2017-2018学年辽宁省大连市高新区八年级(下)期末数学试卷(J)

合集下载

辽宁省大连市八年级下学期数学期末试卷

辽宁省大连市八年级下学期数学期末试卷

辽宁省大连市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020八下·南昌月考) 要使在实数范围内有意义,则()A . x为任何值B . x≤﹣C . x≥D . x≥﹣【考点】2. (2分) (2019八上·椒江期中) 一个正多边形的内角和为900°,那么从一点引对角线的条数是()A . 3B . 4C . 5D . 6【考点】3. (2分) (2019八上·灌云期末) 在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点的坐标是()A . (2,3)B . (2,﹣3)C . (﹣2,﹣3)D . (﹣3,2)【考点】4. (2分)下列等式成立的是A . a2•a5=a10B .C . (﹣a3)6=a18D .【考点】5. (2分)如图,菱形的顶点在轴上,顶点的坐标为.若反比例函数的图象经过点,则的值为()A . -6B . -3C . 3D . 6【考点】6. (2分)(2018·金华模拟) 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:诗词数量首4567891011人数34457511那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A . 11,7B . 7,5C . 8,8D . 8,7【考点】7. (2分) (2020八下·东坡期中) 在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为()s时,以A,F,C,E为顶点的四边形是平行四边形?()A . 2B . 3C . 6D . 2或6【考点】8. (2分)如图,数轴上点A表示的数是﹣1,原点O是线段AB的中点,∠BAC=30°,∠ABC=90°,以点A 为圆心,AC为半径画弧,交数轴于点D,则点D表示的数是()A . -1B .C .D . -1【考点】9. (2分)如图,以等边三角形ABC的边AC为边,向外做正方形ACDE,则(1)∠BCE=105°;(2)∠BAE=150°;(3)BE=BD;(4)∠DBE=30°;其中结论正确的有()个A . 4B . 3C . 2D . 1【考点】10. (2分)已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而()A . 增大B . 减小C . 不变D . 不能确定【考点】11. (2分)(2020·凤县模拟) 若三点在同一直线上,则的值等于()A . 5B . 6C . -1D . 4【考点】12. (2分) (2017八下·盐都开学考) 如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A . x<B . ﹣<x<1C . x<1D . ﹣1<x<1【考点】二、填空题 (共6题;共6分)13. (1分)(2017·红桥模拟) 把 + 进行化简,得到的最简结果是________(结果保留根号).【考点】14. (1分)(2019·广西模拟) 已知实数x,y满足lx-3I+ =0,则以x,y的值为两边长的等腰三角形的周长是________.【考点】15. (1分) (2019九下·鞍山月考) 若关于的一元二次方程无实数根,则一次函数的图象不经过第________象限.【考点】16. (1分)(2012·成都) 商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)3839404142件数14312则这11件衬衫领口尺寸的众数是________cm,中位数是________cm.【考点】17. (1分) (2020八下·长沙期中) 如图,已知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是 ________.【考点】18. (1分)(2017·北仑模拟) 若三角形的一边和该边上的高相等的三角形称为“和谐三角形”,如图,已知抛物线y=ax2经过A(﹣1,1),P是y轴正半轴上的动点,射线AP与抛物线交于另一点B,当△AOP是“和谐三角形”时,点B的坐标为________.【考点】三、解答题 (共7题;共50分)19. (5分)先化简,再求值:2x+7+3x﹣2,其中x=2.【考点】20. (5分) (2020八上·常州期中) 如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,求该图形的面积.【考点】21. (10分)(2018·淮南模拟) 在直角三角形ABC中,∠ABC=90°,∠C=30°,AB=4,以B为圆心,BA为半径作⊙B交BC于点D,旋转∠ABD交⊙B于点E、F,连接EF交AC、BC边于点G、H.(1)若BE⊥AC,求tan∠CGH的值;(2)若AG=4,求△BEF与△ABC重叠部分的面积;(3)△BHE是等腰三角形时,∠ABD逆时针旋转的度数是________.【考点】22. (10分) (2017九上·渭滨期末) 如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长.【考点】23. (3分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)【考点】24. (6分) (2019七上·青岛期中) 某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).【考点】25. (11分) (2017八下·江海期末) 如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为,点A的坐标为(-6,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试求出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围;(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由。

大连市八年级下学期数学期末考试试卷

大连市八年级下学期数学期末考试试卷

