幕墙预埋件计算
幕墙预埋件计算:槽型预埋件计算

第七章幕墙预埋件计算(-)基本数据玻璃及铝板最大分格尺寸bXh = 2. lm×O. 9m预埋件计算高度按H = 100m计地震烈度按8度设计玻璃采用8+9+6钢化中空玻璃,玻璃强度。
=8.4 kN∕cm2(84N∕mm2)铝材采用LD31-RCS 类型,铝材强度fa = 8. 42 kN∕cm2(84. 2N∕mm2)预埋件钢材采用1级钢(或Q235品种),钢材强度f s= 21.5 kN∕cm2 (215N∕mm2)上海地区基本风压3o=0. 55 kN∕m2体型系数禺=L5 (综合北京和上海规范取用)瞬时风压阵风系数β" 2.25风压高度变化系数(因此处建筑物林立之市区,故地面粗糙度类别属C类),当建筑物高度为100m时,μz=l. 79按照规程,高层建筑基本风压应再乘放大系数l.lo(-)荷载计算(单位荷载)1.风荷载风荷载标准值ωk=1. lβz ∙ μz∙ μs ∙ ω°ωk= 2. 25× 1. 79X 1. 5X 1. 1X0. 55 = 3. 65 kN∕m2风荷载设计值:ω =1. 4×ωk= 5. 11 kN∕m22.自重荷载(1)玻璃自重(按8+6mm厚计重)厚0. 8 + 0. 6 = 1. 4 cm,容重为γg= 25. 6 kN∕m3单位面积自重标准值原二1.4X25.6/100=0. 3584 kN∕m2单位面积自重设计值g产1.2X0. 3584 = 0. 43 kN∕m2(2)横梁自重计算横梁自重按gb= 0. 04 kN/m计横梁自重设计值g2= 1.2X0.04 = 0. 048 kN/m(3)立柱自重计算立柱自重按g,=0. 11 kN/m计立柱自重设计值g3= 1.2X0. 11 = 0. 132 kN/m⑷铝板自重单位面积铝板自重设计值4= 1. 2×0. 1 = 0. 12 kN/m?(三)地震荷载(1)玻璃地震荷载标准值及=3×0. 16×0. 43 = 0. 2064 kN/m2玻璃地震荷载设计值Eι = 1.3E g= 1.3×0. 2064 = 0.27 kN/m2(2)横梁地震荷载标准值及二0.48X0. 04 = 0.0192 kN/m横梁地震荷载设计值E2= 1.3E b= 1.3X0.0192 = 0. 025 kN/m(3)立柱地震荷载标准值氏=0. 48X0. 11 = 0. 0528 kN/m立柱地震荷载设计值E3= 1.3E L= 1.3X0. 0528 = 0. 069 kN/m(4)铝板地震荷载标准值Ea= 0. 48×0. 1 = 0. 048 kN/m2铝板地震荷载设计值E尸1.3E a= 1.3X0. 048 = 0. 0624 kN/m2(四)外挂式玻璃幕墙槽型预埋件计算1•本工程采用定型预埋件,其构造尺寸如附图所示。
幕墙预埋件定额

幕墙预埋件定额幕墙预埋件是指在建筑幕墙安装之前,事先埋设在建筑结构中的一种零部件。
它们通过固定在混凝土或钢结构中,用于连接和支撑幕墙系统,以增强幕墙的稳定性和安全性。
在幕墙工程中,预埋件的使用是非常重要的,因为它们直接影响幕墙系统的性能和质量。
幕墙预埋件的定额是指在幕墙工程中预埋件的使用量和规格的标准。
根据国家相关标准和规范,幕墙预埋件的定额应满足以下要求:1. 数量定额:根据幕墙设计和结构要求,确定预埋件的数量。
这包括预埋件的总数、各类预埋件的数量以及各类预埋件在不同位置的数量。
数量定额是幕墙预埋件工程施工的基础,需要根据实际情况进行准确计算和合理安排。
2. 规格定额:根据幕墙设计和结构要求,确定预埋件的规格。
规格定额包括预埋件的尺寸、材质、型号等信息。
不同类型的幕墙预埋件有不同的规格要求,需要根据实际情况选择合适的规格。
规格定额的准确性和合理性直接影响到幕墙系统的安装和使用效果。
3. 施工定额:根据幕墙预埋件的施工工艺和要求,确定预埋件的施工定额。
施工定额包括预埋件的埋设深度、埋设位置、固定方式等信息。
