3.长方体和正方体的表面积

合集下载

五年级下册长方体和正方体知识点

五年级下册长方体和正方体知识点

五年级下册长方体和正方体知识点一、长方体和正方体的认识。

1. 长方体的特征。

- 面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)。

相对的面完全相同。

- 棱:长方体有12条棱,相对的棱长度相等。

可以分为三组,每组有4条棱。

- 顶点:长方体有8个顶点。

2. 正方体的特征。

- 面:正方体有6个面,每个面都是正方形,并且6个面完全相同。

- 棱:正方体有12条棱,12条棱的长度都相等。

- 顶点:正方体有8个顶点。

3. 长方体和正方体的关系。

- 正方体是特殊的长方体。

当长方体的长、宽、高相等时,这个长方体就是正方体。

二、长方体和正方体的表面积。

1. 表面积的概念。

- 长方体或正方体6个面的总面积,叫做它的表面积。

2. 长方体表面积公式。

- 长方体表面积=(长×宽 + 长×高+宽×高)×2,用字母表示为S = 2(ab+ah + bh),其中a表示长,b表示宽,h表示高。

3. 正方体表面积公式。

- 正方体表面积 = 棱长×棱长×6,用字母表示为S = 6a^2,其中a表示棱长。

三、长方体和正方体的体积。

1. 体积的概念。

- 物体所占空间的大小叫做物体的体积。

2. 体积单位。

- 常用的体积单位有立方厘米(cm^3)、立方分米(dm^3)和立方米(m^3)。

- 棱长是1厘米的正方体,体积是1立方厘米;棱长是1分米的正方体,体积是1立方分米;棱长是1米的正方体,体积是1立方米。

- 1立方米 = 1000立方分米,1立方分米=1000立方厘米。

3. 长方体体积公式。

- 长方体体积=长×宽×高,用字母表示为V = abh。

4. 正方体体积公式。

- 正方体体积 = 棱长×棱长×棱长,用字母表示为V=a^3。

5. 体积单位的换算。

- 高级单位换算成低级单位乘进率,低级单位换算成高级单位除以进率。

例如:3.5m^3=3.5×1000 = 3500dm^3,2500cm^3=2500÷1000 = 2.5dm^3。

长方体和正方体体积和表面积比较

长方体和正方体体积和表面积比较
长方体
长 宽 高 棱 长 长 宽 高 棱 长
棱长×棱长×6
立方厘米 长×宽×高 所占空 体 间的大 立方分米 积 棱长×棱长×棱长 正方体 小 立方米
异同
不同
不同
不同
相同
分析在计算下列物体面积时,应考虑几个面 的面积?
1、制作一个无盖的长方体铁皮桶的用料。 五个面 2、火柴盒的外壳用料。 四个面 3、火柴盒的内壳用料。 五个面
思考题 从一个长方体上截下一个体积是32立方 厘米的小长方体后,剩下的部分正好是 一个棱长为4厘米的正方体。原长方体的 表面积是多少平方厘米?
4 厘 米 4厘米 32立方厘米
表面积?
长方体(正方体) 表面积与体积的
比较
(1)长方体(或正方体)的表面积指的 是什么?长方体的体积指的又是什么? (2)表面积和体积分别用什么计 量单位表示? (3)要计算一个长方体(或正方体)的 表面积,需要测量哪些长度?要计算 它的体积呢? (4)怎样计算长方体(或正方体)的表 面积?又怎样计算体积?
长方体(或正方体)的表面积是指
长方体(正方体Leabharlann 6个面 的总面积。长方体(或正方体)的体积是指
长方体(正方体)所占空 间的大小。
表面积的计量单位是
平方厘米 平方分米 平方米
体积的计量单位是
立方厘米 立方分米 立方米
要计算一个长方体的表面积, 需要测量哪些长度?
长 宽

要计算它的体积呢?
长 宽 高
4、粉刷教室的四壁和上面。 五个面
5、给长方体饼干罐的四周贴一圈的商标纸。 四个面 6、给礼堂内长方体柱子油漆。 四个面 7、做一个长方体形状的铁皮流水糟用料。 四个面
8、用木料做一个抽屉。 五个面

长方体和正方体的表面积计算公式

长方体和正方体的表面积计算公式

长方体和正方体的表面积计算公式长方体和正方体是我们日常生活中常见的几何体。

它们有着不同的形状和特点。

在数学中,我们可以通过特定的公式来计算它们的表面积。

本文将介绍长方体和正方体的表面积计算公式,帮助读者更好地理解和应用这些公式。

1. 长方体的表面积计算公式长方体是一种具有六个面的立体,每个面都是矩形。

它的表面积计算公式为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)例如,如果一个长方体的长为5cm,宽为3cm,高为4cm,那么它的表面积可以通过以下计算得到:表面积 = 2 × (5 × 3 + 5 × 4 + 3 × 4) = 94cm²2. 正方体的表面积计算公式正方体是一种特殊的长方体,它的六个面都是正方形。

