,b 叫做指数,N 叫做幂.2、 0指数幂与分数指数幂:(1)01(0)a a =≠;(2)1(0)n n aa a -=≠. 3、 根式性质: (1)()n n a a =;(2)||n n a n a a n ⎧=⎨⎩,为奇数,为偶数. 4、 分数指数幂:(1) 正分数指数 1(0)m n m n n n a a a a a =>=,*(0,,)ma m n N n>∈、为既约分数. (2) 负分数指数幂:1mn mn a a -=*(0,,)m a m n N n>∈、为既约分数. 5、 指数幂运算法则:(1)m n m n a a a +⋅=;(2)mm n n a a a-=; (3)()m n m n a a ⋅=;(4)()n n n ab a b =⋅.【练习题】1、 化简84416(0,0)x y x y <<得( )A.22x yB.2xyC.24x yD.22x y -2、 2110323(3)(0.002)10(52)(3)8π----+--+-= . 3、 526526-++= .4、 132123321(4)()4(0.1)()ab a b ---⋅= . 5、 已知11223a a-+=,求下列各式的值.(1)1a a -+;(2)22a a -+;(3)33221122a aa a ----.二.对数与对数运算1. 对数定义:若(0,1)b a N a a =>≠且,则b 叫做以a 为底N 的对数,记作log a b N =,a 叫做底,N 叫做真数.(2)对数恒等式:log (0,10)a N a N a a N =>≠>且,(3)对数换底公式:log log log a b a N N b =(4)对数的性质:①负数与零没有对数;②log 1a a =,log 10a =;③log log 1a b b a ⋅=(5)常用对数:以10为底的对数10log N 叫做常用对数,简记作lg N ; 自然对数:以e 为底的对数log e N 叫做自然对数,简记作ln N 。
指数函数和对数函数知识点总结

指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。
2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。
M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。
高中数学必修一第四章指数函数与对数函数知识点总结全面整理(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结全面整理单选题1、若函数f(x)=ln(ax+√x2+1)是奇函数,则a的值为()A.1B.-1C.±1D.0答案:C分析:根据函数奇函数的概念可得ln(−ax+√x2+1)+ln(ax+√x2+1)=0,进而结合对数的运算即可求出结果.因为f(x)=ln(ax+√x2+1)是奇函数,所以f(-x)+f(x)=0.即ln(−ax+√x2+1)+ln(ax+√x2+1)=0恒成立,所以ln[(1−a2)x2+1]=0,即(1−a2)x2=0恒成立,所以1−a2=0,即a=±1.当a=1时,f(x)=ln(x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;当a=−1时,f(x)=ln(−x+√x2+1),定义域为R,且f(−x)+f(x)=0,故符合题意;故选:C.2、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I 1I 2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍. 故选:B.3、设a =log 2π,b =log 6π,则( ) A .a −b <0<ab B .ab <0<a −b C .0<ab <a −b D .0<a −b <ab 答案:D分析:根据对数函数的性质可得a −b >0,ab >0, 1b−1a <1,由此可判断得选项.解:因为a =log 2π>log 22=1,0=log 61<b =log 6π<log 66=1,所以a >1,0<b <1,所以a −b >0,ab >0,故排除A 、B 选项; 又1b −1a =a−b ab=log π6−log π2=log π3<log ππ<1,且ab >0,所以0<a −b <ab ,故选:D.4、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0.5、已知a=log20.6,b=log20.8,c=log21.2,则()A.c>b>a B.c>a>bC.b>c>a D.a>b>c答案:A分析:由对数函数得单调性即可得出结果.∵y=log2x在定义域上单调递增,∴log20.6<log20.8<log21.2,即c>b>a.故选:A.6、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m+n|−|m−n|,∵n<m<0,∴m+n<0,m−n>0,∴原式=−(m+n)−(m−n)=−2m.故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可.7、已知a=ln1,b=30.3,c=1og54,则a,b,c的大小关系是()3A.a<b<c B.b<a<c C.a<c<b D.c<a<b答案:C解析:分别将a,b,c与0,1比较大小,从而得到a,b,c的大小关系.<ln1=0,b=30.3>30=1,0=log51<c=1og54<log55=1,所以可知b>c>a 因为a=ln13故选:C8、方程log2x=log4(2x+3)的解为()C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;设D的坐标为(t,0),由题得△AOB∽△CBD,则有1220=128−20t−20,解可得t=200,所以选项C正确;当x=128时,y=216,所以y的最大值是216.