施工定额是保证幕墙预埋件工程施工质量的重要依据,需要严格按照规范进行施工,确保预埋件的稳固和可靠。
4. 质量定额:根据幕墙预埋件的质量要求,确定预埋件的质量定额。
质量定额包括预埋件的材质、强度、耐腐蚀性等要求。
预埋件的质量直接关系到幕墙系统的使用寿命和安全性,需要严格控制预埋件的质量,确保符合相关标准和规范的要求。
幕墙预埋件定额的制定和执行是幕墙工程质量控制的重要环节。
只有严格按照定额要求进行设计、选型、施工和验收,才能确保幕墙预埋件的质量和安全性。
同时,定额的合理性和准确性也需要根据实际工程情况进行调整和优化,以满足幕墙系统的实际需求。
总结起来,幕墙预埋件定额是保证幕墙工程质量的重要依据,包括数量定额、规格定额、施工定额和质量定额。
只有合理制定和严格执行预埋件定额,才能确保幕墙预埋件工程的质量和安全性,提高幕墙系统的性能和可靠性。
提高幕墙预埋件一次安装合格率(图文并茂)

确认方法 查看记录现场考
核 现场验证
现场验证 现场验证
现场验证 讨论分析 现场验证 现场验证 查看记录 现场验证
标准
培训考核合格率100%
有明确的质量奖罚制 度
机械、设备完好无损
有详细的验收记录及 接受台账
采用电焊点焊 加固,偏差小于10mm 避开钢筋密集区,偏
差小于10mm
保证8人以上
同结构预埋法
后植筋法
为什么我们要选择这一课题呢?
表2-4 裙房三层埋件安装问题点数统计表(300个基数点)
序序号号
记录项目 质 量 问题
检查标准 频 数 频 率 (%)
累计频数率量(%)
11 继续标高以偏此差 质量水平3施6 >工10m将m 白42.8白6 浪费掉4326.86
标高偏差大
≤10mm
定位牢固,但安装加固时间增加,且有些部位无法实现 焊接加固,需要另想办法解决。
混凝土浇筑前联合技术员、质检员以及安装队伍对埋件 的安装情况再进行复验,保证偏位超出要求控制在5%以 下
比较对策
对策二可以根据安装的丌同阶段, 投 入其对应需要的劳动力,相比对
策一 更加灵活、经济合理
对策一:可很好的解决对策二:只要和
对策二:改变预埋安装位置
对策一:用扎丝绑扎
3
加固措 施丌当
对策二:采用电焊定位
安装后
4 未进行 复核
二次验收复核
附表2-6对策分析、评价选择表
对策分析
劳动力能够得到保证,甚至有时出现富余,所以相对 丌 是很经济
确定每层埋件安装数量后,通过经验公式计算出所需要 投入的劳动力,灵活性较强,可以减少没必要的劳动力 投入 加工时,埋件锚板和锚筋分开,现场安装时进行焊接成 型,这样可以有效的避开结构钢筋,保证埋件位置的准 确性,但是由于是现场焊接,埋件的焊接质量难以全部 保证, 通过不设计院协商将埋件的安装位置进行调整,避免埋 件安装不钢筋绑扎、模板支设工序出现交叉作业。 对策比较简单,但约束力丌强,受到踩压容易移动,其 效果可能丌会很明显
幕墙计算书

计算书(一)、工程概况(二).设计参数1.玻璃幕墙最高标高为62m,取62m处风压变化系数μz=1.482.基本风压W=0.35KN/m23.年最大温差 : △T=80 C4.玻璃厚度取: 6 1.2=7.2mm(三)、荷载及作用1. 风荷载标准值计算:WK =βD·μS·μZ·WWK:作用在幕墙上的风荷载标准值KN/m2;βD :阵风风压系数, 取βD=2.25;μS:风荷载体型系数±1.5;μZ:60米高处风压变化系数1.48(C类);10米高处风压变化系数0.71(C类)W:基本风压:北京地区取0.35KN/m2WK1=βD·μS·μZ·W=2.25×(±1.5)×1.48×0.35 =±1.78 KN/m2WK2=βD·μS·μZ·W=2.25×(±1.5)×0.71×0.35=±0.838KN/m2按《规范》取WK2=±1.0KN/m22.