它的表面积计算公式为:表面积 = 6 × (边长 ×边长)例如,如果一个正方体的边长为6cm,那么它的表面积可以通过以下计算得到:表面积 = 6 × (6 × 6) = 216cm²长方体和正方体的表面积计算公式是基于它们的几何特征推导出来的,因此可以被广泛应用于实际问题中。

通过计算表面积,我们可以更好地了解物体的外部特征和性质。

在实际应用中,我们可以将这些表面积计算公式应用于不同的领域,如建筑、工程等。

例如,在设计建筑物时,我们需要计算墙面的表面积来确定所需的材料数量。

在包装设计中,我们需要计算盒子的表面积来评估所需的纸箱面积。

这些都是利用表面积计算公式的实际应用案例。

总结起来,长方体和正方体的表面积可以通过特定的公式来计算。

长方体的表面积计算公式是2 × (长 ×宽 + 长 ×高 + 宽 ×高),正方体的表面积计算公式是6 × (边长 ×边长)。

这些公式可以帮助我们计算几何体的外部特征,广泛应用于建筑、工程等领域。

长方体和正方体的表面积(练习题)

长方体和正方体的表面积(练习题)

长方体和正方体的表面积(练习及解析)【答案】6个面的总面积2.在长方体中,前面与()的面积相等;左侧面与()的面积相等;上面与()的面积相等。

正方体中,()个面的面积相等。

【解析】长方体中分别有三组相对的面,即前面和后面,左侧面和右侧面,上面和下面,相对的面是完全相同的,所以它们的面积也相等;正方体中的6个面都是相等的正方形;据此填空即可。

【答案】后面;右侧面;下面;63.一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。

【解析】长方体有12条棱,长有4条,宽有4条,高有4条,宽和高都是4分米时,那么长度是4分米的棱有8条;这时有4个面是相等的,都是长乘宽,即5×4;据此填空即可。

【答案】8;44.至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

【解析】底面和上面是相等的面,所以上面周长也是18厘米,剩下的4条高的和是3×4=12(厘米),所以这个长方体的棱长总和是18×2+12=48(厘米),即至少需要的铁丝的长度;据此填空即可。

【答案】485.一个正方体的棱长总和是48厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。

【解析】正方体有6个面,12条棱,每个面都是完全相同的正方形,所以用棱长总和除以12,得出一条棱的长,即一个面的边长;根据表面积=棱长×棱长×6,代入数据求出即可。