大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列哪个是最简二次根式()A .B .C .D .2. (2分) (2019八上·宣城期末) 一次函数y=kx+b的图像经过点(,1)和(-1,)(m≠0),则k、b应满足的条件是().A . k>0,b>0B . k>0,b<0C . k<0,b<0D . k<0,b>03. (2分)(2018·南山模拟) 下列说法正确的是()A . 要了解人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据5,5,6,7的众数和中位数都是5C . 必然事件发生的概率为100%D . 若甲组数据的方差是3.4,乙组数据的方差是1.68,则甲组数据比乙组数据稳定4. (2分)使代数式有意义的 a 的范围是()A . a>0B . a<0C . a=0D . 不存在5. (2分)(2017·十堰) 下列命题错误的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一条对角线平分一组对角的四边形是菱形D . 对角线互相垂直的矩形是正方形6. (2分) (2016八下·石城期中) 如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A . 16aB . 12aC . 8aD . 4a7. (2分)(2016·济南) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<38. (2分)化简二次根式得()A . -B .C .D . 309. (2分)将分数﹣化为小数是﹣0.5714,则小数点后第2012位上的数是()A . 8B . 5C . 7D . 110. (2分)如图,△ABC中,CD垂直AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠A,②∠B+∠2=90°,③BC:AC:AB=3:4:5,④AC•CD=BC•AD.A . 1B . 2C . 3D . 411. (2分) (2018九上·宁波期中) 如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A . 50°B . 60°C . 80°D . 100°12. (2分)(2018·泰州) 如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是()A . 线段始终经过点B . 线段始终经过点C . 线段始终经过点D . 线段不可能始终经过某一定点二、填空题 (共6题;共6分)13. (1分)计算:﹣2等于________ .14. (1分)某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米15. (1分)把直线y=﹣x+2向上平移3个单位,得到的直线表达式是________.16. (1分)(2017·西乡塘模拟) 函数y= 的自变量的取值范围是________.17. (1分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是________折.18. (1分)(2017·新吴模拟) 如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是________.三、解答题 (共6题;共60分)19. (10分)计算(1)sin260°•tan45°﹣(﹣)﹣2(2)﹣(﹣1)+2sin60°﹣3tan30°.20. (15分) (2017九下·盐城期中) 盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查.调查结果如下图表:景点频数频率丹顶鹤8729%麋鹿75盐渎6321%息心寺4715.7%后羿公园289.3%(1)此次共调查了多少人?(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21. (10分) (2017八下·容县期末) 一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如图2所示.图1 图2(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.22. (5分) (2017八下·庆云期末) 如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.23. (10分)(2017·天津模拟) 在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?24. (10分)(2017·南岸模拟) 对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求的最大值.四、解答题 (共2题;共18分)25. (7分) (2016九下·长兴开学考) 综合题(1)如图①,在△ABC中,点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,则EG=________,=________.(2)如图②,在△ABC中点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,以AD,DF,FB为边构造△ADM (即AM=BF,MD=DF),以AE,EG,GC为边构造△AEN(即AN=GC,NE=EG),求证:∠M=∠N.26. (11分) (2016九上·苍南期末) 如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB交y轴于点D.(1)的值是________.(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共60分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、四、解答题 (共2题;共18分) 25-1、25-2、26-1、26-2、26-3、。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题 (共 6 题;共 12 分)1. (2 分) (2017 八下·宜兴期中) 如图,在方格纸上建立的平面直角坐标系中,将 OA 绕原点 O 按顺时针方向旋转 180°得到 OA′,则点 A′的坐标为 ( )A . ( -3, 1) B . (1, -3) C . (1, 3) D . (3, -1) 2. (2 分) 某班学生参加课外兴趣小组情况的统计图如图 1 所示,则参加人数最少的课外兴趣小组是( ).A . 书法 B . 