幕墙构件重力荷载玻璃为6(钢化)+12A+6(钢化)Gb=25.6 0.006 2=0.3072KN/m2幕墙所用铝材、附件:GL=0.11KN/m2单元玻璃幕墙自重荷载:G = Gb + GL=0.3072+0.11=0.42KN/m2幕墙单元构件重量:G1=G·L1·b1=0.42 1.228 2.5=1.29KN幕墙最大玻璃块重量:G2=Gb•L2·b2=0.3072×1.228×2.157=0.81KN3.玻璃幕墙构件所受的地震作用:A.幕墙平面外的水平地震作用:qE K =βE·αm a x·G1qE K:水平地震作用标准值(KN);βE:动力放大系数取3.0;αm a x:水平地震影响系数最大值按8度抗震设防设计取0.16G:幕墙构件(墙面和骨架)的重力: G1=1.29KN;qE K =βE·αh m a x·G1=3 0.16 1.29=0.62KNB.幕墙平面内的垂直地震作用:PE G =βE·αm a x·G1PE G:幕墙构件在平面内的垂直地震作用:KN/m2βE:动力放大系数,取3.0αv m a x:地震垂直作用影响系数,按烈度8度抗震设计设防取0.08G1:单元玻璃幕墙构件自重1.29KNPE G=3 0.08 1.29=0.31KNC.垂直于幕墙平面分布水平地震作用,qE = FE k/A=βE·αm a x·G1/AA:玻璃幕墙构件面积1.22832.5=3.07m2qE=0.62/3.07=0.2KN/m24. 玻璃幕墙所受荷载与作用效应的组合:(强度计算时用)A.水平荷载和作用效应组合:(最不利组合)S1 = ΨW·γW·WK+ΨE·γE·qEa.水平荷载和作用效应的分项系数γW :风荷载分项系数, γW=1.4γE :地震作用分项系数,γE=1.3b.水平荷载和作用效应的组合系数ΨW :风荷载组合系数, ΨW=1.0ΨE :地震作用组合系数,ΨE=0.6WK :风荷载标准值,WK=1.78KN/m2qE : 垂直于幕墙平面分布水平地震作用,qE=0.2KN/m2S11=1.4 1.0 1.78+0.6 1.3 0.2 =2.65KN/m2S12=1.4 1.0 1.0+0.6 1.3 0.2 =1.56KN/m2B.垂直方向荷载和作用效应组合:(最不利组合)S2 =ΨG·γG·SG+ΨE·γE·qEa.荷载和作用组合的分项系数γG :重力荷载分项系数, γG=1.2γE :地震荷载分项系数, γE=1.3b.垂直荷载和效应组合系数ΨG :重力荷载组合系数,ΨG=1ΨE :地震荷载组合系数,ΨE=1SG : 单元玻璃幕墙构件重量,SG=G=1.29KNqE : 单元玻璃幕墙构件平面内的垂直地震作用,qE=0.31KNS2=1×1.2×1.29+1×1.3×0.31=1.95KN5. 玻璃幕墙所受荷载与作用效应的组合:(挠度计算时用)水平荷载和作用效应组合:(最不利组合)S31 =ΨW·rW·WK+ΨE·rE·qEa.水平荷载和作用效应的分项系数rW :风荷载分项系数,rW=1.0rE :地震作用分项系数,rE=1.0b.水平荷载和作用效应的组合系数ΨW :风荷载组合系数,ΨW=1ΨE :地震作用组合系数,ΨE=0.6WK :风荷载标准值,WK=1.78KN/m2qE : 垂直于幕墙平面分布水平地震作用,qE=0.2KN/m2S31=1.0 1.0 1.78+0.6 1.0 0.2=1.9KN/m2S32=1.0 1.0 1.0+0.6 1.0 0.2=1.12KN/m2(四)、玻璃幕墙的验算1.幕墙杆件的强度验算:幕墙标高最高的为LMC004,标高为61.10m,竖挺地脚间距为2500,水平间距为1228.5;地脚间距最大的为LM0O2,标高为9.6m,竖挺水平间距为1228.5mm,地脚间距为4100mm。
石材幕墙工程结构设计计算书

石材幕墙工程结构设计计算书设计日期_______________设计者_____________校对者_____________审核者_____________批准者_____________目录一. 计算引用的规范、标准及资料1.幕墙设计规范2.建筑设计规范3.铝材规范4.金属板及石材规范5。
