2016-2017年重庆市万州二中高二(上)期末数学试卷和答案(理科)
重庆市2016-2017学年高二上学期期末数学试卷(理科)Word版含解析

重庆市2016-2017学年高二上学期期末试卷(理科数学)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|0<log 4x <1},B={x|x≤2},则A∩B=( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2] 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<03.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是AB 1、BC 1的中点,则以下结论中不成立的是( )A .EF 与BB 1垂直 B .EF 与BD 垂直C .EF 与CD 异面 D .EF 与A 1C 1异面4.已知四棱锥P ﹣ABCD 的三视图如图所示,则四棱锥P ﹣ABCD 的四个侧面中面积最大的是( )A .6B .8C .D .35.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A .B .C .D .6.设函数f (x )定义在实数集上,f (2﹣x )=f (x ),且当x≥1时,f (x )=lnx ,则有( )A .B .C .D .7.设平面区域D 是由双曲线y 2﹣=1的两条渐近线和抛物线y 2=﹣8x 的准线所围成的三角形(含边界与内部).若点(x ,y )∈D ,则x+y 的最小值为( ) A .﹣1 B .1 C .0 D .38.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <09.若直线l 过点P (﹣3,﹣)且被圆x 2+y 2=25截得的弦长是8,则直线l 的方程为( ) A .3x+4y+15=0 B .x=﹣3或3x+4y+15=0C .x=﹣3或y=﹣D .x=﹣310.设椭圆=1(a >0,b >0)的离心率e=,右焦点F (c ,0),方程ax 2+bx ﹣c=0的两个根分别为x 1,x 2,则点P (x 1,x 2)在( )A .圆x 2+y 2=2内B .圆x 2+y 2=2上C .圆x 2+y 2=2外D .以上三种情况都有可能11.已知正三棱锥P ﹣ABC 的高PO 为h ,点D 为侧棱PC 的中点,PO 与BD 所成角的余弦值为,则正三棱锥P ﹣ABC 的体积为( )A .B .C .D .12.若实数x 、y 满足x|x|﹣y|y|=1,则点(x ,y )到直线y=x 的距离的取值范围是( )A .[1,) B .(0,] C .(,1) D .(0,1]二、填空题(每题5分)13.已知||=1,||=6, •(﹣)=2,则向量与的夹角为 .14.在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为 .15.已知椭圆+=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为 .16.设 条件.三、解答题(17、18、19、20、21各题12分,22题10分)17.已知p :方程x 2+mx+1=0有两个不等的负实根,q :方程4x 2+4(m ﹣2)x+1=0无实根.若“p 或q”为真,“p 且q”为假.求实数m 的取值范围.18.设△ABC 的三内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 、b 、c 成等比数列,且.(Ⅰ)求角B 的大小; (Ⅱ)若x ∈[0,π),求函数f (x )=sin (x ﹣B )+sinx 的值域.19.点A 、B 分别是椭圆长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA⊥PF.求点P 的坐标.20.如图,直棱柱ABC ﹣A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=AB .(Ⅰ)证明:BC 1∥平面A 1CD(Ⅱ)求二面角D ﹣A 1C ﹣E 的正弦值.21.如图,已知A (﹣4a ,0)(a >0),B 、C 两点分别在y 轴和x 轴上运动,并且满足•=0, =.(1)求动点Q 的轨迹方程;(2)设过点A 的直线与点Q 的轨迹交于E 、F 两点,A′(4a ,0),求直线A′E、A′F 的斜率之和.22.在等腰直角△ABC 中,AB=AC=4,点P 是边AB 上异于A 、B 的一点,光线从点P 出发经过BC 、CA 反射后又回到点P ,光线交线段BC 于点Q ,交线段CA 于点R ,若光线QR 经过△ABC 的重心,求线段AP 的长度.重庆市2016-2017学年高二上学期期末试卷(理科数学)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|0<log 4x <1},B={x|x≤2},则A∩B=( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2] 【考点】交集及其运算;其他不等式的解法.【分析】求出集合A 中其他不等式的解集,确定出A ,找出A 与B 的公共部分即可求出交集. 【解答】解:由A 中的不等式变形得:log 41<log 4x <log 44, 解得:1<x <4,即A=(1,4), ∵B=(﹣∞,2], ∴A∩B=(1,2]. 故选D2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<0 【考点】命题的否定;全称命题.【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可. 【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .3.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是AB 1、BC 1的中点,则以下结论中不成立的是( )A .EF 与BB 1垂直 B .EF 与BD 垂直C .EF 与CD 异面 D .EF 与A 1C 1异面 【考点】异面直线的判定.【分析】观察正方体的图形,连B 1C ,则B 1C 交BC 1于F 且F 为BC 1中点,推出EF∥A 1C 1;分析可得答案. 【解答】解:连B 1C ,则B 1C 交BC 1于F 且F 为BC 1中点,三角形B 1AC 中EF,所以EF∥平面ABCD ,而B 1B⊥面ABCD ,所以EF 与BB 1垂直;又AC⊥BD,所以EF 与BD 垂直,EF 与CD 异面.由EF ,AC∥A 1C 1得EF∥A 1C 1故选D .4.已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中面积最大的是()A.6 B.8 C. D.3【考点】由三视图求面积、体积.【分析】三视图复原的几何体是四棱锥,利用三视图的数据直接求解四棱锥P﹣ABCD的四个侧面中面积,得到最大值即可.【解答】解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为: =,所以后面三角形的面积为: =2.两个侧面面积为: =3,前面三角形的面积为: =6,四棱锥P﹣ABCD的四个侧面中面积最大的是前面三角形的面积:6.故选A.5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.B.C.D.【考点】椭圆的应用;数列的应用.【分析】先设长轴为2a,短轴为2b,焦距为2c,由题意可知:a+c=2b,由此可以导出该椭圆的离心率.【解答】解:设长轴为2a,短轴为2b,焦距为2c,则2a+2c=2×2b,即a+c=2b⇒(a+c)2=4b2=4(a2﹣c2),所以3a2﹣5c2=2ac,同除a2,整理得5e2+2e﹣3=0,∴或e=﹣1(舍去),故选B.6.设函数f(x)定义在实数集上,f(2﹣x)=f(x),且当x≥1时,f(x)=lnx,则有()A.B.C.D.【考点】对数值大小的比较.【分析】由f(2﹣x)=f(x)得到函数的对称轴为x=1,再由x≥1时,f(x)=lnx得到函数的图象,从而得到答案.【解答】解:∵f(2﹣x)=f(x)∴函数的对称轴为x=1∵x≥1时,f(x)=lnx∴函数以x=1为对称轴且左减右增,故当x=1时函数有最小值,离x=1越远,函数值越大故选C.7.设平面区域D是由双曲线y2﹣=1的两条渐近线和抛物线y2=﹣8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则x+y的最小值为()A.﹣1 B.1 C.0 D.3【考点】双曲线的简单性质.【分析】先求出抛物线的准线方程和双曲线的渐近线方程,画出三角形平面区域,根据z=x+y的最小值为斜率为﹣1的直线的纵截距的最小值,即可求出z=x+y的最小值.【解答】解:抛物线y2=﹣8x的准线方程为x=2,双曲线y2﹣=1的两条渐近线方程为y=±x,由题意,三角形平面区域的边界为x=2,y=±x,设z=x+y即y=z﹣x,则z=z﹣x的最小值为斜率为﹣1的直线的纵截距的最小值.:y=﹣x,平移可得,作出直线l当直线l过原点时,取得最小值0.故选:C.8.一次函数的图象同时经过第一、三、四象限的必要但不充分条件是()A.m>1,且n<1 B.mn<0 C.m>0,且n<0 D.m<0,且n<0【考点】必要条件、充分条件与充要条件的判断.【分析】由一次函数的图象和性质,我们可以求出一次函数的图象同时经过第一、三、四象限的等价命题,进而逐一分析已知中四个答案中的条件与一次函数的图象同时经过第一、三、四象限的充要关系,即可得到答案.【解答】解:若一次函数的图象同时经过第一、三、四象限则>0,<0,即m>0且n<0故“m>1,且n<1”是“一次函数的图象同时经过第一、三、四象限的”的不充分也不必要条件;“mn<0”是“一次函数的图象同时经过第一、三、四象限的”的必要但不充分条件;“m>0,且n<0”是“一次函数的图象同时经过第一、三、四象限的”的充要条件;“m<0,且n<0”是“一次函数的图象同时经过第一、三、四象限的”的不充分也不必要条件;故选B9.若直线l过点P(﹣3,﹣)且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0 B.x=﹣3或3x+4y+15=0C.x=﹣3或y=﹣D.x=﹣3【考点】直线与圆的位置关系.【分析】算出圆心为O(0,0)、半径r=5,根据垂径定理算出直线到圆心的距离等于3.讨论直线斜率存在时设直线方程,由点到直线的距离公式建立关于k的等式,解出k,可得直线的方程;当直线斜率不存在时,直线方程为x+3=0,到圆心的距离也等于3,符合题意.由此即可得所求的直线方程.【解答】解:圆x2+y2=5的圆心为O(0,0),半径r=5;设圆心到直线的距离为d,①当过点P(﹣3,﹣)的直线斜率存在时,设直线方程为y+=k(x+3),即2kx﹣2y+6k﹣3=0,∵直线圆x2+y2=25截得弦长为8,∴根据垂径定理,得=4,即=4,解得d=3;根据点到直线的距离公式,得=3,解之得k=﹣,此时直线的方程为y+=﹣(x+3),化简得3x+4y+15=0;②当过点P(﹣3,﹣)的直线斜率不存在时,直线方程为x=﹣3,即x+3=0;由圆心到直线的距离d=3,可得直线被圆截得的弦长也等于8,符合题意;综上,所求的直线方程为3x+4y+15=0或x+3=0.故选:B.10.设椭圆=1(a >0,b >0)的离心率e=,右焦点F (c ,0),方程ax 2+bx ﹣c=0的两个根分别为x 1,x 2,则点P (x 1,x 2)在( )A .圆x 2+y 2=2内B .圆x 2+y 2=2上C .圆x 2+y 2=2外D .以上三种情况都有可能 【考点】椭圆的应用.【分析】先根据x 1+x 2=﹣,x 1x 2=﹣表示出x 12+x 22,再由e==得到a 与c 的关系,从而可表示出b 与c 的关系,然后代入到x 12+x 22的关系式中可得到x 12+x 22的范围,从而可确定答案.【解答】解:∵x 1+x 2=﹣,x 1x 2=﹣x 12+x 22=(x 1+x 2)2﹣2x 1x 2=e==∴a=2c b 2=a 2﹣c 2=3c 2所以x 12+x 22=<2所以在圆内 故选A .11.已知正三棱锥P ﹣ABC 的高PO 为h ,点D 为侧棱PC 的中点,PO 与BD 所成角的余弦值为,则正三棱锥P ﹣ABC 的体积为( )A .B .C .D .【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】利用异面直线所成的角,得到底面边长与高h 的关系,易求,V P ﹣ABC===.【解答】解:设底面边长为a ,连接CO 交AB 于F ,过点D 作DE∥PO 交CF 于E ,连接BE ,则∠BDE 即PO 与BD 所成角,∴cos∠BDE=,∵PO⊥面ABC ,∴DE⊥面ABC ,∴△BDE 是直角三角形,∵点D 为侧棱PC 的中点,∴DE=h ,∴BE=h ,在正三角形ABC 中,BF=a ,EF=CF=a ,在Rt△BEF 中,BE 2=EF 2+BF 2,∴,∴V P ﹣ABC ===故选:C .12.