所以选项D正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、(多选题)下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(−1)26B .343和13-43C .212和414D .4−32和(12)−3答案:BC分析:根据分数指数幂的定义以及运算法则逐个验证与化简,即可判断选择.A 不符合题意,(-1)13和(−1)26不符合分数指数幂的定义,但(-1)13=√-13=-1,(-1)26=√(-1)26=1; B 符合题意,13-43=343.C 符合题意,414=√224=212;D 不符合题意,4−32和(12)−3均符合分数指数幂的定义,但4-32=1432=18,(12)−3 =23=8.故选:BC小提示:本题考查分数指数幂的定义以及运算法则,考查基本分析判断与化简能力,属基础题.11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.填空题12、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______. 答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.13、若函数f(x)={2x+2,x≤1,log2(x−1),x>1在(−∞,a]上的最大值为4,则a的取值范围为________.答案:[1,17]分析:根据函数解析式画出函数图象,再根据指数函数、对数函数的性质判断函数的单调性,再求出f(x)= 4时x的值,即可得解.解:因为f(x)={2x+2,x≤1,log2(x−1),x>1,当x∈(−∞,1]时,易知f(x)=2x+2在(−∞,1]上单调递增,当x∈(1,+∞)时,f(x)=log2(x−1)在(1,+∞)上单调递增.作出f(x)的大致图象,如图所示.由图可知,f(1)=4,f(17)=log2(17−1)=4,因为f(x)在(−∞,a]上的最大值为4,所以a的取值范围为[1,17].所以答案是:[1,17]14、函数f(x)=4+log a(x−1)(a>0且a≠1)的图象恒过定点_________ 答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题15、已知函数f(x)=ln(x+a)(a∈R)的图象过点(1,0),g(x)=x2−2e f(x).(1)求函数f(x)的解析式;(2)若函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,求整数k的值;(3)设m>0,若对于任意x∈[1m,m],都有g(x)<−ln(m−1),求m的取值范围.答案:(1)f(x)=lnx;(2)k的取值为2或3;(3)(1,2).解析:(1)根据题意,得到ln(1+a)=0,求得a的值,即可求解;(2)由(1)可得y=ln(2x2−kx),得到2x2−kx−1=0,设ℎ(x)=2x2−kx−1,根据题意转化为函数y=ℎ(x)在(1,2)上有零点,列出不等式组,即可求解;(3)求得g(x)的最大值g(m),得出g(x)max<−ln(m−1),得到m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),结合ℎ(m)单调性和最值,即可求解.(1)函数f(x)=ln(x+a)(a∈R)的图像过点(1,0),所以ln(1+a)=0,解得a=0,所以函数f(x)的解析式为f(x)=lnx.(2)由(1)可知y=lnx+ln(2x−k)=ln(2x2−kx),x∈(1,2),令ln(2x2−kx)=0,得2x2−kx−1=0,设ℎ(x)=2x2−kx−1,则函数y=f(x)+ln(2x−k)在区间(1,2)上有零点,等价于函数y=ℎ(x)在(1,2)上有零点,所以{ℎ(1)=1−k<0ℎ(2)=7−2k>0,解得1<k<72,因为k∈Z,所以k的取值为2或3.(3)因为m>0且m>1m ,所以m>1且0<1m<1,因为g(x)=x2−2e f(x)=x2−2x=(x−1)2−1,所以g(x)的最大值可能是g(m)或g(1m),因为g(m)−g(1m )=m2−2m−(1m2−2m)=m2−1m2−(2m−2m)=(m−1m )(m+1m−2)=(m−1m)⋅(m−1)2m>0所以g(x)max=g(m)=m2−2m,只需g(x)max<−ln(m−1),即m2−2m<−ln(m−1),设ℎ(m)=m2−2m+ln(m−1)(m>1),ℎ(m)在(1,+∞)上单调递增,又ℎ(2)=0,∴m2−2m+ln(m−1)<0,即ℎ(m)<ℎ(2),所以1<m<2,所以m的取值范围是(1,2).小提示:已知函数的零点个数求解参数的取值范围问题的常用方法:1 、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2 、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。
指数、对数函数专题(强烈推荐)