玻璃规范6。
幕墙设计规范7.胶类及密封材料规范8。
门窗及五金件规范9。
《建筑结构静力计算手册》10.土建图纸二、基本参数1.幕墙所在地区2。
地区粗糙度分类等级3.抗震烈度三、幕墙承受荷载计算1.风荷载标准值计算:2.垂直于幕墙平面的分布水平地震作用标准值:3。
作用效应组合:四、幕墙立柱计算1.立柱型材选材计算:2.选用立柱型材的截面特性:3。
立柱的内力分析:4。
幕墙立柱的抗弯强度及抗剪强度验算:5.幕墙立柱的挠度验算:五、幕墙横梁计算1.横梁型材选材计算:2.确定材料的截面参数:3。
选用横梁型材的截面特性:4.幕墙横梁的抗弯强度计算:5。
横梁的挠度计算:6。
横梁的抗剪计算:六、石板的选用与校核1。
石板板块荷载计算:2。
石板的抗弯设计:3.石板的剪应力校核:七、连接件计算1。
横梁与角码间连结:2。
角码与立柱连接:3.立柱与主结构连接八、幕墙埋件计算(土建预埋)1。
荷载及受力分析计算:2。
埋件计算:3.锚板总面积校核:4.锚筋长度计算:九、幕墙焊缝计算1.受力分析:2。
焊缝特性参数计算:3.焊缝校核计算:十、立柱连接伸缩缝计算十一、耐候胶胶缝计算一。
计算引用的规范、标准及资料1。
幕墙设计规范《建筑幕墙》JG3035-1996《玻璃幕墙工程技术规范》JGJ102-2003《金属与石材幕墙工程技术规范》JGJ133—2001《建筑幕墙物理性能分级》GB/T15225-94《建筑幕墙空气渗透性能测试方法》GB/T15226—94《建筑幕墙风压变形性能测试方法》GB/T15227-94《建筑幕墙雨水渗透性能测试方法》GB/T15228—94《建筑幕墙保温性能测试方法》GB8484《建筑幕墙平面内变形性能检测方法》GB/T18250-2000《建筑幕墙抗震性能振动台试验方法》GB/T18575-20012.建筑设计规范:《建筑结构荷载规范》GB50009-2001《钢结构设计规范》GB50017-2003《高层民用钢结构技术规程》JGJ99-98《建筑设计防火规范》GBJ16—2001《高层民用建筑设计防火规范》GB50045-2001《建筑物防雷设计规范》GB50057—2000《中国地震烈度表》GB/T17742—1999 《建筑抗震设计规范》GB50011—2001《建筑抗震设防分类标准》GB50223—1995《高层建筑混凝土结构技术规程》JGJ3—2002《混凝土结构设计规范》GB50010-2002《建筑结构可靠度设计统一标准》GB50068-2001《建筑装饰工程施工质量验收规范》GB50210-2001《建筑钢结构焊接规程》GB/T8162《碳钢焊条》GB/T5117—1995《铝型材截面几何参数算法及计算机程序要求》YS/T437—20003。
幕墙计算教材

幕墙计算1、横框计算2、竖框计算3、玻璃计算4、连接计算5、预埋件设计、计算6、焊缝计算一、 幕墙横框的计算受力模型:横梁以立柱为支承,按立柱之间的距离作为梁的跨度,梁的支撑条件按简支考虑,其弯距见表5-31。
简支梁内力和挠度表 表5-31荷载情况左端反力R A右端反力R B最大弯距M max最大挠度u maxPPPa2P 2P 4Pl EIPl 483⎪⎭⎫⎝⎛-2224324l a EI Pl lP blP a lP ab 3)(2932ab a EIl P b+)2(b c lP b+)2(b a lP b+)2(b c lP b+-+)2[(6c a EIl P b243332c c a a l a --+2ql 2ql 82ql EI ql 384544ql 4ql 122ql EIql 1204)1(2la ql -)1(2l a ql -)43(24222la ql -)25825(24044224b a l a EI ql +-4ql4ql 162ql EIql 1024194受力状态:横梁是双向受弯构件,在水平方向由板传来风力、地震力;在竖直的方向由板和横梁自重产生竖向弯距,见图5-14。