若实数x 、y 满足x|x|﹣y|y|=1,则点(x ,y )到直线y=x 的距离的取值范围是( )A .[1,) B .(0,] C .(,1) D .(0,1]【考点】简单线性规划.【分析】对x ,y 的取值进行分段,由此求出曲线方程,然后画图,由图形可得曲线上点(x ,y )到直线y=x 的距离的取值范围.【解答】解:当x≥0且y≥0时, 方程化为:x|x|﹣y|y|=x 2﹣y 2=1; 当x >0且y <0时,方程化为:x|x|﹣y|y|=x 2+y 2=1; 当x <0且y >0时,无意义; 当x <0且y <0时,方程化为:x|x|﹣y|y|=y 2﹣x 2=1. 作出图象如图所示,∵直线y=x 为两段等轴双曲线的渐近线,四分之一个单位圆上的点到直线y=x 的距离的最大值为1, 故选:D .二、填空题(每题5分)13.已知||=1,||=6, •(﹣)=2,则向量与的夹角为 .【考点】数量积表示两个向量的夹角.【分析】由•(﹣)=2,得,利用向量夹角公式可求得<>.【解答】解:由•(﹣)=2,得﹣=2,即=3,cos <,>==,所以<>=,故答案为:.14.在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为 2 . 【考点】抛物线的简单性质.【分析】确定抛物线的准线方程,利用抛物线的定义,考查结论.【解答】解:由题意,抛物线的准线方程为x=﹣由抛物线的定义,可得+4=5,∴p=2. 故答案为:215.已知椭圆+=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为.【考点】椭圆的简单性质.【分析】设线段PF 1的中点为M ,利用OM 是△F 1PF 2的中位线,以及椭圆的定义求出直角三角形OMF 1的三边之长,再由勾股定理结合隐含条件求离心率.【解答】解:设线段PF 1的中点为M ,由题意知,OM=b ,又OM 是△F 1PF 2的中位线,∴OM=PF 2=b ,则PF 2=2b ,由椭圆的定义知PF 1=2a ﹣PF 2=2a ﹣2b ,又MF==(2a ﹣2b )=a ﹣b ,OF 1=c ,在直角三角形OMF 1中,由勾股定理得:(a ﹣b )2+b 2=c 2, 又a 2﹣b 2=c 2,可得2a=3b , 故有4a 2=9b 2=9(a 2﹣c 2),由此可求得离心率e=,故答案为:.16.设必要不充分条件.【考点】必要条件、充分条件与充要条件的判断.【分析】充分性是说明p可以推出q,必要性说明由q可以推出p.在这个定义下进行正反认证,发现题中应该是必要不充分条件.【解答】解:若x≠0且x≠1,只有在x≥0的情况下,才有,说明充分性不成立反过来,若,说明在x≥0的大前提下,x2≠x可得x≠0且x≠1,说明必要性成立故答案为:必要不充分三、解答题(17、18、19、20、21各题12分,22题10分)17.已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.【考点】复合命题的真假;一元二次方程的根的分布与系数的关系.【分析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p 假q真与p真q假两种情况分别讨论,最后综合可得答案.【解答】解:由题意p,q中有且仅有一为真,一为假,若p为真,则其等价于,解可得,m>2;若q为真,则其等价于△<0,即可得1<m<3,若p假q真,则,解可得1<m≤2;若p真q假,则,解可得m≥3;综上所述:m∈(1,2]∪[3,+∞).18.设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且.(Ⅰ)求角B的大小;(Ⅱ)若x∈[0,π),求函数f(x)=sin(x﹣B)+sinx的值域.【考点】解三角形;三角函数的最值.【分析】(Ⅰ)根据a、b、c成等比数列,可得b2=ac,由正弦定理得sin2B=sinAsinC,利用,可得,根据b不是△ABC的最大边,即可求角B的大小;(Ⅱ)先化简函数,再根据x∈[0,π),可得,从而可得,故可求函数f(x)的值域.【解答】解:(Ⅰ)因为a、b、c成等比数列,所以b2=ac,所以由正弦定理得sin2B=sinAsinC.又,所以.因为sinB>0,则.因为B∈(0,π),所以B=或.又b2=ac,则b≤a或b≤c,即b不是△ABC的最大边,故.…(Ⅱ)因为,则=.…∵x∈[0,π),∴,∴.故函数f(x)的值域是.…19.点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.求点P的坐标.【考点】椭圆的简单性质.【分析】先根据椭圆的方程可分别求得A,F的坐标,设出点P的坐标,则可分别表示出和,进而根据PA⊥PF求得x和y的关系式,与椭圆方程联立求得x和y即交点P的坐标.【解答】解:由已知可得点A(﹣6,0),F(4,0)设点P的坐标是(x,y),则,由已知得,则或x=﹣6.由于y>0,只能x=,于是,∴点P 的坐标是.20.如图,直棱柱ABC ﹣A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=AB .(Ⅰ)证明:BC 1∥平面A 1CD(Ⅱ)求二面角D ﹣A 1C ﹣E 的正弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)通过证明BC 1平行平面A 1CD 内的直线DF ,利用直线与平面平行的判定定理证明BC 1∥平面A 1CD (Ⅱ)证明DE⊥平面A 1DC ,作出二面角D ﹣A 1C ﹣E 的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC 1交A 1C 于点F ,则F 为AC 1的中点,又D 是AB 中点,连结DF ,则BC 1∥DF,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(Ⅱ)因为直棱柱ABC ﹣A 1B 1C 1,所以AA 1⊥CD,由已知AC=CB ,D 为AB 的中点,所以CD⊥AB,又AA 1∩AB=A,于是,CD⊥平面ABB 1A 1,设AB=2,则AA 1=AC=CB=2,得∠ACB=90°,CD=,A 1D=,DE=,A 1E=3故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D ,所以DE⊥平面A 1DC ,又A 1C=2,过D 作DF⊥A 1C 于F ,∠DFE 为二面角D ﹣A 1C ﹣E 的平面角,在△A 1DC 中,DF==,EF==,所以二面角D ﹣A 1C ﹣E 的正弦值.sin∠DFE=.21.如图,已知A(﹣4a,0)(a>0),B、C两点分别在y轴和x轴上运动,并且满足•=0, =.(1)求动点Q的轨迹方程;(2)设过点A的直线与点Q的轨迹交于E、F两点,A′(4a,0),求直线A′E、A′F的斜率之和.【考点】轨迹方程;平面向量数量积的运算.【分析】(1)分别设出Q、B、C的坐标,利用向量等式把B的坐标用Q的坐标表示,结合•=0求得动点Q的轨迹方程;(2)写出过点A的直线为y=k(x+4a)(k≠0),联立直线方程和抛物线方程,利用根与系数的关系得到E,F两点纵坐标的和,再写出直线A′E、A′F的斜率之和整理得答案.【解答】解:(1)设Q(x,y),B(0,yB ),C(xC,0),则,,∵=,∴,则,又A(﹣4a,0)(a>0),∴,由已知•=0,则,即y2=9ax,∴动点Q的轨迹方程为y2=9ax;(2)设过点A的直线为y=k(x+4a)(k≠0),再设E (x 1,y 1),F (x 2,y 2),联立,得ky 2﹣9ay+36a 2k=0,则,∴k A′E +k A′F =又,∴=,由,得k A′E +k A′F =0.22.在等腰直角△ABC 中,AB=AC=4,点P 是边AB 上异于A 、B 的一点,光线从点P 出发经过BC 、CA 反射后又回到点P ,光线交线段BC 于点Q ,交线段CA 于点R ,若光线QR 经过△ABC 的重心,求线段AP 的长度.【考点】与直线关于点、直线对称的直线方程.【分析】建立坐标系,可得直线方程和重心坐标,由反射原理可得P 的两个对称点坐标,可得直线方程,进而可得P 的坐标,可得AP 长度.【解答】解:由题意建立如图所示的坐标系,则A (0,0),B (4,0),C (0,4),可得BC 的方程为x+y=4,可得重心(,),设P (a ,0),则P 关于AC 即y 轴的对称点P′(﹣a ,0),设P 关于BC 的对称点P″(m ,n ),则,解得,即P″(4,4﹣a ),∴光线QR 即P′P″的方程为y=(x+a ),代入(,)可得=(+a ),解得a=或a=0(舍去)∴线段AP 的长度为。
高二数学期末试卷(理科)及答案

高二数学期末考试卷(理科)一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,c OC b OB a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B .c b a 212132++-C .212121-+D .213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 或 C. D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55 B .555 C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( )A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21+=4||=,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷一、选择题(本大题共11小题,每小题3分,共33分)二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .14、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。
2016-2017学年高二上学期期末考试数学理试卷 Word版含答案

2016-2017高二年级第一学期期末考试数 学 (理科)本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01=+-y x 的斜率是 ( )A .1B .1-C .4π D .43π 2.方程2240x y x +-=表示的圆的圆心和半径分别为( )A .(2,0)-,2B .(2,0)-,4C .(2,0),2D .(2,0),43.若两条直线210ax y +-=与3610x y --=垂直,则a 的值为 ( )A .4B .4-C .1D .1-4.在空间直角坐标系中,点(1,2,3)P -关于坐标平面xOy 的对称点为 ( )A .(1,2,3)--B .(1,2,3)---C .(1,2,3)--D .(1,2,3)5.已知三条直线,,m n l ,三个平面,,αβγ,下面说法正确的是( )A .//αγαββγ⊥⎫⇒⎬⊥⎭B .//m l m n n l ⊥⎫⇒⎬⊥⎭C .////m l l m ββ⎫⇒⎬⊥⎭D .//m n m n γγ⎫⇒⊥⎬⊥⎭6.“直线l 的方程为)2(-=x k y ”是“直线l 经过点)0,2(”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.一个三棱锥的三视图如图所示,则三棱锥的体积为( )A .53B .103C .203D .2538.实数x ,y 满足10,1,x y x y a -+≥⎧⎪≤⎨⎪≥⎩,若2u x y =-的最小值为4-,则实数a 等于( )A .4-B .3-C .2-D .6二.填空题:本大题共6小题,每小题4分,共24分.9.双曲线2214y x -=的渐近线方程为_________.10.点P 是椭圆22143x y +=上的一点,1F 、2F 分别是椭圆的左右焦点,则∆21F PF 的周长是_________. 11.已知命题p :1x ∀>,2210x x -+>,则p ⌝是_________.12.在空间直角坐标系中,已知点)1,,0(),0,1,2(),2,0,1(a C B A ,若AC AB ⊥,则实数a 的值为_________. 13.已知点P 是圆221x y +=上的动点,Q 是直线:34100l x y +-=上的动点,则||PQ 的最小值为_________.14.如图,在棱长均为2的正三棱柱111C B A ABC -中,点M 是侧棱1AA 的中点,点P 、Q 分别是侧面11BCC B 、底面ABC 内的动点,且//1P A 平面BCM ,⊥PQ 平面BCM ,则点Q 的轨迹的长度为_________.