专题 :指 数 和 对 数第一部分:指数、对数运算一,指数运算1,运算法则(建议学生掌握语言叙述)===÷=⋅r sr s r s r ab a a a a a )()(2,分数指数幂=nm a3,化简⎩⎨⎧=a aa nnZ k k n Z k k n ∈+=∈=,122,例题练习:1、用根式的形式表示下列各式)0(>a(1)51a = (2)34a = (3)35a -= (4)32a -=2、用分数指数幂的形式表示下列各式:(1)34y x = (2))0(2>=m mm(3)= (4)= ; (5)a a a = ;3、求下列各式的值(1)238= ;(2)12100-= ; (3)31()4-= ;(4)3416()81-=(5)122[(]-= (6)(1221⎡⎤⎢⎥⎣⎦= (7)=32644.化简(1)=••1274331aa a (2)=÷•654323a a a (3)=÷-•a a a 9)(34323(4)322aa a •= (5)3163)278(--b a =5.计算(1)43512525÷-(2) (3)210319)41()2(4)21(----+-⋅-()5.0212001.04122432-⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛-- (5)48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π二,对数运算 运算法则:=====NMaM M M M MN a n a n a a N a log 3log )(log )(log ,2,121log , 倒数公式)换底公式)1log (,6log ,5log (,4===b b b a n a a m对数习题练习:一、选择题1、以下四式中正确的是( )A 、log 22=4B 、log 21=1C 、log 216=4D 、log 221=41 2、下列各式值为0的是( )A 、10B 、log 33C 、(2-3)°D 、log 2∣-1∣ 3、251log 2的值是( )A 、-5B 、5C 、51D 、-514、若m =lg5-lg2,则10m 的值是( )A 、25B 、3C 、10D 、15、设N =3log 12+3log 15,则( )A 、N =2B 、N =2C 、N <-2D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( ) A 、 a >5或a <2 B 、 25<<a C 、 23<<a 或35<<a D 、 34<<a7、 若log [log (log )]4320x =,则x -12等于( ) A 、 142 B 、122 C 、 8D 、 48、334log的值是( ) A 、 16 B 、 2 C 、 3 D 、 49、 nn ++1log(n n -+1)等于( ) A 、1 B 、-1 C 、2D 、-2二、填空题10、用对数形式表示下列各式中的x10x =25:____; 2x =12:____;4x =61:____ 11、lg1+lg0.1+lg0.01=_____________12、Log 155=m,则log 153=________________13、14lg 2lg 2+-+∣lg5-1∣=_________ 14.(1).12a a-=, 则 log 12 3=(2).6log 18log )3(log 2626+= . (3)____________50lg 2lg 5lg 2=⋅+; (4)5log 38log 932log 2log 25333-+- =________ (5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________15 、若lg2=a ,lg3=b ,则log 512=________ 19、 3a =2,则log 38-2log 36=________16、 若2log 2,log 3,m n a a m n a +===_______ 21、 lg25+lg2lg50+(lg2)2=三、解答题17、求下列各式的值⑴2log 28 ⑵3log 39 ⑶252log 1 ⑷373log 118、求下列各式的值⑴lg10-5 ⑵lg0.01 ⑶log 281⑷log 2718119、求lg 25+lg2·lg25+lg 22的值20、化简计算:log 2251·log 381·log 59121. 化简:()()24525log 5+log 0.2log 2+log 0.5.专题训练:比较大小1,___,)21(,8,45.1348.029.01则三者大小关系为设-===y y y2,(2012天津)已知___,,,2log 2,)21(,258.02.1的大小关系是则c b a c b a ===-3,(2010安徽文)___,52,52,53525352则三者的大小关系是设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=c b a 4,__,,.6.3log ,2.3log ,6.3log 442的大小关系的则已知c b a c b a === 5,已知3log 21log ,5log 21,3log 2log ,10a a a a a z y x a -==+=<<,这三者的大小关系为______6,(2012全国卷)____,,,,2log ,ln 215的大小关系则已知z y x ez y x -===π7,c b a c b a cba22121log )21(,log )21(,log 2,,=== 均为正数,设,则这三者的关系是_____ 8,2log 31,21log 31,3log 21,31log 21的大小关系式是 (A)2log 31<21log 31<3log 21<31log 21 (B)2log 31<3log 21<21log 31<31log 21 (C)3log 21<2log 31<21log 31<31log 21 (D)3log 21<2log 31<31log 21<21log 31 9,已知0)](log [log log )](log [log log )](log [log log 