1、强度M x/γW x+M y/γW y≤f a式中:Mx -- 横梁绕x轴(垂直于幕墙平面方向)的弯距设计值(KN·m); My——横梁截面绕y轴(幕墙平面内方向)幕墙平面内方向的弯距设计值(KN·m);Wx-横梁截面绕x轴(垂直于幕墙平面方向)的截面抵抗矩(mm3) Wy-横梁截面绕y轴(幕墙平面内方向)的截面抵抗矩(mm3)γ-塑性发展系数,可取为1.05;f a-铝型材受拉强度设计值(KN·m2)铝合金牌号状态强度设计值 fa受拉、受压受剪LD30 CZ 84.2 48.9 CS 191.1 110.8LD31 RCS 84.2 48.9 CS 138.3 80.2①横梁受风荷载和地震作用时M x =1/12qy×B2(B≤H时)横梁双向受弯M x =1/8qy×B2(B>H时)q y=(1.0×1.4×W k+0.6×1.3×q ey)×Bqy-荷载组合值(KN/m);W k =βZ·μS·μZ·WO式中:Wk-作用在幕墙上的风荷载标准值(KN/m2);βZ-瞬时风压的阵风系数,取2.25;μS-风荷载体型系数,竖直幕墙外表面可按±1.5取用;μZ-风压高度变化系数;应按现行国家标准《建筑结构荷载规范》GBJ9采用。
幕墙预埋件计算书
幕墙预埋件计算书1荷载计算1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算:wk =βgzμzμs1w……7.1.1-2[GB50009-2001 2006年版]上式中:wk:作用在幕墙上的风荷载标准值(MPa);Z:计算点标高:20m;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m按5m计算):βgz =K(1+2μf)其中K为地面粗糙度调整系数,μf为脉动系数A类场地:βgz =0.92×(1+2μf) 其中:μf=0.387×(Z/10)-0.1B类场地:βgz =0.89×(1+2μf) 其中:μf=0.5(Z/10)-0.16C类场地:βgz =0.85×(1+2μf) 其中:μf=0.734(Z/10)-0.22D类场地:βgz =0.80×(1+2μf) 其中:μf=1.2248(Z/10)-0.3对于C类地形,20m高度处瞬时风压的阵风系数:βgz=0.85×(1+2×(0.734(Z/10)-0.22))=1.9213μz:风压高度变化系数;根据不同场地类型,按以下公式计算:A类场地:μz=1.379×(Z/10)0.24当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地:μz=(Z/10)0.32当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;C类场地:μz=0.616×(Z/10)0.44当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;D类场地:μz=0.318×(Z/10)0.60当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于C类地形,20m高度处风压高度变化系数:μz=0.616×(Z/10)0.44=0.8357μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表7.3.1采用;2. 负压区-对墙面,取-1.0-对墙角边,取-1.8二、内表面对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。
幕墙工程材料计算规则
幕墙工程材料计算规则幕墙工程材料消耗量计算规则说明:1、本计算规则仅适用于投标预算报价。