象棋 C . 体育 D . 美术 3. (2 分) (2016 九上·北仑月考) 下列事件中,不可能事件是( ) A . 掷一枚均匀的正方体骰子,朝上一面的点数是 5 B . 任意选择某个电视频道,正在播放动画片 C . 明天太阳从西边升起 D . 抛出一枚硬币,落地后正面朝上第 1 页 共 19 页4. (2 分) 下列二次根式是最简二次根式的是( ) A.B. C. D.5. (2 分) (2020 八下·福州期末) 已知,是直线,则 m 的取值范围是( ) A. B. C. D.6. (2 分) 化简的结果是( )A.B.C.D.二、 填空题 (共 10 题;共 11 分)7. (1 分) (2013 八下·茂名竞赛) 有一个数值转换器,原理如右图.当输入的 ________ .上的相异两点,若 时,输出的 等于8. (1 分) (2020 七下·昆明期末) 某学校为了了解学生吃早点的情况,选择全校 40 个班级中学号是 5,10, 15,20,25,30,35,40 的 320 名同学进行调查,本次调查的样本容量是________.9. (1 分) (2018·南宁模拟) 某人把 50 粒黄豆染色后与一袋黄豆充分混匀,接着抓出 100 粒黄豆,数出其 中有 10 粒黄豆被染色,则这袋黄豆原来约有________粒.10. (1 分) (2019 八上·沾益月考) 设、是反比例函数< <0 时, > >0,则 k ________ 0 (填“>”或“<”).11. (1 分) (2019·盐城) 分解因式:________.第 2 页 共 19 页图象上的两点,且当12. (1 分) 如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕 200 支, 那么售出奶油口味雪糕的数量是________ 支.13. (1 分) (2018 八上·东台月考) 如图,在数轴上,点 A、B 表示的数分别为 0、2,BC⊥AB 于点 B,且 BC=1, 连接 AC,在 AC 上截取 CD=BC,以 A 为圆心,AD 的长为半径画弧,交线段 AB 于点 E,则点 E 表示的实数是________.14. (2 分) (2017·南宁模拟) 使有意义的 x 的取值范围是________.15. (1 分) (2019 八上·沾益月考) 如图,在矩形 ABCD 中,对角线 AC、BD 交于点 O,DE 平分∠ADC.若∠AOB=60°,则∠COE 的大小为________ .16.(1 分)(2018 八上·四平期末) 如图,,已知中,的顶点 A,B 分别在边 OM,ON 上,当点 B 在边 ON 上运动时,点 A 随之在边 OM 上运动,运动过程中,点 C 到点 O 的最大距离为________., 的形状保持不变,在三、 解答题 (共 10 题;共 106 分)17. (10 分) (2020 七下·东丽期末) 计算 (1)第 3 页 共 19 页(2);18. (5 分) (2020 八上·嘉陵期末) 仿照例子,将分式拆分成一个整式与一个分式的和(差)的形式⑴ ⑵ 解:(1)19. (10 分) (2020·仙桃) 在平行四边形 图,不写画法,保留画图痕迹.中,E 为 的中点,请仅用无刻度的直尺完成下列画(1) 如图 1,在 上找出一点 M,使点 M 是 的中点; (2) 如图 2,在 上找出一点 N,使点 N 是 的一个三等分点. 20. (6 分) (2019 八上·兰州期末) 振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿 捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方 形的高度之比为 3∶4∶5∶8∶6,又知此次调查中捐款 25 元和 30 元的学生一共 42 人.(1) 他们一共调查了多少人? (2) 这组数据的众数、中位数各是多少? (3) 若该校共有 1560 名学生,估计全校学生捐款多少元. 21. (15 分) (2017·盘锦模拟) 今年是第 39 个植树节,我们提出了“追求绿色时尚,走向绿色文明”的倡 议.某校为积极响应这一倡议,立即在八、九年级开展征文活动,校团委对这两个年级各班内的投稿情况进行统计, 并制成了如图所示的两幅不完整的统计图.第 4 页 共 19 页(1) 求扇形统计图中投稿 3 篇的班级个数所对应的扇形的圆心角的度数. (2) 求该校八、九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3) 在投稿篇数最多的 4 个班中,八、九年级各有两个班,校团委准备从这四个班中选出两个班参加全校的 表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率. 22. (10 分) (2018 八上·江北期末) 在我市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算: 甲队单独完成这项工程需要 天;若由甲队先做 天,剩下的工程由甲、乙合做 天可完成. (1) 乙队单独完成这项工程需要多少天? (2) 甲队施工一天,需付工程款 万元,乙队施工一天需付工程款 万元,若该工程计划在 天内完 成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱? 23. (10 分) (2016 九上·封开期中) 如图,在△ABC 和△EDC 中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB 与 CE 交于 F,ED 与 AB,BC,分别交于 M,H.(1) 求证:CF=CH; (2) △ABC 不动,将△EDC 绕点 C 旋转到∠BCE=45°,证明:四边形 ACDM 是菱形.24. (15 分) 如图所示,反比例函数 y= 1,﹣4)两点.(k≠0)的图象与一次函数 y=ax+b 的图象交于 M(2,m),N(﹣第 5 页 共 19 页(1) 求反比例函数和一次函数的关系式. (2) 根据图象写出使反比例函数值大于一次函数的值的 x 的取值范围. 25. (15 分) (2019 九上·云安期末) 如图,在 Rt△ABC 中,∠ACB=90°,△DCE 是△ABC 绕着点 C 顺时针方 向旋转得到的,此时 B、C、E 在同一直线上.(1) 旋转角的大小; (2) 若 AB=10,AC=8,求 BE 的长. 26. (10 分) (2017 九下·盐都期中) 如图,矩形 OABC 的顶点 A、C 分别在 x、y 轴的正半轴上,点 D 为 BC 边上的点,反比例函数 y= (k≠0)在第一象限内的图象经过点 D(m,2)和 AB 边上的点 E(3, ).