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知圆M 过点A ,(1,0)B ,(3,0)C -. (Ⅰ)求圆M 的方程;(Ⅱ)过点(0,2)的直线l 与圆M 相交于D 、E 两点,且32=DE ,求直线l 的方程.16. (本小题满分10分)已知抛物线2:4C y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点,定点(5,0)M . (Ⅰ)若直线l 的斜率为1,求△ABM 的面积;(Ⅱ)若AMB ∆是以M 为直角顶点的直角三角形,求直线l 的方程.17. (本小题满分12分)如图,在底面是正三角形的三棱锥P ABC -中,D 为PC 的中点,1PA AB ==,PB PC ==.(Ⅰ)求证:PA ⊥平面ABC ;(Ⅱ)求BD 与平面ABC 所成角的大小; (Ⅲ)求二面角D AB C --的余弦值.18.(本小题满分12分)已知椭圆2222:1x y C a b+=(0a b >>)的左、右焦点分别为1F 、2F ,右顶点为A ,上顶点为B ,△12BF F 是边长为2的正三角形.(Ⅰ)求椭圆C 的标准方程及离心率;(Ⅱ)是否存在过点2F 的直线l ,交椭圆于两点P 、Q ,使得1//PA QF ,如果存在,试求直线l 的方程,如果不存在,请说明理由.高二年级第一学期期末练习参考答案数 学 (理科)阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数.2.其它正确解法可以参照评分标准按相应步骤给分.一.选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.二.填空题:本大题共6小题,每小题4分,共24分. 9. 2y x =±10. 6 11. 1x ∃>,2210x x -+≤ 12. 1- 13. 114.43三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. 解:(Ⅰ)设圆M :220x y Dx Ey F ++++=,则3021009303F D D F E D F F ⎧+==⎧⎪⎪++=⇒=⎨⎨⎪⎪-+==-⎩⎩………………………………………………………………(3分)故圆M :22230x y x ++-=,即22(1)4x y ++= …………………………(4分)(Ⅱ)由(Ⅰ)得,(1,0)M -.设N 为DE 中点,则MN l ⊥,1||||2DN EN ==⋅=5分) 此时||1MN ==. …………………………………(6分)当l 的斜率不存在时,:0l x =,此时||1MN =,符合题意 …………(7分)当l 的斜率存在时,设:2l y kx =+,由题意1= ……………………………(8分)解得:34k =, ……………………………(9分) 故直线l 的方程为324y x =+,即3480x y -+=………………………………(10分)综上直线l 的方程为0x =或3480x y -+=16. 解:(Ⅰ)解法1:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2244401y xy y y x ⎧=⇒--=⎨=-⎩………………………………………………(2分)设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->故121244y y y y +=⎧⎨⋅=-⎩ ……………………………………………………………(3分)有12||y y -==………………………………………(4分)有121211||4||42||22AMB AMF BMF S S S y y y y ∆∆∆=+=⋅⋅+⋅⋅=⋅-=…………………………(5分)解法2:由题意(1,0)F ,当AB 的斜率为1时,:1l y x =- ……………(1分)2246101y xx x y x ⎧=⇒-+=⎨=-⎩……………………………………………(2分) 设11(,)A x y ,22(,)B x y ,由244(4)0∆=-⨯->126x x +=,1228AB x x =++= ……………………………………(3分) 点M 到直线AB的距离d ==4分)182ABM S ∆=⨯⨯…………………………………(5分)(Ⅱ)解法1:易得,直线l 的斜率不为零,设直线l 的方程为1x my =+2244401y xy my x my ⎧=⇒--=⎨=+⎩ ………………………………………………………(6分) 设11(,)A x y ,22(,)B x y ,由216160m ∆=+>,得121244y y my y +=⎧⎨⋅=-⎩………………………………………………………………(7分) 由0MA MB ⋅=,得1212(5)(5)0x x y y --+=, ………………(8分)即1212(4)(4)0my my y y --+=整理得:21212(1)4()160m y y m y y +-++=此时有:2(1)(4)4(4)160m m m +⋅--⋅+=,解得m =9分) 故l 的方程为15x y =+或15x y =-+即550x -=或550x -=………………………………………(10分)解法2:易知直线l x ⊥时不符合题意.可设直线l 的方程为)1(-=x k y .⎩⎨⎧=-=x y x k y 4),1(2,消去y ,可得0)42(2222=++-k x k x k . …………………………(6分) 则0)1(162>+=∆k .设11(,)A x y ,22(,)B x y ,则22142k x x +=+,121=x x . …………………………………………(7分)由0MA MB ⋅=,得1212(5)(5)0x x y y --+=,………………………(8分)即:0425)(5212121=-++-x x x x x x , 即:0425)42(512=-++-k ,解得315±=k . …………(9分) 故l 的方程为0535=--y x 或0535=-+y x .………………………………………(10分)17.解:(Ⅰ)∵ 1PA AB ==,PB =∴ PA AB ⊥ ……………………………………………(1分) ∵ 底面是正三角形 ∴ 1AC AB ==∵ PC =∴ PA AC ⊥ ……………………………………(2分) ∵ AB AC A = ,AB AC ⊂平面ABC ∴ PA ⊥平面ABC .………………………………………(3分)(Ⅱ)以A 为原点,AB 为x 轴,AP 为z 轴,平面ABC 中垂直于AB 的直线为y 轴建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,1(,22C ,(0,0,1)P …………………………………………………………………………………………(4分)所以11()42D ,31()42BD =- . ………………………………(5分)平面ABC 的法向量为1(0,0,1)n =,…………………………………(6分)记BD 与平面ABC 所成的角为θ,则1sin cos ,BD θ=<> n =12……………………………(7分) ∴ 6πθ=.…………………………(8分)(Ⅲ)设平面ABD 的法向量为2(,,)n x y z =,由2n AD ⊥ 得:11042x y z ++=, ……………………………(9分) 由2n AB ⊥得:0x =代入上式得,z y =. ………………………(10分)令2y =,则z =2(0,2,n =. …………………………………(11分)记二面角D AB C --的大小为α,则12cos |cos ,|n n α=<>= .………(12分)18. 解:(Ⅰ)由题意可得2,1a b c === ……………………………………(2分)所以椭圆C 的标准方程为22143x y +=,……………………………………(3分)椭圆的离心率12c e a ==.……………………………………………(4分)(Ⅱ)解法1:由(Ⅰ)得,1(1,0)F -,2(1,0)F ,(2,0)A ,设11(,)P x y ,22(,)Q x y显然直线l 的斜率不为零,设直线l 的方程为1x my =+,则 ……………………………(5分)222213(1)412431x y my y x my ⎧+=⎪⇒++=⎨⎪=+⎩………………(6分)整理得:22(34)690m y my ++-=,此时21441440m ∆=+>,故122122634934m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩……………………………………(7分) 注意到1111(2,)(1,)AP x y my y =-=- ,12222(1,)(2,)FQ x y my y =+=+…………………………(8分)若1//PA QF ,则1221(1)(2)my y my y -⋅=+⋅,即212y y =- ……………(9分)此时由21212122212222627234612(34)3434m y y y m m y y m m m y y y m m ⎧=-=⎧⎪⎪⎪+⇒⇒=-⎨⎨++=-⎪⎪=-+⎩⎪+⎩, ………………………(10分)故2222729(34)34m m m -=-++,解得254m =,即m =……………(11分)故l的方程为1x y =+或1x y =+,20y -=20y += …………………………………(12分)解法2: 由(Ⅰ)得1(1,0)F -,2(1,0)F ,(2,0)A . 直线l x ⊥时,212221F F AF QF PF ≠=,则1//PA QF 不成立,不符合题意..………………………………(5分)可设直线l 的方程为)1(-=x k y . .……………………………(6分)⎪⎩⎪⎨⎧=+-=134),1(22y x x k y ,消去y ,可得()01248342222=-+-+k x k x k ………………(7分) 则0)1(1442>+=∆k .设11(,)P x y ,22(,)Q x y则3482221+=+k k x x ①,341242221+-=k k x x ② .…………………(8分)),2(11y x -=,),1(221y x F +=. 若1//PA QF ,则F 1//,则0)1)(1()1)(2(1221=-+---x x k x x k .化简得03221=-+x x ③. ………………………(9分)联立①③可得3494221++=k k x ,3494222+-=k k x , ………………………(10分) 代入②可以解得25±=k . …………………………(11分) 故l20y -=20y +=. ……………(12分)。
重庆市万州二中2016-2017学年高二上学期9月月考试题 数学(理) 含答案

万州二中高2018级高二上期9月月考数学试卷(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题。
(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知直线()12:210,:10l x ay l a x ay +-=+-=,若12//ll ,则实数a 的值为A .32- B .0 C .32-或0D .22.已知直线PQ 的斜率为3-,将直线绕点P 顺时针旋转60°所得的直线的斜率是 A .0 B .33 C .3 D .-33.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧(左)视图可以为4.已知圆C :096222=+--+y x y x,过x 轴上的点)0,1(P 向圆C 引切线,则切线长为A.3 B 。
22 C.32 D 。
235.ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为 A .1 B .2 C .22D .2俯视图侧视图主视图6.A 为圆22(1)1x y -+=上的动点,PA 是圆的切线,||1PA =,则P 点的轨迹方程是 A 。
22(1)4x y -+= B .22(1)2x y -+=C.22y x = D .22y x =-7.下图为某几何体的三视图,图中四边形为边长为1的正方形,两条虚线互相垂直,则该几何体体积为A .16B .45C .15D .568.半径为R 的半圆卷成一个圆锥,则它的体积为 A 33R B 33R C 35R D 35R 9.若直线12:,:2l y x ly x ==+与圆22:220C x y mx ny +--=的四个交点把圆C 分成的四条弧长相等,则m =A .0或1-B .0或1C .1或1-D .0或1或1-10.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A.20πB.1256πC.25π D 。
人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
重庆市高二上期末复习(7)