2、材料消耗量指各项材料分摊到工程分项单位面积的用量,包括损耗率;3、材料消耗量计算有效位数保留小数点后两位,以立方米、吨为单位的可保留三位小数;4、预算所统计的各项材料通常指成品(不需再加工),其报价应包含制作、加工、包装运输、仓储、增值税金等一切费用;5、铝型材、钢材、铝塑板、蜂窝铝板、单层玻璃、镀锌钢板、不锈钢板等按原材料统计时,其预算单价必须考虑加工时的优化出材率(出裁率)、各种损耗、包装运输、仓储、增值税金等一切费用;6、各种原材料加工为成品时的利用率如下:铝材97%,钢材95%,单层玻璃85%,铝塑板80%,不锈钢板90%,镀锌铁皮85%;7、各种材料的正常损耗率如下:铝材6~8%,钢材6%,玻璃1~3%,石材1~2%,铝单板1~2%,铝塑板25%,镀锌铁皮25%,结构胶25%,耐侯胶30%,胶条5%,五金系统2%,不锈钢标准件5%,其它5%;8、铝型材的预算单价应考虑包装费及运输费用;9、石材、玻璃、铝板在计算工程量时不用扣除胶缝,但在计算单位含量时,石材、玻璃要按其净面积计算,铝板要按其展开面积计算含量。
10、玻璃、铝板、石材等为弧面或异型时,需单独统计和报价。
11、弧型幕墙的铝型材、钢材等需要弯弧时,应单独统计,另加弯弧加工费。
一、玻璃幕墙1、玻璃面材:分品种规格(弧面玻璃及其它异型玻璃单独统计)按图示尺寸以平米计算。
隐框玻璃幕墙不必扣除胶缝,明框幕墙玻璃应扣除一部分铝材占用面积(通常按玻璃嵌槽深度为15MM计算玻璃的净尺寸)。
2、钢材:以千克计(先计算长度,再折算成重量)。
(表面处理可另行列项按展开面积计算)3、铝型材:包括竖龙骨、横龙骨、玻璃附框、扣盖、扣座、压块、连接铝角码、撞角码等,先分规格计算长度,再乘以各自线密度,以千克计算重量。
(不同表面处理方式的铝材应分开列项)4、密封胶:先按图计算出不同胶缝的长度,再折算成支数来计算(通常包装500毫升密封胶可打16毫米宽*10毫米深胶缝3米,包装592毫升密封胶可打16毫米宽*10毫米深胶缝3.5米)。
建筑幕墙预埋件知识图解
建筑幕墙预埋件知识图解建筑幕墙依据不同的面板材料分为玻璃幕墙、金属幕墙和石材幕墙三大类,无论哪类幕墙,其承载结构体系与建筑主体结构的连接,通常都是通过预埋件或后加锚固件来实现的。
幕墙除了承受自重荷载外,还要承受风力、地震等荷载的影响,因此预埋件与建筑主体结构的连接是否可靠耐久,直接关系到幕墙的结构安全与使用寿命。
一、埋设件的分类及构成埋设件按其形成时序分为预埋件和后置埋件,其中预埋件分为爪式埋件和槽型埋件。
1.1预埋件预埋件是预先安置(埋藏)在结构内的构件.即在结构浇注时留设在结构中的由钢板和锚固筋的构件。
1.1.1 普通爪式埋件锚筋,锚板通过焊接而成锚筋可制成直形,弯形,弯钩型。
1.1.2 埋板带预留槽式埋件此种埋件在普通爪式预埋件基础上增加了预留槽,连接起来非常方便,及时在埋件位置误差较大的情况下,也可像普通埋件一样焊接处理,灵活性较大。
1.1.3 爪形埋件(A~F为几种常见类型,如图所示)。
1.1.4 槽型埋件金属槽可由钢板折弯,铸件,锻件制成。
锚筋与金属槽可制成一体,或焊接而成。
这种形式的预埋件具有体积小施工方便的优点,目前已经国产化,且已形成系列。
施工中常用到槽型埋件长度为300mm,锚筋长度为100mm或60mm。
槽型埋件与平板预埋件的优缺点对比槽型埋件为幕墙施工中常用的一种形式,由于其与平板式预埋件相比有较多的优点,因此槽型预埋件在幕墙工程中的应用逐渐增多。
(一)槽型预埋件与平板预埋件比较的优点1、从生产加工角度比较槽型预埋件加工工艺简单,质量检验方便,一般加工一个槽型预埋件的功效是加工一个平板预埋件功效的3倍。
2、从经济性角度比较槽型预埋件价格便宜,节省工程造价。
一个槽式埋件的重量约为2公斤左右,外加两个T型螺栓,一套槽型埋件的价格大概为25元左右。
而一个平板埋件的重量大约为6公斤左右,价格约为60元左右,槽型埋件的价格约为平板埋件的一半以上。