(1) 求反比例函数的表达式和 m 的值; (2) 将矩形 OABC 的进行折叠,使点 O 于点 D 重合,折痕分别与 x 轴、y 轴正半轴交于点 F,G,求折痕 FG 所 在直线的函数关系式.第 6 页 共 19 页一、 选择题 (共 6 题;共 12 分)答案:1-1、 考点: 解析:参考答案答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:答案:4-1、 考点:第 7 页 共 19 页解析: 答案:5-1、 考点: 解析:答案:6-1、 考点: 解析:二、 填空题 (共 10 题;共 11 分)答案:7-1、 考点:第 8 页 共 19 页解析: 答案:8-1、 考点:解析: 答案:9-1、 考点:解析: 答案:10-1、 考点:解析: 答案:11-1、 考点:解析:第 9 页 共 19 页答案:12-1、 考点: 解析:答案:13-1、 考点: 解析:答案:14-1、 考点:解析: 答案:15-1、 考点: 解析:第 10 页 共 19 页答案:16-1、考点:解析:三、解答题 (共10题;共106分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·民勤期末) 在、、、、中分式的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2018·肇庆模拟) 函数y= 的自变量x的取值范围是()A . x>-1B . x≠-1C . x≠1D . x<-13. (2分) (2019八上·台州期末) 用科学记数法表示 0.000 006 1,结果是()A . 6.1×10-5B . 6.1×10-6C . 0.61×10-5D . 61×10-74. (2分)下列命题为真命题的是()A . 平面内任意三点确定一个圆B . 五边形的内角和为540°C . 如果a>b,则ac2>bc2D . 如果两条直线被第三条直线所截,那么所截得的同位角相等5. (2分)在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。

则关于这组数据的说法不正确的是()A . 极差是3B . 平均数是8C . 众数是8和9D . 中位数是96. (2分)(2017·莒县模拟) 为了进一步落实“节能减排”工作,某单位决定对3600平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标.比较两个工程队的标书发现:乙队每天完成的工程量是甲队的2倍,这样乙队单独干比甲队单独干能提前10天完成任务.设甲队每天完成x平方米,可列方程为()A . ﹣ =10B . ﹣ =10C . + =10D . 10(2x+x)=36007. (2分) (2017八下·德惠期末) 矩形,菱形,正方形都具有的性质是()A . 每一条对角线平分一组对角B . 对角线相等C . 对角线互相平分D . 对角线互相垂直8. (2分) (2018九上·南山期末) 如图,在平面直角坐标系中,直线y1=2x-2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论错误的是()A . 当x>0时,y1随x的增大而增大,y2随x的增大而减小;B . k=4:C . 当0<x<2时,y1< y2D . 当x=4时,EF=4.9. (2分) (2017八下·凉山期末) 下列说法中错误的有()个.⑴平行四边形对角线互相平分且相等;⑵对角线相等的平行四边形是矩形;⑶菱形的四条边相等,四个角也相等;⑷对角线互相垂直的矩形是正方形;⑸顺次连接四边形各边中点所得到的四边形是平行四边形.A . 1B . 2C . 3D . 410. (2分)若函数y= ,则当函数值y=8时,自变量x的值是()A . ±B . 4C . ± 或4D . 4或﹣二、填空题 (共6题;共8分)11. (1分) (2016八上·灌阳期中) 若分式的值为0,则x=________.12. (1分) (2019八下·左贡期中) 若函数是正比例函数,则m=________.13. (1分)(2018·巴中) 甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而S 甲2=3.7,S乙2=6.25,则两人中成绩较稳定的是________.14. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=3的解为________15. (3分) (2017八下·临沂开学考) 如图1,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是________研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是________研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是________.16. (1分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.三、解答题 (共7题;共72分)17. (5分)(2017·兴庆模拟) 先化简,后求值.(﹣)÷ ﹣,其中a= +1.18. (15分) (2015九下·武平期中) 为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图像.(1)请直接写出甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?19. (5分) (2019九上·十堰期末) 如图,⊙C经过原点,并与两坐标轴分别相交于A,D两点,已知∠OBA =30°,点A的坐标为(4,0),求圆心C的坐标.20. (5分) (2019八上·大庆期末) 如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.21. (20分)(2016·余姚模拟) 某同学进行社会调查,随机抽查了某小区的40户家庭的年收入(万元)情况,并绘制了如图不完整的频数直方图,每组包括前一个边界值,不包括后一个边界值.(1)补全频数直方图.(2)年收入的中位数落在哪一个收入段内?(3)如果每一组年收入均以最低计算,这40户家庭的年平均收入至少为多少万元?(4)如果该小区有1200户住户,请你估计该小区有多少家庭的年收入低于18万元?22. (15分) (2017八下·澧县期中) 如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.23. (7分)(2017·日照模拟) 如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC 方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P 作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.(1)若AC=5,则当t=________时,四边形AMQN为菱形;当t=________时,NQ与⊙O相切;(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共72分)17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、。