2016-2017学年重庆市万州二中高二(上)期末数学试卷(文科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2x﹣4y+7=0的斜率是()A.2 B.﹣2 C.D.﹣2.已知命题p:∃n∈N,2n>1 000,则﹁p为()A.∃n∈N,2n<1 000 B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000 D.∀n∈N,2n≤1 0003.直线kx﹣y+1=3k,当k变动时,所有直线都通过定点()A.(0,0) B.(0,1) C.(3,1) D.(2,1)4.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β5.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A.x2﹣y2=1 B.y2﹣x2=1 C.x2﹣y2=2 D.y2﹣x2=26.已知y=+(b+2)x+3是R上的单调函数,则b的取值范围是()A.﹣1≤b≤2 B.b≤﹣1或b≥2 C.﹣1<b<2 D.b<﹣1或b>27.如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正视图是边长为2的正方形,则左视图的面积为()A.4 B.C.D.8.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中不正确的序号有()①若α⊥β,α∩β=m,且n⊥m,则n⊥α或n⊥β②若m不垂直于α,则m不可能垂直于α内的无数条直线③若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β④若α⊥β,m∥n,n⊥β,则m∥αA.①②③④B.③C.①④D.①②④9.已知方程ax2+by2=ab和ax+by+1=0(其中ab≠0,a≠b),它们所表示的曲线可能是()A.B.C.D.10.已知抛物线y2=4x的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为()A.B.C.D.11.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④函数y=f(x)最多有3个零点.其中正确命题的序号是()A.①②B.③④C.①②④D.②③④12.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A.B.C.D.二、填空题(本大题共4道小题,每小题5分,共20分)13.命题“若x2<1,则﹣1<x<1”的逆否命题是.14.若P在曲线:y=x3﹣3x2+2x+5上移动,经过P点的切线的倾斜角为α,则α的取值范围是.15.P是圆(x+3)2+(y﹣1)2=2上的动点,Q是直线y=x上的动点,则|PQ|的最小值为.16.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是.三、解答题(本大题共6小题,共计70分)17.已知命题P:方程所表示的曲线为焦点在x轴上的椭圆;命题q:关于实数t的不等式t2﹣(a+3)t+(a+2)<0(1)若命题P为真,求实数t的取值范围;(2)若命题P是命题q的充分不必要条件,求实数a的取值范围.18.已知函数f(x)=2lnx﹣x2.(1)求函数f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间和极值.19.已知四棱锥S﹣ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.21.如图,已知直线l:x=my+4(m∈R)与x轴交于点P,交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,记直线AQ,BQ的斜率分别为k1,k2.(Ⅰ)若P为抛物线的焦点,求a的值,并确定抛物线的准线与以AB为直径的圆的位置关系.(Ⅱ)试证明:k1+k2为定值.22.设函数f(x)=mx2﹣2x+ln(x+1)(m∈R).(Ⅰ)判断x=1能否为函数f(x)的极值点,并说明理由;(Ⅱ)若存在m∈[﹣4,﹣1),使得定义在[1,t]上的函数g(x)=f(x)﹣ln(x+1)+x3在x=1处取得最大值,求实数t取值范围.2016-2017学年重庆市万州二中高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2x﹣4y+7=0的斜率是()A.2 B.﹣2 C.D.﹣【考点】直线的斜率.【分析】利用斜率计算公式即可得出.【解答】解:直线2x﹣4y+7=0的斜率k=﹣=,故选:C.2.已知命题p:∃n∈N,2n>1 000,则﹁p为()A.∃n∈N,2n<1 000 B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000 D.∀n∈N,2n≤1 000【考点】命题的否定.【分析】含有量词“存在”的命题,其否定形式应该是先改量词为“任意”,再将结论否定,由此即可得到本题的答案.【解答】解:命题p:∃n∈N,2n>1 000,它的含义是存在使2n>1000的自然数n.由此可得它的否定应该是:不存在使2n>1000的自然数,换句话说就是对任意的自然数n,都有2n≤1000成立∴命题﹁p为:∀x∈N,2n≤1000故选:D3.直线kx﹣y+1=3k,当k变动时,所有直线都通过定点()A.(0,0) B.(0,1) C.(3,1) D.(2,1)【考点】过两条直线交点的直线系方程.【分析】将直线的方程变形为k(x﹣3)=y﹣1 对于任何k∈R都成立,从而有,解出定点的坐标.【解答】解:由kx﹣y+1=3k得k(x﹣3)=y﹣1对于任何k∈R都成立,则,解得x=3,y=1,故直线经过定点(3,1),故选C.4.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选B5.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A.x2﹣y2=1 B.y2﹣x2=1 C.x2﹣y2=2 D.y2﹣x2=2【考点】椭圆的简单性质;双曲线的标准方程.【分析】根据椭圆方程求得其长轴的端点坐标和离心率,进而可得双曲线的顶点和离心率,求得双曲线的实半轴和虚半轴的长,进而可得双曲线的方程.【解答】解:由题意设双曲线方程为,离心率为e椭圆长轴的端点是(0,),所以a=.∵椭圆的离心率为∴双曲线的离心率e=,⇒c=2,∴b=,则双曲线的方程是y2﹣x2=2.故选D.6.已知y=+(b+2)x+3是R上的单调函数,则b的取值范围是()A.﹣1≤b≤2 B.b≤﹣1或b≥2 C.﹣1<b<2 D.b<﹣1或b>2【考点】利用导数研究函数的单调性.【分析】三次函数y=x3+bx2+(b+2)x+3的单调性,通过其导数进行研究,故先求出导数,利用其导数恒大于0即可解决问题.【解答】解:若函数y=x3+bx2+(b+2)x+3是R上的单调函数,则只需y′=x2+2bx+b+2≥0在R上恒成立或y′=x2+2bx+b+2≤0在R恒成立即可;而导函数对应的二次函数的图象开口向上,故y′=x2+2bx+b+2≤0在R不恒成立,∴x2+2bx+b+2≥0恒成立,∴△≤0,即b2﹣b﹣2≤0,则b的取值是﹣1≤b≤2.故选:A.7.如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正视图是边长为2的正方形,则左视图的面积为()A.4 B.C.D.【考点】简单空间图形的三视图.【分析】由题意分析出等边三角形的高,是侧视图的底边长,利用侧视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.【解答】解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高后,组成直角三角形,底边的一半为1,∴等边三角形的高为,由题意知左视图中,平面AA1B1B在左视图中是一条线段,三棱柱的上底面与下底面在左视图中在也线段,左视图是一个高为2,宽是底面三角形的高的矩形,∴左视图的面积为2×=2,故选B.8.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中不正确的序号有()①若α⊥β,α∩β=m,且n⊥m,则n⊥α或n⊥β②若m不垂直于α,则m不可能垂直于α内的无数条直线③若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β④若α⊥β,m∥n,n⊥β,则m∥αA.①②③④B.③C.①④D.①②④【考点】空间中直线与平面之间的位置关系.【分析】在①中,n与α和β可以有相交或包含的关系;在②中,m有可能垂直于α内的无数条平行直线;在③中,由线面垂直的判定定理得n∥α且n∥β;在④中,m∥α或m⊂α.【解答】解:由m、n是两条不同的直线,α、β、γ是三个不同的平面,知:在①中,若α⊥β,α∩β=m,m⊥n,则n与α和β可以有相交或包含的关系,故①不正确;在②中,若m不垂直于α,则m有可能垂直于α内的无数条平行直线,故②不正确;在③中,若α∩β=m,m∥n,且n⊄α,n⊄β,则由线面垂直的判定定理得n∥α且n ∥β,故③正确;在④中,若α⊥β,m∥n,n⊥β,则m∥α或m⊂α,故④不正确.故选:D.9.已知方程ax2+by2=ab和ax+by+1=0(其中ab≠0,a≠b),它们所表示的曲线可能是()A.B.C.D.【考点】直线的一般式方程.【分析】方程ax2+by2=ab和ax+by+1=0(其中ab≠0,a≠b),分别化为,.分类讨论:若ab<0,直线的斜率大于0,A不符合;当b<0,a>0时,双曲线符合.ab>0时,同理根据直线的斜率与截距的意义即可排除C,D.【解答】解:方程ax2+by2=ab和ax+by+1=0(其中ab≠0,a≠b),分别化为,.①若ab<0,直线的斜率大于0,A不符合;当b<0,a>0时,双曲线符合.②若ab>0,直线的斜率小于0,C不符合;当b>a>0时,直线的截距小于0,D不符合.综上可知:只有B有可能.故选:B.10.已知抛物线y2=4x的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由抛物线的方程算出抛物线的焦点为F(1,0),由TF⊥x轴算出点T坐标为(1,2),得到椭圆的半焦距c=1且点T(1,2)在椭圆上,由此建立关于a、b的方程组解出a=,由椭圆的离心率加以计算,可得答案.【解答】解:∵抛物线的方程为y2=4x,∴抛物线的焦点为F(1,0),又∵抛物线与椭圆在第一象限内的交点为T,且TF⊥x轴,∴设T(1,y0),代入抛物线方程得y02=4×1=4,得y0=2(舍负).因此点T(1,2)在椭圆上,椭圆的半焦距c=1,∴,解之得a2=3+2,b2=2+2,由此可得a==,椭圆的离心率e=.故选:B11.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④函数y=f(x)最多有3个零点.其中正确命题的序号是()A.①②B.③④C.①②④D.②③④【考点】利用导数研究函数的单调性.【分析】根据导函数的图象求出函数的单调区间以及函数的极值点,对①②③④分别判断即可.【解答】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,所以当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=0,所以f(x)的极小值为0,故①②正确;x∈[﹣1,t]时,f(x)的最大值是2,t的最大值是5,故③错误;当f(2)=0时,函数3个零点,f(2)>0时,函数2个零点,f(2)<0时,函数4个零点,故④错误;故选:A.12.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A.B.C.D.【考点】球的体积和表面积.【分析】蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.【解答】解:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长1cm,根据图示,AB段由三角形AB求出得:AB=,AE=AB+BE=,∴鸡蛋中心(球心)与蛋巢底面的距离为.故选:D.二、填空题(本大题共4道小题,每小题5分,共20分)13.命题“若x2<1,则﹣1<x<1”的逆否命题是“若x≥1或x≤﹣1,则x2≥1”.【考点】四种命题间的逆否关系.【分析】先否定原命题的题设做结论,再否定原命题的结论做题设,就得到原命题的逆否命题.【解答】解:∵“x2<1”的否定为“x2≥1”.“﹣1<x<1”的否定是“x≤﹣1或x≥1”.∴命题“若x2<1,则﹣1<x<1”的逆否命题是:“若x≥1或x≤﹣1,则x2≥1”.故答案:若x≥1或x≤﹣1,则x2≥1.14.若P在曲线:y=x3﹣3x2+2x+5上移动,经过P点的切线的倾斜角为α,则α的取值范围是[0,)∪[,π).【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,配方后求出导函数的值域,则倾斜角的正切值的范围可求,则答案可求.【解答】解:由y=x3﹣3x2+2x+5,所以y′=3x2﹣6x+2=3(x﹣1)2﹣1≥﹣1.即tanα≥﹣1,由α∈[0,π).所以α∈[0,)∪[,π).