【答案】4;966.—个正方体的表面积是96平方厘米,它的一个面的面积是()平方厘米,棱长是()厘米。

【解析】用表面积除以6,即得出一个面的面积,再据此求出棱长。

【答案】16;47.用铁丝焊接成一个长14厘米,宽8厘米,高6厘米的长方体的框架,至少需要铁丝()厘米。

【解析】本题是求棱长总和的,长方体的棱长总和是4个长、4个宽、4个高的和,即(12+8+6)×4=104,据此填空即可。

五年级下册第三章长方体正方体体积表面积

五年级下册第三章长方体正方体体积表面积

关于长方体正方体的几个小问题1.长方体最多只能有4个面是正方形。

同样的最多只能有8条棱相等。

2.正方体的棱长扩大2倍,表面积会扩大4倍,体积会扩大8倍。

表面积=棱长×棱长×6体积=棱长×棱长×棱长3.长方体的高扩大2倍,表面积不会成倍增加,体积会增加2倍。

表面积=长×宽×2 + 宽×高×2 + 长×高×2体积=长×宽×高4.棱长为6的正方体表面和体积不能比较。

单位不同,没有比较的意义。

就类似1千米和1千克不能比较。

5.体积和容积的计算方式相同。

但是体积和容积不是一样的意义。

体积是占用的空间大小,容积是容纳的空间大小。

简单的说是体积是从物体的外面测量,容积是从物体的内部测量。

在有些计算题目中,体积可以等于容积。

判断易错点1、两个正方体的体积相等,表面积也一定相等。

2、两个长方体的体积相等,表面积也一定相等。

3、a3=3a(a不为0)1、关于棱长的几个考点2、长方体正方体的表面积问题(基础)关于做成一个无盖纸盒子的问题3、长、正方体切割、拼合引起的表面积体积问题4、容器里面加石块引起的问题关于棱长的问题用棱长1厘米的正方体木块摆成一个长5厘米,宽4厘米,高3厘米的长方体,共需要用多少块木块?5×4×3=60(cm3) 1×1×1=1(cm3)60÷1=60(个)一个长方体的12条棱长总和是68厘米,侧面是一个周长为18厘米的长方形,它的长是多少?(68-18×2)÷4=8 cm一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是3厘米、2厘米、1厘米,那么正方体的棱长是多少?(3+2+1)×4=24cm 24÷12=2cm一个长方体的棱长之和是60厘米,从一个顶点引出的三条棱长的和是多少?60÷4=15cm把一个正方形棱长扩大三倍,体积会扩大多少倍?表面积呢?表面积 6a2 6(3a)2=6×9a2体积 a3 (3a)3=27a32、长方体正方体的表面积问题(基础)正方体:表面积=棱长×棱长×6体积=棱长×棱长×棱长3体积棱长=长方体:表面积=(长×宽 + 长×高 + 宽×高)×2体积=长×宽×高= 底面积×高高=体积÷底面积=体积÷长÷高什么是求表面积?比如说需要贴瓷砖、贴红纸、粉刷墙面、看单位为平方。

人教版数学五年级下册-三2《长方体和正方体的表面积》教案设计

人教版数学五年级下册-三2《长方体和正方体的表面积》教案设计

上课解决方案教案设计教学目标知识与技能1.理解表面积的意义,初步掌握长方体和正方体表面积的计算方法。

2.能运用长方体、正方体表面积的计算方法解决生活中的实际问题。

过程与方法经历长方体、正方体表面积计算方法的探究过程,培养学生的分析能力和空间想象能力。

情感、态度与价值观在探究过程中,获得积极的情感体验,感受数学与生活的密切联系,培养学生应用数学的意识。

重点难点重点:理解长方体、正方体表面积的意义,掌握长方体、正方体表面积的计算方法。

难点:运用长方体、正方体表面积的计算方法解决实际问题。

课前准备教师准备PPT课件学生准备长方体、正方体纸盒剪刀教学过程板块一趣味成语,引入新课e师:同学们,老师这里有一则有趣的成语故事画面,你能找到这则成语,并解释吗?预设生1:金玉其外,败絮其中。

生2:外表像金、像玉,里面却是破棉絮。

比喻外表很华丽,而里面一团糟。

师:我们要做一个有内涵、有真才实学的人,不要外表看着一表人才,实则不学无术。

任何事物都有自己的外表,像我们学过的长方体或正方体也有外表,就是表面,长方体或正方体外表的面积的大小,我们就叫作长方体或正方体的表面积。

(板书课题:长方体和正方体的表面积)学生拿出自己的长方体或正方体纸盒,触摸外表,体会表面积。

师:看一看,长方体或正方体的表面是由几个面组成的?生:长方体和正方体的表面都是由6个面组成的。

师:什么叫作长方体或正方体的表面积?生:长方体或正方体6个面的总面积,叫作它的表面积。

操作指导先通过猜成语,在游戏中让学生初步体会什么是外表,引起学生的兴趣,再通过触摸长方体或正方体纸盒,建立长方体或正方体表面积的概念,引起学生研究长方体或正方体表面积的想法,同时引发学生的讨论,使学生主动思考,寻求解决问题的方法。

板块二演示操作,形成表象活动1小组合作,引发思考手工操作,尝试总结求表面积的方法。

出示合作提纲:(1)在长方体纸盒棱的边缘标上长、宽、高。

(2)把准备好的长方体纸盒沿一些棱剪开并展开,分别用“上、下、前、后、左、右”标明6个面,观察并思考以下问题:长方体哪些面的面积相等?长方体每个面的长和宽与长方体的长、宽、高有什么关系?(3)长方体每个面的面积怎么求?小组合作标长、宽、高,剪开长方体纸盒并展开,找到每个面的长和宽。