3.从施工的难易角度比较槽型埋件体积小,施工非常方便。
预埋件计算书
北京东方文化艺术中心幕墙预埋件计算书上海迪蒙幕墙工程技术有限公司2007年3月第一章单元体幕墙大面预埋件计算第一章、荷载计算一、基本参数计算标高:80.0 m设计地震烈度:8度地面粗糙度类别:C类二、荷载计算1、风荷载标准值WK:作用在幕墙上的风荷载标准值 (KN/m2)βgz:瞬时风压的阵风系数,取1.64μz:风荷载高度变化系数,取1.54μs:风荷载体型系数,取-1.20北京市地区基本风压W=0.45 KN/m2(按50年一遇)W K =βgz×μs×μz×W0=1.64×1.20×1.54×0.45 =1.36 KN/m2>1.0 KN/m2取WK=1.36 KN/m22、风荷载设计值W:风荷载设计值(KN/m2)rw:风荷载作用效应的分项系数,取1.4W=r×WK=1.4×1.36=1.90 KN/m23、幕墙构件重量荷载面板采用8+12A+8 mm中空钢化玻璃。
GAK:幕墙构件自重标准值玻璃面荷载标准值: 25.6×(8+8)=409.6 N/m2 考虑龙骨和各种零部件等后的幕墙重力荷载标准值取:GAK=0.50 KN/m24、幕墙自重荷载设计值r G :永久荷载分项系数,取rG=1.2GG:考虑龙骨和各种零部件等后的玻璃幕墙重力荷载设计值G G =rG·GGK=1.2×0.50=0.60 KN/m25、地震作用qEK:垂直于幕墙平面的水平地震作用标准值qE:垂直于幕墙平面的水平地震作用设计值βE:动力放大系数,可取5.0αmax:水平地震影响系数最大值,0.16GAK:幕墙构件(包括玻璃和龙骨)的重量标准值,0.50 KN/m2q EK =AKmaxEGαβ=5.0×0.16×0.50 =0.40 KN/m26、幕墙承受的水平地震荷载设计值r E :地震作用分项系数,取rE=1.3qE:作用在幕墙上的水平地震荷载设计值q E =rE·qEK=1.3×0.40=0.52 KN/m27、擦窗机荷载垂直于墙面内,外荷载: 1.5 KN正常用作时向下荷载: 2.7 KN水平侧面荷载: 1.5 KN 8、荷载组合工况一、风荷载与地震荷载组合风荷载和水平地震作用组合标准值q K =ψW×W K+ψE×q EK=1.0×1.36+0.5×0.40 =1.56 KN/m2风荷载和水平地震作用组合设计值q=ψW×γW×W K+ψE×γE×q EK=1.0×1.4×1.36+0.5×1.3×0.40=2.16 KN/m2工况二、风荷载与擦窗机荷载组合风荷载和擦窗机荷载组合标准值q K =ψW×W K+ G EK=1.0×0.25+1.5 KN =0.25 KN/m2+1.5 KN风荷载与擦窗机荷载组合设计值q=ψW×γW×W K+γE×G EK=1.0×1.4×0.25+1.3×1.5 KN=0.35 KN/m2+1.95 KN由上可知风荷载与地震作用组合大于风荷载与擦窗机荷载组合,所以在计算中,取水平荷载取风荷载与地震作用组合值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用范围
钢梁截面钢梁材质Q345B 钢梁连接用螺栓数
6 个螺栓直径M24螺栓间距80 mm 螺栓孔径25.5 mm 螺栓端距
50 mm 连接板高度500 mm 设计剪力 V=250 KN 设计弯矩 M1=0 KN.m 设计拉力 N=0 KN 附加弯矩 M2=
30 KN.m
计算弯矩 M=
30 KN.m
基材厚度 T=450 mm 基材高度 H=5000 mm 基材宽度 W=5000 mm 基材保护层厚度35 mm
强度等级C50轴心抗压 fc=23.1 N/mm2轴心抗拉 ft= 1.89 N/mm2WWW 锚筋参数
锚筋直径 d=18 mm 锚筋抗拉 fy=300 N/mm2WWW 锚筋种类HPB335锚筋抗压 fy'=300 N/mm2WWW
NO!