故答案为[0,)∪[,π).15.P是圆(x+3)2+(y﹣1)2=2上的动点,Q是直线y=x上的动点,则|PQ|的最小值为.【考点】直线与圆的位置关系.【分析】由题意,|PQ|最小值为圆心到直线y=x的距离减去半径,求出圆心到直线y=x的距离即可.【解答】解:由题意,|PQ|最小值为圆心到直线y=x的距离减去半径.由(x+3)2+(y﹣1)2=2得到A(﹣3,1),半径r=,根据点到直线的距离公式,可得圆心到直线y=x的距离为=2,∴|PQ|的最小值为|AQ|﹣r=2﹣=.故答案为:.16.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是.【考点】利用导数研究函数的极值.【分析】f(x)=xlnx﹣ax2(x>0),f′(x)=lnx+1﹣2ax.令g(x)=lnx+1﹣2ax,由于函数f(x)=x(lnx﹣ax)有两个极值点⇔g(x)=0在区间(0,+∞)上有两个实数根.g′(x)==.当a≤0时,直接验证;当a>0时,利用导数研究函数g(x)的单调性可得:当x=时,函数g(x)取得极大值,故要使g(x)有两个不同解,只需要,解得即可.【解答】解:f(x)=xlnx﹣ax2(x>0),f′(x)=lnx+1﹣2ax.令g(x)=lnx+1﹣2ax,∵函数f(x)=x(lnx﹣ax)有两个极值点,则g(x)=0在区间(0,+∞)上有两个实数根.g′(x)==,当a≤0时,g′(x)>0,则函数g(x)在区间(0,+∞)单调递增,因此g(x)=0在区间(0,+∞)上不可能有两个实数根,应舍去.当a>0时,令g′(x)=0,解得x=.令g′(x)>0,解得,此时函数g(x)单调递增;令g′(x)<0,解得,此时函数g(x)单调递减.∴当x=时,函数g(x)取得极大值.当x趋近于0与x趋近于+∞时,g(x)→﹣∞,要使g(x)=0在区间(0,+∞)上有两个实数根,则,解得.∴实数a的取值范围是.故答案为:.三、解答题(本大题共6小题,共计70分)17.已知命题P:方程所表示的曲线为焦点在x轴上的椭圆;命题q:关于实数t的不等式t2﹣(a+3)t+(a+2)<0(1)若命题P为真,求实数t的取值范围;(2)若命题P是命题q的充分不必要条件,求实数a的取值范围.【考点】椭圆的简单性质;命题的真假判断与应用;一元二次不等式的解法.【分析】(1)根据方程表示椭圆的条件列出4﹣t>t﹣1>0,求出t的范围即可.(2)利用命题P是命题q的充分不必要条件,推出是不等式t2﹣(a+3)t+(a+2)<0解集的真子集,直接求解即可.【解答】解:(1)∵方程所表示的曲线为焦点在x轴上的椭圆,∴4﹣t>t﹣1>0解得:(2)∵命题P是命题q的充分不必要条件∴是不等式t2﹣(a+3)t+(a+2)<0解集的真子集因方程t2﹣(a+3)t+(a+2)=0两根为1,a+2故只需解得:18.已知函数f(x)=2lnx﹣x2.(1)求函数f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间和极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.【解答】解:(1)∵∴f'(1)=0,所求的切线斜率为0,又切点为(1,﹣1)故所求切线方程为y=﹣1…(2)∵且x>0令f'(x)>0得0<x<1,令f'(x)<0得x>1.从而函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞)显然函数只有极大值,且极大值为f(1)=﹣1…19.已知四棱锥S﹣ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离.【考点】平面与平面垂直的判定;点、线、面间的距离计算.【分析】(1)证明平面EBD内的直线BD,垂直平面SAC内的两条相交直线AC,SA,即可证明平面EBD⊥平面SAC;(2)SA=4,AB=2,设AC∩BD=F,连SF,点A到平面SBD的距离为h,利用•S•h=•S△ABD•SA,求点A到平面SBD的距离;△SBD【解答】解:(1)∵SA⊥平面ABCD,BD⊂平面ABCD,∴SA⊥BD、∵ABCD是正方形,∴AC⊥BD,∴BD⊥平面SAC、∵BD⊂平面EBD,∴平面EBD⊥平面SAC、(2)设AC∩BD=F,连SF,则SF⊥BD、∵AB=2.∴BD=2.∵SF===3=BD•SF=•2•3=6.∴S△SBD设点A到平面SBD的距离为h,∵SA⊥平面ABCD,•h=•S△ABD•SA,∴•S△SBD∴6•h=•2•2•4,∴h=,∴点A到平面SBD的距离为.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.【考点】直线与圆的位置关系.【分析】(1)当截距不为0时,根据圆C的切线在x轴和y轴的截距相等,设出切线方程x+y=a,然后利用点到直线的距离公式求出圆心到切线的距离d,让d等于圆的半径r,列出关于a的方程,求出方程的解即可得到a的值,得到切线的方程;当截距为0时,设出切线方程为y=kx,同理列出关于k的方程,求出方程的解即可得到k的值,得到切线的方程;(2)根据圆切线垂直于过切点的半径,得到三角形CPM为直角三角形,根据勾股定理表示出点P的轨迹方程,由轨迹方程得到动点P的轨迹为一条直线,所以|PM|的最小值就是|PO|的最小值,求出原点到P轨迹方程的距离即为|PO|的最小值.【解答】解:(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径,即=,解得:a=﹣1或a=3,当截距为零时,设y=kx,同理可得k=2,则所求切线的方程为x+y+1=0或x+y﹣3=0或y=(2)x﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2.∴(x1+1)2+(y1﹣2)2﹣2=x12+y12.∴2x1﹣4y1+3=0.∴动点P的轨迹是直线2x﹣4y+3=0.∴|PM|的最小值就是|PO|的最小值.而|PO|的最小值为原点O到直线2x﹣4y+3=0的距离d==.﹣﹣21.如图,已知直线l:x=my+4(m∈R)与x轴交于点P,交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,记直线AQ,BQ的斜率分别为k1,k2.(Ⅰ)若P为抛物线的焦点,求a的值,并确定抛物线的准线与以AB为直径的圆的位置关系.(Ⅱ)试证明:k1+k2为定值.【考点】直线与圆的位置关系;直线与圆锥曲线的关系.【分析】(I)由直线方程算出P(4,0),从而得出a=8.设A(x1,y1)、B(x2,y2),根据抛物线的定义列式,化简可得M到准线的距离d恰好等于圆的半径,从而得到直线与圆相切.(II)直线l与抛物线消去x,得y2﹣2amy﹣8a=0,利用根与系数的关系将k1+k2化成关于A、B坐标的式子,化简整理可得k1+k2=0,即k1+k2为定值.【解答】解:(Ⅰ)由直线l:x=my+4得点P(4,0),故…设交点A(x1,y1),B(x2,y2),它们的中点,设点M到抛物线的准线的距离为d,则,…∵=d,∴抛物线的准线与以AB为直径的圆相切.…(Ⅱ)由直线l:x=my+4得点P(4,0),∴Q(﹣4,0),将直线l:x=my+4与抛物线的方程y2=2ax联立得y2﹣2amy﹣8a=0,∵△>0恒成立,…∴==…即,代入(*)得k1+k2=0,故k1+k2为定值得征.…22.设函数f(x)=mx2﹣2x+ln(x+1)(m∈R).(Ⅰ)判断x=1能否为函数f(x)的极值点,并说明理由;(Ⅱ)若存在m∈[﹣4,﹣1),使得定义在[1,t]上的函数g(x)=f(x)﹣ln(x+1)+x3在x=1处取得最大值,求实数t取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出原函数的导函数,由f′(1)=0求得m值,在把m值代入原函数,求出函数的单调区间,可知x=1能为函数f(x)的极值点;(Ⅱ)由题意可得当x∈[1,t]时,g(x)≤g(1)恒成立,即g(x)﹣g(1)=(x﹣1)[]≤0,构造函数令h(x)=,结合m∈[﹣4,﹣1),可知h(x)必然在端点处取得最大值,即h(t)≤0.即,分离m可得,求解分式不等式得实数t 取值范围.【解答】解:(Ⅰ)f′(x)=mx﹣2+,令f′(1)=0,得m=;当m=时,f′(x)=,于是f(x)在(﹣1,﹣)单调递增,在(﹣,1)上单调递减,在(1,+∞)单调递增.故当m=时,x=1是f(x)的极小值点;(Ⅱ)g(x)=f(x)﹣ln(x+1)+x3=.由题意,当x∈[1,t]时,g(x)≤g(1)恒成立.即g(x)﹣g(1)=(x﹣1)[]≤0,令h(x)=,由m∈[﹣4,﹣1),可知:h(x)必然在端点处取得最大值,即h(t)≤0.即,即,解得,1,∴t的取值范围为1<t.2017年3月6日。
重庆万州二中1617学年度高二下学期入学考试——数学理(数学理)

重庆万州二中2016—2017学年度下学期入学考试高二数学理试题第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)在每小题给出的四个备选项中,只有一项是符合题目要求的. 选出正确的答案,并将其字母代号填在答题卡规定的位置上. 1. 直线的倾斜角是 ( ) A. 30° B. 60° C. 120° D. 150° 2. 直线和直线平行,则的值为( )A .1B .﹣2C .1或﹣2D .3.设,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知椭圆上的一点到椭圆的一个焦点的距离等于4,那么点到椭圆的另一个焦点的距离等于( ) A .2 B .4 C .6 D .8[来源:学*科*网Z*X*X*K]5.在空间给出下列命题(设α、β表示平面,l 表示直线,A,B,C 表示点)其中真命题有( )重合与不共线,则、、,且、、,、、)若(则若则则)若(βαβαααβαβαβααααC B A C B A C B A A l A l AB B B A A l l B B A l A ∈∈∉∈⊄=⋂∈∈∈∈⊂∈∈∈∈4,,)3(,,,,)2(,,,,1A .1个B .2个C .3个D .4个6. 圆044222=-+-+y x y x 与直线()R t t y tx ∈=---0222的位置关系为( ) A.相离 B. 相切 C. 相交 D. 以上都有可能 7.一几何体的三视图如下,则它的体积是( )的值为()的一条切线,则实数>是曲线直线b x x y b x y )0(ln 21.8=+=9.已知,椭圆C 1的方程为,双曲线C 2的方程为,C 1与C 2的离心率之积为,则C 2的渐近线方程为( )A .B .C .D .10.如图,四棱锥中,底面是矩形,平面,且,,点是上一点,当二面角为时,( ) A. B. C. D.11.设双曲线221222:1(0,0),,x y F a b F F a b-=>>为双曲线F 的焦点.若双曲线F 上存在点M ,满足1212MF MO MF ==(O 为原点),则双曲线F 的离心率为 ( ) A . B . C . D .12.在四棱锥 P ﹣ABCD 中,AD ⊥平面PAB. BC ⊥平面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,且∠APD=∠BPC. 则满足上述条件中的四棱锥的顶点轨迹是( ) A . 椭圆的一部分 B. 圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)把答案填写在答题卡相应位置上. 13.双曲线的离心率等于____________ 14.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且,则点P 的坐标为______. 15.已知点满足2284160x x y y -+-+≤,则的取值范围是__________.16.已知M 是上一点,F 为抛物线的焦点,A 在圆C :上,则|MA |+|MF |的最小值为_____________. 三.解答题(本大题共6小题,共70分) 解答应写出文字说明、证明过程或演算步骤.解答写在答题卷的指定区域内. 17.(本题满分10分)已知命题:方程表示焦点在y 轴上的椭圆,命题:双曲线的离心率,若p 且q 为假, p 或 q 为真,求实数的取值范围.18. (本题满分12分)点关于的对称点Q 在直线上,且直线与直线平行. (1)求直线的方程(2)求圆心在直线上,与x 轴相切,且被直线截得的弦长为4的圆的方程.19.如图(1),边长为2的正方形ABEF 中,D ,C 分别为EF ,AF 上的点,且ED=CF ,现沿DC 把△CDF 剪切、拼接成如图(2)的图形,再将△BEC ,△CDF ,△ABD 沿BC ,CD ,BD 折起,使E ,F ,A 三点重合于点A′. (1)求证:BA′⊥CD ;(2)求四面体B-A′CD 体积的最大值.20.经过双曲线的左焦点F 1作倾斜角为的弦AB . 求(1)线段AB 的长;(2)设F 2为右焦点,求的周长21.如图,在直三棱柱中,,,,点是的中点. (1)求异面直线与所成角的余弦值; (2)求平面与平面所成二面角的正弦值.22.(本题满分12分)椭圆)0(1:2222>>=+b a by a x C ,作直线交椭圆于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,设直线的斜率为,直线OM 的斜率为,.(1)求椭圆C 的离心率;(2)设直线与x 轴交于点,且满足,当△OPQ 的面积最大时,求椭圆C 的方程.2016-2017学年度高二年级下期入学考试试题数学(理科)参考答案一、选择题1-5 DADCC 6-10 CACBD 11-12 CB二、填空题三、解答题 17.(本题满分12分)解: 若P 真,则,解得 …………2分若q 真,则 ,解得 …………4分若p 真q 假,则103015m m m ⎧<<⎪⎨⎪≤≥⎩或,解集为空集 …………7分 p 假q 真,则103015m m m ⎧≤≥⎪⎨⎪<<⎩或,解得 …………10分故 …………12分18. (本题满分12分) 解:(1)设点为点关于的对称点.则4143022n mm n -⎧=-⎪⎪⎨+⎪-+=⎪⎩,解得,即…………3分 由直线与直线平行,得直线的斜率为3…………4分 又在直线上,所以直线的方程为,即………6分(2)设圆的方程为()()()2220x a y b r r -+-=> …………7分由题意得222302a b b r r ⎧⎪-=⎪⎪=⎨⎪⎪+=⎪⎩,解得133a b r =-⎧⎪=-⎨⎪=⎩或133a b r =⎧⎪=⎨⎪=⎩ …………10分∴圆的方程为或 …………12分19.(1)证明:折叠前,,折叠后,BA A C BA A D ''''⊥⊥ 又,所以平面,因此。