长方体和正方体的表面积及拓展

长方体和正方体的表面积及拓展
【解题技巧】:
1.当长宽高越接近,表面积就会最小,反之最大。 2.长方体或正方体: (1)顶点上挖掉一个正方体,表面积不变。 (2)棱上挖掉一个正方体,表面积增加,多了2个面。 (3)面上挖掉一个正方体,表面积增加,多了4个面。 3.把一个长方体切成两个小长方体:
(1)选择两个数最大的面切,增加的表面积最大。 (2)选择两个数最小的面切,增加的表面积最小。
主干为四方连
主干为 二方连
主干为三方连
一般“一”字型、“L”字型、 “凹”字型、“田”字型
不能组成正方形
长方体或正方体6个面的总 面积,叫做它的表面积。
小试牛刀
折叠后,哪些图形能围成左 侧的正方体?在括号中画“√”。
()
()
()
辨析:在长(正)方体的展开图中,相对的面若在同 一行或同一列,则中间一定只隔着一个面, 若不在同一行或同一列,则中间可以隔着一 些面。
(1)
8×8×6=384(cm2)
(2) 8×8×6+3×3×2=402(cm2)
(3) 8×8×6+3×3×4=420(cm2)
4. 有一块长10 cm、宽2 cm、高7 cm的长方体木块, 在它的左右两角各切掉一块棱长是2 cm的小正方 体,剩下部分的表面积是多少?
(10×2+7×2)×2+(10×7-2 ×2×2)×2=192(cm2)
长方体、正方体的表面积
0.4m
探究点 1 长方体的表面积计算方法
做一个微波炉的包装箱,至少 要用多少平方米的硬纸板?
这里要求的是这个 长方体包装箱的表 面积。
上、下每个面,长_0_._7_m_,宽_0_.5_m__,面积是_0_.3_5_m__2_;
前、后每个面,长_0_._7_m_,宽_0_.4_m__,面积是_0_.2_8_m__2_;

长方体和正方体的表面积的计算

长方体和正方体的表面积的计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 长方体和正方体的表面积的计算优质课评选教案长方体和正方体的表面积的计算【课题】:长方体和正方体的表面积的计算【课型】:新授课【学习目标】:1、理解和掌握长方体和正方体的表面积和体积的含义。

2、理解并熟练掌握长方体和正方体表面积的推导过程和计算方法。

【教学重点】:理解并熟练掌握长方体和正方体表面积的计算方法。

【教学难点】:理解长方体和正方体表面积计算的推导过程以及将立体图形转化为平面图形的转化思想。

【教学方法】:直观演示启发引导小组合作强调总结讲练结合【教具】:长方体和正方体的实物小黑板【教学过程】:一、旧知铺垫 1、长方体有()个面,一般都是()形,相对的两个面积()。

2、长方体有()条棱,相对的四条棱的长度()。

3、长方体有()个顶点。

1 / 63、正方体有()个面,都是完全相同的(),所有面的面积都()。

4、正方体有()条棱,长度都()。

5、正方体有()个顶点。

6、正方体是()的长方体。

二、问题启发、导入新课关于长方体和正方体的表面积大家掌握的非常好,那么长方体和正方体的表面有没有大小呢?它们的表面大小该如何计算呢?这就是今天要学习的新内容长方体和正方体的表面积的计算(板书课题)。

三、讲授新课 1、出示长方体和正方体的立体图形和平面展开图,并让学生观察对比,并在展开图上原长方体和正方体的上、下、前、后左右六个面,并指出上、下相对,左、右相对,前后相对从而顺势给出长方体和正方体的表面积的含义:长方体或正方体 6 个面的总面积,叫做它们的表面积。

后上下左右前右前后长宽高上后下前左右棱长 2、让学生分别摸自己制作长方体和正方体模型的六个面感受表面积的含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.长方体和正方体的表面积
轻松起步
1.细心填写。

(1)长方体(或正方体)()叫做它的表面积。

(2)一个长方体长12厘米,宽6厘米,高3厘米。

①它的上下每个面的长是()厘米,宽是()厘米,面积是()平方厘米。

②它的前后每个面的长是()厘米,宽是()厘米,面积是()平方厘米。

③它的左右每个面的长是()厘米,宽是()厘米,面积是()平方厘米。

④这个长方体的表面积是()平方厘米,可以列式为(),还可以列式为()。

(3)一个正方体的棱长总和是3.6米,表面积是()平方米。

2.求下面长方体、正方体的表面积。

(单位:厘米)
3.解决问题。

(1)一个长方体铁盒,长25分米,宽20分米,高50厘米。

做这个铁盒至少要用多少平方分米的铁皮?
(2)把两个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?快乐提升
小海家要做一个长方体金鱼缸,侧面四块用玻璃,其中两块如下图所示,底面用铁皮。

铁皮的面积是多少平方厘米?(单位:厘米)
参考答案
轻松起步
1答案:略
2答案:448平方厘米864平方厘米470平方厘米
3答案:(1)25×20×2+20×5×2+25×5×2=1450(平方分米)(2)4×4×(6×2-2)=160(平方厘米)
快乐提升
答案:底面:50×30=1500(平方厘米)。

相关文档
最新文档