锚筋外形系数
0.14抗震等级一级锚固长度 la=
400 mm
抗震锚固长度 laE=
460 mm 322 mm OK!
( 构造要求判断 )
90 mm
锚筋层数 4 层锚筋排数 2 排
锚筋层间距 b1=150 mm OK!( 构造要求判断 )锚筋排间距 b=100 mm OK!( 构造要求判断 )50 mm OK!( 构造要求判断 )2275 mm OK!
( 构造要求判断 )
450 mm
锚板宽度 D=200 mm OK!( 构造要求判断 )锚板高度 h=550 mm OK!( 构造要求判断 )锚板厚度 t=20 mm OK!( 构造要求判断 )
锚板材质
Q235B
0.7000.8780.850
计算锚筋总截面面积As0=1629.7 mm2
锚筋布置总截面面积
As1=
2035.8 mm2
OK!HPB335二级钢筋
锚筋边缘距离
锚板规格4层 * 150mm X 2排 * 100mm
( 锚筋直径*锚筋长度*锚筋末段加焊钢筋长度 )( 锚筋材质 )
构造控制要点( 受剪和( 当锚筋( 当锚筋( 当锚筋OK!
** 该判
综上所述预埋件计算结论如下
( 预埋件受力是否满足要求判断 )
锚筋布置及规格( 锚板尺寸为:厚度*宽度*高度 )( 锚板材质 )
( 锚筋层数*层间距X锚筋排数*排间距 )
Q235B
20mm * 200mm * 550mm
混凝土材料性能
预埋件受剪力、法向拉力和弯矩的共同作用
锚筋层数影响系数 ar=
( ** 当基材高度及基材宽度受限时,输入受限值;否则输入默认值 5000mm ** )计算参数取值
锚筋中心距基材边缘距离 c1=锚板规格
锚筋受剪承载力系数 av= 锚板弯曲变形折减系数 ab= 锚筋中心距锚板边缘距离 e=( 锚筋直( 预埋件预埋件计算-01
BH600X270X12X18锚筋长度计算
锚筋末端加焊等截面钢筋长度
采用机械锚固时,锚固长度 LA=钢梁支座荷载
混凝土基材
( 锚筋边缘距离:层边距和排边距 )
50 mm
18mm * 322mm *90mm 锚筋布置
( 受力预
( 受剪预 沿剪力作用方向最外层锚筋中心线之间的距离 Z=( 锚筋层
( 表示要求输入的项次 )
( 表示表格自动计算值 )
( 表示受限控制输入值 )
( 表示构造及受力控制判断 )
当锚筋直径大于 25mm时,锚固长度应乘以 1.10修正系数 )当锚筋直径不大于 20mm时,宜采用压力埋弧焊 )
当锚筋直径大于 20mm时,宜采用穿孔塞焊 )
锚筋层数不宜超过 4层,锚筋数不宜少于 4根 )
锚筋直径不宜小于 8mm,且不宜大于 25mm )
预埋件的锚筋应位于构件的外层主筋内侧 )
受剪和受压直锚筋的锚固长度不应小于 15d )
受剪预埋件的直锚筋可采用 2根 )
受力预埋件的锚板宜采用 Q235级钢 )
该判断控制为计算及构造的总体判断指标 **。