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷

辽宁省大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·宜春期末) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)若x<0,则的结果是()A . 0B . -2C . 0或-2D . 23. (2分)(2018·广安) 下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采取全面调查的方式B . 一组数据1、2、5、5、5、3、3的中位数和众数都是5C . 投掷一枚硬币100次,一定有50次“正面朝上”D . 若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定4. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小5. (2分)(2018·阿城模拟) 反比例函数y= 图象上的两个点为()、(),且 ,则下列式子一定成立的是()A .B .C .D . 不能确定6. (2分) (2015八下·临沂期中) 如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A 与点D重合,给出下列判断:①EF是△ABC的中位线;②△DEF的周长等于△ABC周长的一半;③若四边形AEDF是菱形,则AB=AC;④若∠BAC是直角,则四边形AEDF是矩形,其中正确的是()A . ①②③B . ①②④C . ②④D . ①③④7. (2分) (2019九上·许昌期末) 如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A . b≤-2B . b<-2C . b≥-2D . b>-28. (2分)已知x+|x-1|=1,则化简的结果是()A . 3-2xB . 1C . -1D . 2x-3二、填空题 (共8题;共8分)9. (1分) (2015八下·临河期中) 若y= + +2,则xy=________.10. (1分) (2019八上·吉林期末) 当x为________时,分式的值为0.11. (1分)要调查下列问题:①市场上某种食品的某种添加剂含量是否符合国家标准;②杭州地区空气质量;③杭州市区常住人口总数,适合抽样调查的是________ (填序号)12. (1分)一组数据共有50个,分别落在5个小组内,第一、二、三、四小组的频数分别为3、8、21、13,则第五小组的频数为________ .13. (1分) (2018九上·恩阳期中) 实数、在数轴上的位置如图所示,则的化简结果为________.14. (1分)(2017·临沂模拟) 如图,反比例函数y= (k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为________.15. (1分) (2019九下·东台月考) 如图,在中,,,⊙ 与相切于点,与相交于点,则________°.16. (1分) (2017八下·沧州期末) 如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为________三、解答题 (共9题;共119分)17. (20分)计算:(1) + ×(2) +(1﹣)0(3)(﹣)( + )+2(4).18. (20分)计算:(1)(2);(3)(4).19. (10分)解方程:(1)(2)20. (15分)(2018·包头) 某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲9088乙8492丙x90丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.21. (10分)(2017·呼兰模拟) 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?22. (12分)(2018·吉林模拟) 如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________ ,位置关系是________;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.23. (10分)(2017·新疆模拟) 如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.24. (7分)请阅读下列材料:∵ ;;;…∴===解答下列问题:(1)在和式中,第5项为________,第n项为,上述求和的想法是:将和式中的各分数转化为两个数之差,使得首末两项外的中间各项可以________,从而达到求和目的.(2)利用上述结论计算:25. (15分)(2017·五华模拟) 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线PE,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线PF,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共119分)17-1、17-2、17-3、17-4、18-1、18-2、18-3、18-4、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

辽宁省大连市高新园区2024届数学八年级第二学期期末质量检测试题含解析

辽宁省大连市高新园区2024届数学八年级第二学期期末质量检测试题含解析