551533132212===z y x 则x,y,z 的大小关系是(A)x <y <z (B)y <z <x (C)z <x <y (D)z <y <x10,(选做题)已知2x =3y =5z 且x,y,z 为正数,则2x,3y,5z 的大小关系为 (A) 2x <3y <5z (B) 3y <2x <5z (C) 5z <3y <2x (D) 5z <2x <3y 1,1,(选做题)log n (n -1)与log n+1n(n >2且n ∈N)的大小关系为 (A)log n (n -1)>log n+1n (B) log n (n -1)<log n+1n (C)log n (n -1)=log n+1n (D) 不能确定12,设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q << 13,若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c14,设2lg ,(lg ),a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>15,设2135,2ln ,2log -===c b a ,则c b a ,,三者的大小关系为___________第二部分,指数函数和对数函数一,指数函数1,定义: 注意:的取值范围a 定义域: 值域: 单调性: 奇偶性:对称性:)1(1x x xx a a a y a y -=⎪⎭⎫⎝⎛==即和过定点:抽象形式:)()()(y f x f y x f ⋅=+ 函数图象的平移: 一个特殊的图象:xa y =2,底数不同时,函数图象的相对位置关系指数函数综合练习:1,函数y =(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠12,设25a b m ==,且112a b+=,则m =( ) A.10 B.10 C.20 D.1003,(2012四川文)函数(0,1)xy a a a a =->≠的图象可能是( )4,已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )A.124 B.112 C.18 D.385,给出下列结论:①当a <0时,(a 2)32=a 3;②na n =|a |(n >1,n ∈N *,n 为偶数);③函数f (x )=(x -2)12-(3x -7)0的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2且x ≠73;④若2x =16,3y =127,则x +y =7. 其中正确的是( )A .①②B .②③C .③④D .②④6,函数y =e x +e -xe x -e-x 的图像大致为( )二,对数函数 1,定义: 定义域: 值域 单调性: 奇偶性:对称性:对称关于和____log log 1x x y aa =过定点:抽象形式:)()()(y f x f y x f +=⋅ 2,函数图象的平移变换3,几个重要的函数图象()()()()xy x y x y x y a a a a log 4log 3)(log 2log 1=-=-==4,底数不同时,函数图象的相对位置关系对数函数综合训练:1,当a >1时,函数y=a -x 与y=log a x 的图像是2,函数)45(log 1xx y -=+的定义域是(A)(-1,0) (B)(0,log 45) (C)(-1,log 45) (D) (-1,0)∪(0,log 45) 3,函数)763lg(2++-=x x y 的值域是(A)]31,31[+- (B)[0,1] (C)[0,+∞) (D){0}4,函数f(x)=log 0.3|x 2-6x+5|的单调增区间是(A)(-∞,3] (B)(-∞,1)和(3,5) (C)[3,+∞) (D)(1,3)和[5,+∞)5, 函数f (x )=lg ⎝⎛⎭⎫21-x -1的图像关于( )A .y 轴对称B .直线x =1对称C .点(1,0)对称D .原点对称6,设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2011)=8,则f (x 21)+f (x 22)+…+f (x 22011)=( ) A .4 B .8C .16D .2log a 87,函数|1|||ln --=x e y x 的图象大致是 ( )8,设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)三,幂函数1,幂函数的概念:形如 ax y = 类型的函数是幂函数。
高一指数与对数知识点总结

高一指数与对数知识点总结引言:高中数学作为普通高中课程的一部分,是培养学生逻辑思维和分析能力的重要学科之一。
在高一数学学习的基础上,指数与对数是一项重要的数学知识点。
本文将对高一指数与对数的知识进行总结,并对其应用领域进行简要介绍。
一、指数的基本概念和运算法则指数是数学中的一种表示形式,用来表示某个数连乘的次数。
指数由底数和指数数两个部分组成,有以下几个基本概念:1. 底数:指数运算的基础数,可以是实数或者是正实数。
2. 指数:表示底数连乘的次数,一般为整数,也可以是零或负数。
在运算法则方面,指数运算有以下几种基本规律:1. 同底数相乘:指数相加。
2. 同底数相除:指数相减。
3. 基数相同,指数相同:结果相同。
二、对数的基本概念和运算法则对数是指数运算的逆运算,用来解决指数运算中的问题。
对数由底数、真数和对数三个部分组成,有以下几个基本概念:1. 底数:对数运算中的基础数,必须是正实数且不等于1。
2. 真数:对数运算的结果,必须是正实数。
3. 对数:表示底数为多少时,真数得到的结果。
在运算法则方面,对数运算有以下几个基本规律:1. 对数的乘法法则:两个对数相加,等于它们对应的真数相乘。