2016-2017学年高二上学期期末数学试卷(理科) Word版含解析

2016-2017学年高二上学期期末试卷(理科数学)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题:“∀x∈R,x2﹣x+2≥0”的否定是()A.∃x∈R,x2﹣x+2≥0 B.∀x∈R,x2﹣x+2≥0C.∃x∈R,x2﹣x+2<0 D.∀x∈R,x2﹣x+2<02.复数z=2﹣3i对应的点z在复平面的()A.第一象限B.第二象限C.第三象限D.第四象限3.双曲线x2﹣4y2=1的焦距为()A.B. C.D.4.用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个是偶数”时,下列假设中正确的是()A.假设a,b,c不都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个是偶数D.假设a,b,c至多有两个是偶数5. dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln26.若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为()A.(﹣1,0)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(0,+∞)7.如图是函数f(x)=x3+bx2+cx+d的大致图象,则x1+x2=()A.B.C.D.8.命题甲:双曲线C 的渐近线方程是:y=±;命题乙:双曲线C 的方程是:,那么甲是乙的( )A .分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知函数f (x )=x 3﹣2x 2+ax+3在[1,2]上单调递增,则实数a 的取值范围为( ) A .a >﹣4 B .a ≥﹣4 C .a >1 D .a ≥110.设F 1,F 2是椭圆+=1的两个焦点,点M 在椭圆上,若△MF 1F 2是直角三角形,则△MF 1F 2的面积等于( )A .B .C .16D .或1611.若点P 在曲线y=x 3﹣3x 2+(3﹣)x+上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A .[0,) B .[0,)∪[,π) C .[,π) D .[0,)∪(,]12.设函数,对任意x 1,x 2∈(0,+∞),不等式恒成立,则正数k 的取值范围是( )A .[1,+∞)B .(1,+∞)C .D .二.填空题:本大题共4个小题,每小题5分.共20分.13.i 是虚数单位,则等于 .14.过抛物线y 2=8x 焦点F 作直线l 交抛物线于A 、B 两点,若线段AB 中点M 的横坐标为4,则|AB|= .15.若三角形的内切圆半径为r ,三边的长分别为a ,b ,c ,则三角形的面积S=r (a+b+c ),根据类比思想,若四面体的内切球半径为R ,四个面的面积分别为S 1、S 2、S 3、S 4,则此四面体的体积V= .16.定义在(0,+∞)的函数f (x )满足9f (x )<xf'(x )<10f (x )且f (x )>0,则的取值范围是 .三.解答题:本大题共6个小题,解答应写出文字说明,证明过程或演算步骤.17.已知0<a <1,求证: +≥9.18.已知函数f (x )=x 3﹣3ax 2+2bx 在x=1处的极小值为﹣1. ( I )试求a ,b 的值,并求出f (x )的单调区间;(Ⅱ)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围.19.已知双曲线与椭圆=1有公共焦点F 1,F 2,它们的离心率之和为2.(1)求双曲线的标准方程;(2)设P 是双曲线与椭圆的一个交点,求cos ∠F 1PF 2. 20.已知直线l :y=x+m 与抛物线y 2=8x 交于A 、B 两点, (1)若|AB|=10,求m 的值; (2)若OA ⊥OB ,求m 的值.21.是否存在常数a ,b ,c 使等式1•(n 2﹣1)+2•(n 2﹣22)+…+n•(n 2﹣n 2)=n 2(an 2﹣b )+c 对一切n ∈N *都成立? 并证明的结论.22.已知常数a >0,函数f (x )=ln (1+ax )﹣.(Ⅰ)讨论f (x )在区间(0,+∞)上的单调性;(Ⅱ)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.2016-2017学年高二上学期期末试卷(理科数学)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题:“∀x∈R,x2﹣x+2≥0”的否定是()A.∃x∈R,x2﹣x+2≥0 B.∀x∈R,x2﹣x+2≥0C.∃x∈R,x2﹣x+2<0 D.∀x∈R,x2﹣x+2<0【考点】命题的否定.【分析】利用含量词的命题的否定形式是:将“∀“改为“∃”结论否定,写出命题的否定.【解答】解:利用含量词的命题的否定形式得到:命题:“∀x∈R,x2﹣x+2≥0”的否定是“∃x∈R,x2﹣x+2<0”故选C2.复数z=2﹣3i对应的点z在复平面的()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】根据复数z=2﹣3i对应的点的坐标为(2,﹣3),可得复数z=2﹣3i对应的点z在复平面的象限.【解答】解:复数z=2﹣3i对应的点的坐标为(2,﹣3),故复数z=2﹣3i对应的点z在复平面的第四象限,故选 D.3.双曲线x2﹣4y2=1的焦距为()A.B. C.D.【考点】双曲线的简单性质.【分析】将所给的双曲线方程化成标准方程,根据双曲线中的a,b,c的关系求解c,焦距2c即可.【解答】解:双曲线x2﹣4y2=1,化成标准方程为:∵a2+b2=c2∴c2==解得:c=所以得焦距2c=故选:C.4.用反证法证明命题“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个是偶数”时,下列假设中正确的是()A.假设a,b,c不都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个是偶数D.假设a,b,c至多有两个是偶数【考点】反证法与放缩法.【分析】本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.【解答】解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选:B.5. dx等于()A.﹣2ln2 B.2ln2 C.﹣ln2 D.ln2【考点】定积分.【分析】根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.【解答】解:∵(lnx )′=∴=lnx|24=ln4﹣ln2=ln2故选D6.若f (x )=x 2﹣2x ﹣4lnx ,则f (x )的单调递增区间为( ) A .(﹣1,0) B .(﹣1,0)∪(2,+∞) C .(2,+∞) D .(0,+∞) 【考点】利用导数研究函数的单调性.【分析】确定函数的定义域,求出导函数,令导数大于0,即可得到f (x )的单调递增区间.【解答】解:函数的定义域为(0,+∞)求导函数可得:f′(x )=2x ﹣2﹣,令f′(x )>0,可得2x ﹣2﹣>0,∴x 2﹣x ﹣2>0,∴x <﹣1或x >2 ∵x >0,∴x >2∴f (x )的单调递增区间为(2,+∞) 故选C .7.如图是函数f (x )=x 3+bx 2+cx+d 的大致图象,则x 1+x 2=( )A .B .C .D .【考点】导数的运算.【分析】解:由图象知f (﹣1)=f (0)=f (2)=0,解出 b 、c 、d 的值,由x 1和x 2是f′(x )=0的根,使用根与系数的关系得到x 1+x 2=.【解答】解:∵f (x )=x 3+bx 2+cx+d ,由图象知,﹣1+b ﹣c+d=0,0+0+0+d=0, 8+4b+2c+d=0,∴d=0,b=﹣1,c=﹣2∴f′(x )=3x 2+2bx+c=3x 2﹣2x ﹣2. 由题意有x 1和x 2是函数f (x )的极值,故有x 1和x 2是f′(x )=0的根,∴x 1+x 2=, 故选:A .8.命题甲:双曲线C 的渐近线方程是:y=±;命题乙:双曲线C 的方程是:,那么甲是乙的( )A .分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【考点】必要条件、充分条件与充要条件的判断.【分析】根据双曲线C 的方程是:,渐近线方程是:y=±,双曲线C 的方程是:=﹣1,渐近线方程是:y=±,根据充分必要条件的定义可判断.【解答】解:∵双曲线C 的方程是:,∴渐近线方程是:y=±,∵双曲线C 的方程是: =﹣1,∴渐近线方程是:y=±,∴根据充分必要条件的定义可判断:甲是乙的必要,不充分条件, 故选:B9.已知函数f (x )=x 3﹣2x 2+ax+3在[1,2]上单调递增,则实数a 的取值范围为( ) A .a >﹣4 B .a ≥﹣4 C .a >1D .a ≥1【考点】利用导数研究函数的单调性.【分析】求出导函数f'(x )=3x 2﹣4x+a ,在区间内大于或等于零,根据二次函数的性质可知,导函数在区间内递增,故只需f'(1)≥0即可.【解答】解:f (x )=x 3﹣2x 2+ax+3, ∴f'(x )=3x 2﹣4x+a , ∵在[1,2]上单调递增,∴f'(x )=3x 2﹣4x+a 在区间内大于或等于零,∵二次函数的对称轴x=, ∴函数在区间内递增, ∴f'(1)≥0, ∴﹣1+a ≥0, ∴a ≥1, 故选D .10.设F 1,F 2是椭圆+=1的两个焦点,点M 在椭圆上,若△MF 1F 2是直角三角形,则△MF 1F 2的面积等于( )A .B .C .16D .或16【考点】椭圆的应用;椭圆的简单性质.【分析】令|F 1M|=m 、|MF 2|=n ,由椭圆的定义可得 m+n=2a ①,Rt △F 1MF 2中,由勾股定理可得n 2﹣m 2=36②,由①②可得m 、n 的值,利用△F 1PF 2的面积求得结果. 【解答】解:由椭圆的方程可得 a=5,b=4,c=3,令|F 1M|=m 、|MF 2|=n , 由椭圆的定义可得 m+n=2a=10 ①,Rt △MF 1F 2 中, 由勾股定理可得n 2﹣m 2=36 ②,由①②可得m=,n=,∴△MF 1F 2 的面积是•6•=故选A .11.若点P 在曲线y=x 3﹣3x 2+(3﹣)x+上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]【考点】导数的几何意义;直线的倾斜角.【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.【解答】解:∵函数的导数y′=3x2﹣6x+3﹣=3(x﹣1)2﹣≥﹣,∴tanα≥﹣,又 0≤α<π,∴0≤α<或≤α<π,故选 B.12.设函数,对任意x1,x2∈(0,+∞),不等式恒成立,则正数k的取值范围是()A.[1,+∞)B.(1,+∞)C.D.【考点】利用导数求闭区间上函数的最值.【分析】当x>0时,f(x)=e2x+,利用基本不等式可求f(x)的最小值,对函数g(x)求导,利用导数研究函数的单调性,进而可求g(x)的最大值,由恒成立且k>0,则≤,可求k的范围.