辽宁省大连市高新园区2024届数学八年级第二学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A.k=-2,b≠3B.k=-2,b=3 C.k≠-2,b≠3D.k≠-2,b=32.于反比例函数的图象,下列说法中,正确的是()A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点D.当时,y随x增大而减小3.反比例函数y=- 的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是()A.b>c B.b=c C.b<c D.不能确定4.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差5.以下说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有三个内角相等的四边形是矩形D.对角线垂直且相等的四边形是正方形x的取值范围( )6.式子x2A.x≤2B.x<2 C.x>2 D.x≥27.矩形、菱形、正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C .对角线相等D .每一条对角线平分一组对角8.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =4,若点Q 是射线OB 上一点,OQ =3,则△ODQ 的面积是( )A .3B .4C .5D .69.如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定....A ABC DE ∽△△的是( )A .AB BC AD DE = B .AB AC AD AE = C .B D ∠∠= D .C AED ∠=∠10.如果把分式中的、都扩大到10倍,那么分式的值( ) A .扩大10倍 B .不变 C .扩大20倍 D .是原来的二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,若∠A =63°,则∠D =_____.12.如图,平面直角坐标系中,已知直线y x =上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转900至线段PD ,过点D 作直线AB ⊥x 轴.垂足为B ,直线AB 与直线y x =交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y x =交于点Q ,则点Q 的坐标为_______.13.一元二次方程x 2-2x -k =0有两个相等的实数根,则k =________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年辽宁省大连市高新区八年级(下)期末数学试卷(J)副标题一、选择题(本大题共10小题,共10.0分)1.下列二次根式中,是最简二次根式的是A. B. C. D.【答案】C【解析】解:,由于被开方数中含有分母,所以不是最简二次根式,,,由于被开方数中有能开得尽方的因数,所以、都不是最简二次根式;符合最简二次根式的定义,是最简二次根式.故选:C.根据最简二次根式的定义,逐个进行判断排除,得到正确结论.本题考查了最简二次根式的定义最简二次根式需符合两条:被开方数不含分母;被开方数中不含有能开得尽方的因数或因式.2.以下列长度单位:为边长的三角形是直角三角形的是A. 5,6,7B. 7,8,9C. 6,8,10D. 5,7,9【答案】C【解析】解:A、因为,所以三条线段不能组成直角三角形;B、因为,所以三条线段不能组成直角三角形;C、因为,所以三条线段能组成直角三角形;D、因为,所以三条线段不能组成直角三角形;故选:C.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形最长边所对的角为直角由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.下列函数中,表示y是x的正比例函数的是A. B. C. D.【答案】A【解析】解:A、,符合正比例函数的含义,故本选项正确.B、,自变量次数不为1,故本选项错误;C、是x表示y的二次函数,故本选项错误;D、是一次函数,故本选项错误;故选:A.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.4.某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为A. 36件B. 37件C. 38件D. 件【答案】B【解析】解:由题意可得,这周里张海日平均投递物品件数为:件.故选:B.直接利用加权平均数求法进而分析得出答案.此题主要考查了加权平均数,正确应用公式是解题关键.5.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是A. B. C. D.【答案】B【解析】解:A、对角线垂直的平行四边形是菱形不符合题意;B、对角线相等的平行四边形是矩形符合题意;C、邻边相等的平行四边形是菱形不符合题意;D、邻边相等的平行四边形是菱形,不符合题意;故选:B.根据菱形的判定方法即可一一判断.本题考查菱形的判定,熟练掌握菱形的判定方法是解题的关键.6.若一次函数的图象上有两点、,则下列说法正确的是A. B. C. D.【答案】C【解析】解:把、分别代入得,,所以.故选:C.分别把两个点的坐标代入一次函数解析式计算出和的值,然后比较大小.本题考查了一次函数图象上点的坐标特征:一次函数,,且k,b为常数的图象是一条直线它与x轴的交点坐标是;与y轴的交点坐标是直线上任意一点的坐标都满足函数关系式.7.在中,D为斜边AB的中点,且,,则线段CD的长是A. 2B. 3C.D. 5【答案】C【解析】解:,,,为斜边AB的中点,.故选:C.根据勾股定理列式求出AB的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,熟记性质是解题的关键.8.如图,在菱形ABCD中,点E、F分别是AB、AC的中点,如果,那么菱形ABCD的周长是A. 16B. 24C. 28D. 32【答案】D【解析】解:点E、F分别是AB、AC的中点,,,四边形ABCD是菱形,菱形ABCD的周长是:.故选:D.由点E、F分别是AB、AC的中点,,利用三角形中位线的性质,即可求得BC 的长,然后由菱形的性质,求得菱形ABCD的周长.此题考查了菱形的性质以及三角形中位线的性质此题难度不大,注意掌握数形结合思想的应用.9.