2. 对数的除法法则:两个对数相减,等于它们对应的真数相除。
3. 对数的幂运算法则:一个对数乘以指数,等于它们对应的真数的原指数幂运算。
三、指数与对数的应用领域指数与对数在实际应用中有广泛的应用,以下是其中的几个领域:1. 科学计数法:指数与对数可以用来表示非常大或非常小的数值,常用于物理、化学等科学领域。
2. 经济学:指数与对数可以用来计算物价指数、通胀率等经济指标,对于了解经济发展具有重要意义。
3. 生物学:指数与对数在生物学研究中可以用来表示生物系数、遗传概率等,有助于深入了解生物现象。
4. 金融学:指数与对数在金融学中可以用来计算股票指数、利率复利等,对于投资和金融决策具有重要参考价值。
结论:指数与对数是高一数学中的重要知识点,掌握指数与对数的基本概念和运算法则对于学习后续数学知识和应用领域具有重要意义。
高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
指数与对数知识点总结

指数与对数知识点总结指数和对数是数学中重要的概念和工具。
它们广泛应用于科学、工程和金融领域,具有重要的理论和实用价值。
本文将对指数和对数的基本概念、性质和应用进行总结。
一、指数的基本概念和性质1.1 指数的定义指数是表示一个数乘积的幂运算。
设 a 是一个非零实数,n 是一个正整数,那么 a 的 n 次幂可以表示为 a^n。
其中,a 称为底数,n 称为指数,a^n 读作“a 的 n 次方”。
1.2 指数的性质(1)指数为正数时,指数运算具有如下性质:a^m * a^n = a^(m + n) (指数相加,底数不变)(a^m)^n = a^(m * n) (指数相乘,底数不变)(ab)^n = a^n * b^n (乘法公式,底数相乘,指数不变)(a/b)^n = a^n / b^n (除法公式,底数相除,指数不变)(2)指数为负数时,指数运算的性质如下:a^(-n) = 1 / a^n (负指数时,求倒数)1.3 底数为 e 的指数函数以自然对数的底数 e 为底的指数函数称为自然指数函数,记为 f(x)= e^x。
1.4 对数的定义和性质对数是指数运算的逆运算。
设 a 是一个正实数,b 是一个正实数且不等于 1,如果 b^x = a,那么称 x 为以 b 为底 a 的对数。
记作 x =log_b(a),读作“以 b 为底 a 的对数”。
(1)对数的基本性质:log_b(1) = 0 (对数的底数为 1 时,值为 0)log_b(b) = 1 (对数的底数为自身时,值为 1)log_b(a * c) = log_b(a) + log_b(c) (对数相乘,变为求和)log_b(a / c) = log_b(a) - log_b(c) (对数相除,变为求差)log_b(a^n) = n * log_b(a) (对数的幂运算,变为乘法)二、指数与对数的应用2.1 指数函数的应用指数函数常用于描述增长或衰减的趋势,如人口增长、金融利率等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1《指数与对数运算》专题复习
(一)指数与指数幂运算
¤知识要点:
1. 若n x a =,则x 叫做a 的n
n >1,且n N *∈. n 次方根具有如下性质:
(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零.
(2)n 次方根(*1,n n N >∈且)有如下恒等式:
n a =
,||,a n a n ⎧=⎨⎩为奇数为偶数
;=(a ≥0).
2.
规定正数的分数指数幂:m
n a (0,,,1a m n N n *>∈>且);
1m n m n a a -=.
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质),,0(R s r a ∈> (1)r a ·s r r a a +=;
(2)rs s r a a =)(; (3)s r r a a ab =)(
¤例题精讲
:
【例1】求下列各式的值:
(1*1,n n N >∈且); (2
【例2】化简:
(1)2115
11336622(2)(6
)(3)a b a b a b -÷-;
(2
a >0,
b >0);
(3
(二)对数运算
¤知识要点:
1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数
2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的
对数叫自然对数,并把自然对数log e N 简记作ln N
3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.
4. 负数与零没有对数;log 10a =, log 1a a =
5.对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么:
○
1 M a (log ·=)N M a log +N a log ; ○
2 =N
M a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式
a
b b
c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). ¤例题精讲:
【例1】求值
(1)2log 8 (2)5log 25 (3)
(4)3log 1+ (5)2lg 2lg 2lg5lg5+⋅+
【例2】(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;
(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.。