【解答】解:∵当x>0时,f(x)=e2x+≥2 =2e,∴x1∈(0,+∞)时,函数f(x1)有最小值2e,∵g(x)=,∴g′(x)=,当x<1时,g′(x)>0,则函数g(x)在(0,1)上单调递增,当x>1时,g′(x)<0,则函数在(1,+∞)上单调递减,∴x=1时,函数g(x)有最大值g(1)=e,则有x 1、x 2∈(0,+∞),f (x 1)min =2e >g (x 2)max =e ,∵恒成立且k >0,∴≤,∴k ≥1, 故选:A .二.填空题:本大题共4个小题,每小题5分.共20分.13.i 是虚数单位,则等于.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:,则=.故答案为:.14.过抛物线y 2=8x 焦点F 作直线l 交抛物线于A 、B 两点,若线段AB 中点M 的横坐标为4,则|AB|= 12 .【考点】抛物线的简单性质.【分析】由中点坐标公式可知:x 1+x 2=2×4,则丨AA 1丨+丨BB 1丨=x 1++x 2+=x 1+x 2+p=8+4=12,则丨AA 1丨+丨BB 1丨=丨AF 丨+丨BF 丨=丨AB 丨,即可求得|AB|. 【解答】解:抛物线y 2=8x 的焦点为F (2,0),设A (x 1,y 1),B (x 2,y 2),M (4,y 0),过A ,B ,M 做准线的垂直,垂足分别为A 1,B 1及M 1, 由中点坐标公式可知:x 1+x 2=2×4=8,∴丨AA 1丨+丨BB 1丨=x 1++x 2+=x 1+x 2+p=8+4=12 ∴丨AA 1丨+丨BB 1丨=12由抛物线的性质可知:丨AA 1丨+丨BB 1丨=丨AF 丨+丨BF 丨=丨AB 丨, ∴丨AB 丨=12, 故答案为:12.15.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= R(S1+S2+S3+S4).【考点】类比推理;棱柱、棱锥、棱台的体积.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故答案为: R(S1+S2+S3+S4).16.定义在(0,+∞)的函数f(x)满足9f(x)<xf'(x)<10f(x)且f(x)>0,则的取值范围是(29,210).【考点】利用导数研究函数的单调性.【分析】根据条件分别构造函数g(x)=和h(x)=,分别求函数的导数,研究函数的单调性进行求解即可.【解答】解:设g(x)=,∴g′(x)==,∵9f(x)<xf'(x),∴g′(x)=>0,即g(x)在(0,+∞)上是增函数,则g(2)>g(1),即>,则>29,同理设h(x)=,∴h′(x)==,∵xf'(x)<10f(x),∴h′(x)=<0,即h(x)在(0,+∞)上是减函数,则h(2)<h(1),即<,则<210,综上29<<210,故答案为:(29,210)三.解答题:本大题共6个小题,解答应写出文字说明,证明过程或演算步骤.17.已知0<a<1,求证: +≥9.【考点】不等式的证明.【分析】0<a<1⇒1﹣a>0,利用分析法,要证明≥9,只需证明(3a﹣1)2≥0,该式成立,从而使结论得证.【解答】证明:由于0<a<1,∴1﹣a>0.要证明≥9,只需证明1﹣a+4a≥9a﹣9a2,即9a2﹣6a+1≥0.只需证明(3a﹣1)2≥0,∵(3a﹣1)2≥0,显然成立,∴原不等式成立.18.已知函数f(x)=x3﹣3ax2+2bx在x=1处的极小值为﹣1.( I)试求a,b的值,并求出f(x)的单调区间;(Ⅱ)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出导函数,根据极值的定义得出a,b的值,利用导函数得出函数的单调区间;(Ⅱ)利用导函数得出函数的极值,根据极值求出a的取值范围.【解答】解:(Ⅰ)f′(x)=3x2﹣6ax+2b∵在x=1处的极值为﹣1,∴,∴f′(x)=3x2﹣2x﹣1当f′(x)≥0时,或x≥1,∴增区间为当f′(x)≤0时,,∴减区间为(Ⅱ)由(Ⅰ)可知当时,f(x)取极大值为,当x=1时,f(x)取极大值为﹣1∴当时,关于x的方程f(x)=a有三个不同的实根.19.已知双曲线与椭圆=1有公共焦点F 1,F 2,它们的离心率之和为2.(1)求双曲线的标准方程;(2)设P 是双曲线与椭圆的一个交点,求cos ∠F 1PF 2. 【考点】双曲线的简单性质.【分析】(1)由于椭圆焦点为F (0,±4),离心率为e=,可得双曲线的离心率为2,结合双曲线与椭圆=1有公共焦点F 1,F 2,求出a ,b ,c .最后写出双曲线的标准方程;(2)求出|PF 1|=7,|PF 2|=3,|F 1F 2|=8,利用余弦定理,即可求cos ∠F 1PF 2.【解答】解:(1)椭圆=1的焦点为(0,±4),离心率为e=.∵双曲线与椭圆的离心率之和为2, ∴双曲线的离心率为2,∴=2∵双曲线与椭圆=1有公共焦点F 1,F 2,∴c=4,∴a=2,b=,∴双曲线的方程是;(2)由题意,|PF 1|+|PF 2|=10,|PF 1|﹣|PF 2|=4 ∴|PF 1|=7,|PF 2|=3, ∵|F 1F 2|=8,∴cos ∠F 1PF 2==﹣.20.已知直线l :y=x+m 与抛物线y 2=8x 交于A 、B 两点, (1)若|AB|=10,求m 的值;(2)若OA⊥OB,求m的值.【考点】直线与圆锥曲线的关系.【分析】(1)把直线方程与抛物线方程联立消去y,根据韦达定理表示出x1+x2和x1x2,利用弦长公式可求;(2)由于OA⊥OB,从而有x1x2+y1y2=0,利用韦达定理可得方程,从而求出m的值.【解答】解:设A(x1,y1)、B(x2,y2)(1)x2+(2m﹣8)x+m2=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣,﹣﹣﹣﹣∵m<2,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)∵OA⊥OB,∴x1x2+y1y2=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣x 1x2+(x1+m)(x2+m)=0,2x1x2+m(x1+x2)+m2=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2m2+m(8﹣2m)+m2=0,m2+8m=0,m=0orm=﹣8,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣经检验m=﹣8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.是否存在常数a,b,c使等式1•(n2﹣1)+2•(n2﹣22)+…+n•(n2﹣n2)=n2(an2﹣b)+c 对一切n∈N*都成立?并证明的结论.【考点】数学归纳法.【分析】可假设存在常数a,b使等式1•(n2﹣1)+2•(n2﹣22)+…+n•(n2﹣n2)=n2(an2﹣b)+c对于任意的n∈N+总成立,令n=1与n=2,n=3列方程解得a,b,c再用数学归纳法证明.【解答】解:n=1时,a﹣b+c=0,n=2时,16a﹣4b+c=3,n=3时,81a﹣9b+c=18解得c=0,证明(1)当n=1是左边=0,右边=0 左边=右边,等式成立.(2)假设n=k时(k≥1,k∈N*)等式成立,即,则当n=k+1时1•[(k+1)2﹣1]+2•[(k+1)2﹣22]+…+k•[(k+1)2﹣k2]+(k+1)[(k+1)2﹣(k+1)2],=1•(k2﹣1)+2•(k2﹣22)+…+k•(k2﹣k2)+(1+2+…+k)(2k+1),=,===所以当n=k+1时等式也成立.综上(1)(2)对于k≥1,k∈N*所有正整数都成立.22.已知常数a>0,函数f(x)=ln(1+ax)﹣.(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【分析】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决.【解答】解:(Ⅰ)∵f(x)=ln(1+ax)﹣.∴f′(x )==,∵(1+ax )(x+2)2>0,∴当1﹣a ≤0时,即a ≥1时,f′(x )≥0恒成立,则函数f (x )在(0,+∞)单调递增,当0<a ≤1时,由f′(x )=0得x=±,则函数f (x )在(0,)单调递减,在(,+∞)单调递增.(Ⅱ)由(Ⅰ)知,当a ≥1时,f′(x )≥0,此时f (x )不存在极值点.因此要使f (x )存在两个极值点x 1,x 2,则必有0<a <1,又f (x )的极值点值可能是x 1=,x 2=﹣,且由f (x )的定义域可知x >﹣且x ≠﹣2,∴﹣>﹣且﹣≠﹣2,解得a ≠,则x 1,x 2分别为函数f (x )的极小值点和极大值点,∴f (x 1)+f (x 2)=ln[1+ax 1]﹣+ln (1+ax 2)﹣=ln[1+a (x 1+x 2)+a 2x 1x 2]﹣=ln (2a ﹣1)2﹣=ln (2a ﹣1)2+﹣2.令2a ﹣1=x ,由0<a <1且a ≠得,当0<a <时,﹣1<x <0;当<a <1时,0<x <1.令g (x )=lnx 2+﹣2.(i )当﹣1<x <0时,g (x )=2ln (﹣x )+﹣2,∴g′(x )=﹣=<0,故g (x )在(﹣1,0)上单调递减,g (x )<g (﹣1)=﹣4<0,∴当0<a <时,f (x 1)+f (x 2)<0;(ii)当0<x<1.g(x)=2lnx+﹣2,g′(x)=﹣=<0,故g(x)在(0,1)上单调递减,g(x)>g(1)=0,∴当<a<1时,f(x1)+f(x2)>0;综上所述,a的取值范围是(,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年重庆市万州二中高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)直线的倾斜角为()A.B.C. D.2.(5分)“1<m<2”是“方程+=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列判断正确的是()A.若l⊥m,m⊥n,则l∥n B.若α⊥β,β⊥γ,则α∥γC.若m⊥α,α⊥β,则m∥βD.若m⊥α,m∥β,则α⊥β4.(5分)三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.2B.4 C. D.165.(5分)下列推断错误的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”②命题“若x2=1,则x=1”的否命题为:若“x2=1,则x≠1”③“x<1”是“x2﹣3x+2>0”的充分不必要条件④若p∧q为假命题,则p,q均为假命题.A.1 B.2 C.3 D.46.(5分)若“∃x∈[,2],使得2x2﹣λx+1<0成立”是假命题,则实数λ的取值范围为()A.(﹣∞,2]B.[2,3]C.[﹣2,3] D.λ=37.(5分)若圆C:x2+y2﹣x﹣y﹣12=0上有四个不同的点到直线l:x﹣y+c=0的距离为2,则c的取值范围是()A.[﹣2,2]B.[﹣2,2]C.(﹣2,2)D.(﹣2,2)8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.4+2πD.4+π9.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.10.(5分)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()A. B. C.D.11.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.212.(5分)双曲线的右焦点为M,左顶点为A,以F是为圆心过点A的圆交双曲线的一条渐近线于P,Q两点,若|PQ|不小于双曲线的虚轴长,则该双曲线的离心率的取值范围是()A.(1,2]B.C.(1,3]D.R二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为.14.(5分)如图所示,一个三棱锥的三视图是三个直角三角形(单位:cm),则该三棱锥的外接球的表面积为.15.(5分)已知空间四点A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9)共面,则x=.16.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足,设线段AB的中点M在l上的投影为N,则的最大值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平面直角坐标系xOy中,设命题p:椭圆C:+=1的焦点在x轴上:命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点.若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.18.(12分)已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.19.