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为他们前进的路程为,甲出发后的时间为t,甲、乙前进的路程与时间的函数图象如图所示乙比甲晚出发1小时;甲比乙晚到B地3小时;甲的速度是5千米时;乙的速度是10千米小时;根据图象信息,下列说法正确的是A. B. C. D.【答案】D【解析】解:甲的速度是:;乙的速度是:;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到.故选:D.根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.本题考查了函数的图象,培养学生观察图象的能力,分析解决问题的能力,要培养学生视图知信息的能力.10.如图,在锐角三角形ABC中,,,的平分线交BC于点D,M、N分别是AD和AB上的动点,则的最小值是A. 4B. 5C. 6D. 10【答案】B【解析】解:平分,点B关于AD的对称点在线段AC上,作于交AD于.,当M与重合,N与重合时,的值最小,最小值为,垂直平分,,,是等腰直角三角形,的最小值为5.故选:B.因为AD平分,所以点B关于AD的对称点在线段AC上,作于交AD于由,推出当M与重合,N与重合时,的值最小,最小值为,只要证明是等腰直角三角形即可解决问题.本题考查轴对称最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.二、填空题(本大题共6小题,共6.0分)11.计算:______.【答案】【解析】解:.故答案为:.先化简,再合并同类二次根式即可.本题主要考查了二次根式的加减,属于基础题型.12.将直线向下平移2个单位,所得直线的函数表达式是______.【答案】【解析】解:由题意得:平移后的解析式为:,即所得直线的表达式是.故答案为:.根据平移k值不变,只有b只发生改变解答即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减平移后解析式有这样一个规律“左加右减,上加下减”关键是要搞清楚平移前后的解析式有什么联系.13.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为______【答案】12【解析】解:设旗杆的高AB为xm,则绳子AC的长为.在中,,,解得,.旗杆的高12m.故答案是:12.根据题意设旗杆的高AB为xm,则绳子AC的长为,再利用勾股定理即可求得AB的长,即旗杆的高.此题考查了学生利用勾股定理解决实际问题的能力,难度不大.14.一组数据如下:7,8,10,8,9,该组数据的方差为______.【答案】【解析】解:数据的平均数,所以该组数据的方差.故答案为:.先计算出平均数,然后根据方差公式计算.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差计算公式是:15.如图,在矩形ABCD中,E是AB边上的中点,将沿CE翻折得到,连接若,那么的度数为______用含m的式子表示.【答案】【解析】解:四边形ABCD是矩形,,为边AB的中点,,由折叠的性质可得:,,,,,,,,,,故答案为:由矩形的性质得出,由折叠的性质得出,,,,证出,由等腰三角形的性质得出,由三角形的外角性质求出,得出,由直角三角形的性质得出,即可得出的度数.本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.16.如图,直线过点,且与直线交于点,则不等式组的解集是______.【答案】【解析】解:由于直线过点,,则有:,解得.直线.故所求不等式组可化为:,解得:.故答案为:.由于一次函数同时经过A、P两点,可将它们的坐标分别代入的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.解决此题的关键是确定k、b与m的关系,从而通过解不等式组得到其解集.三、解答题(本大题共10小题,共10.0分)17.计算:.【答案】解:原式.【解析】直接利用负指数幂的性质以及零指数幂的性质和平方差公式分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.一次函数的图象经过,两点,求k,b的值;求一次函数与两坐标轴围成的三角形的面积.【答案】解:由题意得,解得.,b的值分别是1和2;由可知一次函数解析式为,则与坐标轴的交点是,,所以,图象与两坐标轴围成的三角形面积为.【解析】根据待定系数法求出一次函数解析式即可;根据直线与坐标轴的交点坐标求得围成的直角三角形的两直角边,然后根据直角三角形的面积公式求得即可.本题考查了待定系数法求一次函数的解析式,直线与x轴的交点坐标以及三角形的面积等,熟练掌握待定系数法是解题的关键.19.已知:如图,四边形ABCD是平行四边形,,且分别交对角线BD于点E,求证:.【答案】解:四边形ABCD为平行四边形,,,,,,,≌ ,.【解析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD 为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF 全等,利用全等三角形的对应边相等即可得证.此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图请你根据图中提供的信息,回答下列问题:扇形统计图中a的值为______;补全频数分布直方图;在这次抽样调查中,众数是______天,中位数是______天;请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?结果保留整数【答案】20;4;4【解析】解:,故答案为:20;被调查的总人数为人,天的人数为人、5天的人数为人、7天的人数为人,补全图形如下:众数是4天、中位数为天,故答案为:4、4;估计该市初二学生每学期参加综合实践活动的平均天数约是天.由百分比之和为1可得;先根据2天的人数及其所占百分比可得总人数,再用总人数乘以对应百分比分别求得3、5、7天的人数即可补全图形;根据众数和中位数的定义求解可得;根据加权平均数和样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.已知,如图,四边形ABCD中,,,,,,求:四边形ABCD的面积?【答案】解:,故有,,.四边形【解析】先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出是直角三角形,然后可将四边形进行求解.本题考查勾股定理及其逆定理的知识,比较新颖,解答本题的关键是判断出是直角三角形.22.如图1,四边形ABCD,,M,N,G,H分别为四边形ABCD各边中点,则四边形MNGH的形状是______发现:对角线相等的四边形,连接各边中点所得四边形一定是______ 若将中的“”改为“”,其他条件不变,则四边形MNGH的形状是______;用文字语言叙述你发现的结论______直接利用中的发现,解决下列问题:如图2,,均为等腰直角三角形,,,,连接CD,点M,N,G,H分别是AC,AB,BD,CD的中点,判断四边形MNGH的形状,并证明.【答案】菱形;菱形;矩形;对角线垂直的四边形,连接各边中点所得四边形一定是矩形【解析】解:,N,G,H分别为四边形ABCD各边中点,,,,,四边形MNGH是菱形.故答案为菱形,菱形;,N,G,H分别为四边形ABCD各边中点,,,,,四边形MNGH是平行四边形,,,,,,四边形MNGH是矩形.故答案为矩形;对角线垂直的四边形,连接各边中点所得四边形一定是矩形;结论:四边形MNGH是正方形.理由:如图2中,连接AD、BC,设AD交PC于O,交BC于K.,,,,≌ ,,,,,,由可知中点四边形MNGH是正方形.根据菱形的判定方法即可证明;根据矩形的判定方法即可证明;结论:四边形MNGH是正方形如图2中,连接AD、BC,设AD交PC于O,交BC 于想办法证明,,即可利用中结论解决问题;本题考查中点四边形、等腰直角三角形的性质、全等三角形的判定和性质、菱形、矩形、正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.23.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为千米,甲车行驶的时间为时,y与x之间的函数图象如图所示.求甲车从A地到达B地的行驶时间;求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;求乙车到达A地时甲车距A地的路程.【答案】解:小时,答:甲车从A地到达B地的行驶时间是小时;设甲车返回时y与x之间的函数关系式为,,解得:,甲车返回时y与x之间的函数关系式是;小时,当时,千米,答:乙车到达A地时甲车距A地的路程是175千米.【解析】根据题意列算式即可得到结论;根据题意列方程组即可得到结论;根据题意列算式即可得到结论.本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.24.如图1,已知矩形ABCD,动点P从A出发,沿着运动到D点停止,速度为,设点P用的时间为x秒,的面积为,y与x的关系如图2所示.______cm;______cm;求y与x的函数关系式,并写出x的取值范围;当时,求x的值;当P在线段BC上运动时,是否存在点P使得的周长最小?若存在,求出此时的度数;若不存在,请说明理由.【答案】3;6【解析】解:观察图象可知:,,;故答案为3,6;.分两种情况当P在AB上时,当时,,,当P在CD上时,,解得,综上所述,当时,x的值是1秒或11秒;存在,如图,延长AB至,使,连接,交BC于P,连接AP,此时的周长最小,,,是等腰直角三角形,,,是的中垂线,,,.从图2中看,时面积越来越大,从3到9面积不变;结合图1可知,当点P在线段AB上运动时,的面积会越来越大,点P在BC上时,的面积不变,由此可知:,,;分三种情形分别求解即可解决问题;由图2知,当时有两种情况,分别构建方程即可;作A关于直线BC的对称点,连接与BC交于点P,根据两边之和大于第三边可知最小,即的周长最小,求出;本题是四边形的综合题,考查了矩形、轴对称的性质,此题动点运动路线与三角形面积和函数图象相结合,理解函数图象的实际意义是本题的关键,根据图象的变化特征确定其点p的位置,从而得出结论.25.阅读下面材料:小明遇到这样一个问题:如图1,正方形ABCD,点E,F在对角线BD上,且,探究线段BE,EF,FD之间的数量关系.小明经过探究,为同学提供了如下两种解题的想法:想法一;将绕点A顺时针旋转,如图2,从而解决问题;想法二:将沿AF翻折,如图3,从而解决问题.请回答:参考其中的一种想法,探究线段BE,EF,FD的数量关系,并证明参考小明思考问题的方法,解决下面问题.如图4,正方形ABCD的边长为8,点P为边CD上一点,于E,Q为BP中点,连接CG并延长交BD于点F,且,求PD的长;在的条件下,的值为______直接写出答案.【答案】【解析】解:结论:.方法一:如图2中,将绕点A顺时针旋转得到,连接QE.四边形ABCD是正方形,,,,,,,,≌ ,,,,,,,.方法二:如图3中,将沿AF翻折得到,连接FQ.四边形ABCD是正方形,,,,,,,,,,,≌ ,,,,,,,,.连接OE、CE四边形ABCD是正方形,,,,为BP的中点,,,,,,将绕点C逆时针旋转得到,连接FG,则,,.为等腰直角三角形,,,,,≌ ,,,,≌ ,,设,,则,,解得,;是等腰直角三角形,,,,即.结论:方法一:如图2中,将绕点A顺时针旋转得到,连接只要证明 ≌ 即可解决问题;方法二:如图3中,将沿AF翻折得到,连接只要证明 ≌ 即可;连接OE、将绕点C逆时针旋转得到,连接FG,则,,设,,则,理由勾股定理构建方程即可解决问题;由是等腰直角三角形,推出,推出,可得;本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,在正方形中如果遇到角,且角的顶点在正方形的顶点上时,常利用旋转三角形构建全等三角形解决问题,属于中考压轴题.26.在直角坐标系中,点的“变换点”的坐标定义如下:当时,点的坐标为;当时,点的坐标为.直接写出点、、的变换点、、的坐标;为直线上的任一点,当时,点的变换点在一条直线M上,求点M的函数解析式并写出自变量的取值范围;直线上所有点的变换点组成一个新的图形L,直线与图形L有两个公共点,求k的取值范围.【答案】解:的变换点坐标是,的变换点坐标是,的变换点坐标是;当时,,的变换点为,当时,点的变换点坐标为,的变换点为,点的变换点经过和,设点M的函数解析式为,则有解得,.由题意,新的图形L的函数解析式为新图形L的拐点坐标为,画出图形如图所示.当过点时,有,解得:;当与平行时,;当与平行时,.结合图形可知:直线与图形L有且只有两个公共点时,且.【解析】根据“变换点”的定义解答即可;根据“变换点”的定义得出,的变换点的坐标,进而得出解析式即可;首先确定求出新的图形L的函数解析式,依照题意画出图形,并找出直线与图形L有且只有两个公共点的临界点,结合图形即可得出结论.本题考查了一次函数图象上点的坐标特征、平行线的性质以及一次函数图象,依照题意画出图形,利用数形结合解决问题是解题的关键.。

相关文档
最新文档