(12分)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.20.(12分)已知抛物线C:y2=2px(p>0)的焦点F,抛物线上一点P点横坐标为2,|PF|=3(1)求抛物线的方程;(2)过F且倾斜角为30°的直线交抛物线C于A,B两点,O为坐标原点,求△OAB的面积.21.(12分)如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.22.(12分)已知F1、F2是椭圆+=1的左、右焦点,O为坐标原点,点P (﹣1,)在椭圆上,线段PF2与y轴的交点M满足+=;(1)求椭圆的标准方程;(2)⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当=λ且满足≤λ≤时,求△AOB面积S的取值范围.2016-2017学年重庆市万州二中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)直线的倾斜角为()A.B.C. D.【解答】解:∵直线的斜率等于﹣,设直线的倾斜角为θ,则tanθ=﹣,0≤θ<π,解得θ=,故选:D.2.(5分)“1<m<2”是“方程+=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若方程+=1表示的曲线是焦点在y轴上的椭圆,则,即,解得1<m<2,即“1<m<2”是“方程+=1表示的曲线是焦点在y轴上的椭圆”的充要条件,故选:C.3.(5分)设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列判断正确的是()A.若l⊥m,m⊥n,则l∥n B.若α⊥β,β⊥γ,则α∥γC.若m⊥α,α⊥β,则m∥βD.若m⊥α,m∥β,则α⊥β【解答】解:对于A,垂直于同一直线的两条直线平行、相交或异面,故A不正确;对于B,垂直于同一平面的两条平面平行或相交,故B不正确对于C,∵α⊥β,∴设α∩β=a,在平面β内作直线b⊥a,则b⊥α,∵m⊥α,∴m∥b,若m⊄β,则m∥β,若m⊂β,也成立,∴m∥β或m⊂β.故C不正确;对于D,若m⊥α,m∥β,则存在l⊂β,使l∥m,∴l⊥α,则α⊥β,故D正确,故选:D.4.(5分)三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.2B.4 C. D.16【解答】解:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选:B.5.(5分)下列推断错误的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”②命题“若x2=1,则x=1”的否命题为:若“x2=1,则x≠1”③“x<1”是“x2﹣3x+2>0”的充分不必要条件④若p∧q为假命题,则p,q均为假命题.A.1 B.2 C.3 D.4【解答】解:对于①,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”正确;对于②,命题“若x2=1,则x=1”的否命题为:若“x2≠1,则x≠1”,故错对于③,“x<1”时“x2﹣3x+2>0”成立,“x2﹣3x+2>0”时“x>2,或x<1“,故正确;对于④,若p∧q为假命题,则p,q至少有一个为假命题,故错.故选:B.6.(5分)若“∃x∈[,2],使得2x2﹣λx+1<0成立”是假命题,则实数λ的取值范围为()A.(﹣∞,2]B.[2,3]C.[﹣2,3] D.λ=3【解答】解:若“∃x∈[,2],使得2x2﹣λx+1<0成立”是假命题,即“∃x∈[,2],使得λ>2x+成立”是假命题,由x∈[,2],当x=时,函数取最小值2,故实数λ的取值范围为(﹣∞,2],故选:A.7.(5分)若圆C:x2+y2﹣x﹣y﹣12=0上有四个不同的点到直线l:x﹣y+c=0的距离为2,则c的取值范围是()A.[﹣2,2]B.[﹣2,2]C.(﹣2,2)D.(﹣2,2)【解答】解:圆C:x2+y2﹣x﹣y﹣12=0,配方为:=16,∵圆上有四个不同的点到直线l:x﹣y+c=0的距离为2,∴圆心到直线l的距离d=<2,解得<c,故选:D.8.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.4+2πD.4+π【解答】解:由三视图知:几何体是三棱柱与半圆柱的组合体,且三棱柱与半圆柱的高都是2,三棱柱的一侧面为圆柱的轴截面,三棱柱的底面为等腰直角三角形,且腰长为2,半圆柱的底面半径为1,∴几何体的体积V=×2×22+×π×12×2=4+π.故选:D.9.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.10.(5分)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()A. B. C.D.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE==,∵圆O1的半径为4,∴O1E===2∴O2E═=3∴圆O2的半径为故选:D.11.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.12.(5分)双曲线的右焦点为M,左顶点为A,以F是为圆心过点A的圆交双曲线的一条渐近线于P,Q两点,若|PQ|不小于双曲线的虚轴长,则该双曲线的离心率的取值范围是()A.(1,2]B.C.(1,3]D.R【解答】解:双曲线的右焦点为F(c,0),左顶点A(﹣a,0),圆F:(x﹣c)2+y2=(a+c)2,则双曲线的一条渐近线方程为y=x,圆心F(c0)到渐近线bx﹣ay=0的距离为d===b,则|PQ|=2≥2b,即有(a+c)2≥2b2=2(c2﹣a2),即为c2﹣2ac﹣3a2≤0,由离心率e=,得e2﹣2e﹣3≤0,解得﹣1≤e≤3;又e>1,所以1<e≤3.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为4.【解答】解:由椭圆+=1,可得a2=6,b2=2,∴c==2,∴右焦点F(2,0).由抛物线y2=2px可得焦点.∴=2,解得p=4.故答案为:4.14.(5分)如图所示,一个三棱锥的三视图是三个直角三角形(单位:cm),则该三棱锥的外接球的表面积为29πcm2.【解答】解:由三视图复原几何体,几何体是底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥;把它扩展为长方体,两者有相同的外接球,它的对角线的长为球的直径,即=2R,R=.该三棱锥的外接球的表面积为:该三棱锥的外接球的表面积为:4×π×()2=29π.故答案为:29πcm215.(5分)已知空间四点A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9)共面,则x=﹣6.【解答】解:∵A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9),∴=(2,0,﹣4),=(4,﹣2,0),=(x,2,4),∵四点A,B,C,D共面,∴存在实数λ,μ使得,=λ+,∴(x,2,4)=λ(2,0,﹣4)+μ(4,﹣2,0),∴,解得x=﹣6,故答案为:﹣6.16.(5分)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足,设线段AB的中点M在l上的投影为N,则的最大值是1.【解答】解:设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,配方得,|AB|2=(a+b)2﹣3ab,又∵ab≤,∴(a+b)2﹣3ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).∴≤1,即的最大值为1.故答案为:1.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平面直角坐标系xOy中,设命题p:椭圆C:+=1的焦点在x轴上:命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点.若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.【解答】解:命题p:椭圆C:+=1的焦点在x轴上:p为真时:m>8﹣m>0,解得4<m<8;命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点;q为真时:圆心O到直线l的距离:,解得;因为命题p、q中有且只有一个为真命题,若p真q假,则:,解得:;若p假q真,则:,解得:;综上,实数m的取值范围是或.18.(12分)已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.【解答】解:(Ⅰ)∵圆心在直线y=2x上,故可设圆心C(a,2a),半径为r.则圆C的标准方程为(x﹣a)2+(y﹣2a)2=r2.∵圆C经过A(3,2)、B(1,6),∴.解得a=2,r=.∴圆C的标准方程为(x﹣2)2+(y﹣4)2=5.(Ⅱ)由(Ⅰ)知,圆C的圆心为C(2,4),半径r=.直线l经过点P(﹣1,3),①若直线斜率不存在,则直线l:x=﹣1.圆心C(2,4)到直线l的距离为d=3<r=,故直线与圆相交,不符合题意.②若直线斜率存在,设斜率为k,则直线l:y﹣3=k(x+1),即kx﹣y+k+3=0.圆心C(2,4)到直线l的距离为d==.∵直线与圆相切,∴d=r,即=.∴(3k﹣1)2=5+5k2,解得k=2或k=.∴直线l的方程为2x﹣y+5=0或x+2y﹣5=0.19.(12分)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.【解答】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.20.(12分)已知抛物线C:y2=2px(p>0)的焦点F,抛物线上一点P点横坐标为2,|PF|=3(1)求抛物线的方程;(2)过F且倾斜角为30°的直线交抛物线C于A,B两点,O为坐标原点,求△OAB的面积.【解答】解:(1)由抛物线定义可知,|PF|=2+=3,∴p=2,∴抛物线方程为y2=4x.(2)由y2=34,得F(1,0).∴过A,B的直线方程为y=(x﹣1),联立得y2﹣4y﹣4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=﹣4.=S△OAF+S△OFB=|y1﹣y2|==4.∴S△OAB21.(12分)如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【解答】解:(Ⅰ)∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC.∵AB=4,AD=CD=2,∴AC=BC=2.∴AC2+BC2=AB2,∴AC⊥BC.又BC∩PC=C,∴AC⊥平面PBC.∵AC⊂平面EAC,∴平面EAC⊥平面PBC.…(5分)(Ⅱ)如图,以点C为原点,,,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,﹣2,0).设P(0,0,2a)(a>0),则E(1,﹣1,a),=(2,2,0),=(0,0,2a),=(1,﹣1,a).取=(1,﹣1,0),则•=•=0,为面PAC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即,取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=2.…(10分)于是n=(2,﹣2,﹣2),=(2,2,﹣4).设直线PA与平面EAC所成角为θ,则sinθ=|cos<,>|==,即直线PA与平面EAC所成角的正弦值为.…(13分)22.(12分)已知F1、F2是椭圆+=1的左、右焦点,O为坐标原点,点P (﹣1,)在椭圆上,线段PF2与y轴的交点M满足+=;(1)求椭圆的标准方程;(2)⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当=λ且满足≤λ≤时,求△AOB面积S的取值范围.【解答】解:(Ⅰ)∵+=,∴点M是线段PF2的中点,∴OM是△PF1F2的中位线,又OM⊥F1F2∴PF1⊥F1F2∴,解得a2=2,b2=1,c2=1,∴椭圆的标准方程为=1.(5分)(Ⅱ)∵圆O与直线l相切,∴,即m2=k2+1,由,消去y:(1+2k2)x2+4kmx+2m2﹣2=0,∵直线l与椭圆交于两个不同点,∴△>0,∴k2>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,,y1y2=(kx1+m)(kx2+m)==,=x1x2+y1y2==λ,∴,∴,解得:,(8分)S=S△AOB===,设μ=k4+k2,则,S=,,∵S关于μ在[]上单调递增,S ()=,S(2)=.∴.(13分)第21页(共21页)。