5第五章 热力学基础
第五章化学热力学基础

状态 (II)
U1
U2
U2 = U1 + Q + W
热力学第一定律数学表达式:
ΔU = U2 – U1 = Q + W (封闭体系) ●热力学第一定律: 能量具有不同的形式, 它们之间可以相互转化和传递,而且在转化 和传递过程中,能量的总值不变。
8
● Q与W的正负号:
体系从环境吸热,Q取+;体系向环境放热,Q取- 环境对体系做功,W取+;体系对环境做功,W取-
第五章 化学热力学基础
•热力学:研究体系状态变化时能量相互转换规律的科 学。 其基础是 热力学第一定律 (主要基础)
热力学第二定律 热力学第三定律 •化学热力学:将热力学原理和方法用于研究化学现象 以及与化学有关的物理现象。 •主要研究内容 化学反应进行的方向 化学反应进行的限度 化学反应的热效应
1
MnO(s) + CO(g) = Mn(s) + CO2(g)的反应热rHm。
解:
(1) Mn(s) + 1/2 O2(g) = MnO(s) rH1 = fHm(MnO)
(2) C(s) + 1/2 O2(g) = CO(g) rH2 = fHm(CO)
(3) C(s) + O2(g) = CO2(g)
§5.1 热力学第一定律
一、基本概念与术语
1、体系与环境
• 体系(系统):被划分出来作为研究对象的那 部分物质或空间。
• 环境:体系之外并与体系密切相关的其余部分。 体系可分为:• 敞开体系——体系与源自境之间既有物质交换又 有能量交换;
• 封闭体系——体系与环境之间没有物质交换只 有能量交换;
• 孤立体系——体系与环境之间既没有物质交换 也没有能量交换。
无机化学-第五章-化学热力学基础

注:①G为广度性质,与参与过程的物质的量成正 比。
②逆过程G与正过程的G数值相等,符号相反。 等于各③反如应果一G个之反总应和是。多个反应的和,总反应的rG
化学热力学的四个重要状态函数
判断一个反应进行的方向时,如果: rG<0反应自发进行 rG>0反应不自发进行 rG=0平衡状态 当rG<0时(产物的G<反应物的G)该反应就自动 向生成产物的方向进行,在反应中反应物不断减 小而产物不断增加,G为广度性质,当G反应物=G产 物即rG=0时反应就不再朝一个方向进行了,这就 是化学反应的限度,即化学平衡。
状态函数。
化学热力学的四个重要状态函数
二、焓(H) 设一封闭体系在变化中只做体积功,不做其它功, 则U=Q+W中W代表体积功:-pV(N/m2×m3)
W=Fl=pSl=-pV
V=V2-V1 若体系变化是恒容过程(体积不变),即没有体积功 则W=0,U=Qv Qv为恒容过程的热量,此式表示在不做体积功的 条件下体系在恒容过程中所吸收的热量全部用来增 加体系的内能。
我们可以从体系和环境间的热量传递来恒量体系 内部焓的变化。
如果化学反应的H为正值,表示体系从环境吸收 热能,称此反应为吸热反应。即:
∑H反应物<∑H生成物 ∑H(生成物-反应物)>0 如果化学反应的H为负值,则表示体系放热给环 境,称此反应为放热反应。即:
∑H反应物>∑H生成物 ∑H(生成物-反应物)<0
rG=-RTlnKa
此式只表示在等温下,rG与K平衡在数值上的关 系。
∴rG=-RTlnKa+RTlnJa
=RTln(Ja/Ka)
第五章 热力学第一定律、第二定律

Q=A
V2 p1 = p1V1 ln = p 2V 2 ln V1 p2
吸热全部用于对外做功
3) 摩尔热容 )
由
Q = A:
M
V2 CT ∆T = RT ln µ µ V1
M
∆T = 0
4. 绝热过程
CT = ∞
绝热材料 如气体自由膨胀) 快速进行 (如气体自由膨胀)
特点: dQ=0 特点:
1) 过程方程 ) 热力学第一定律 条件
驰豫时间 < 10 −4 s
3. 相平面
相图 相空间
相平面、 以状态参量为坐标变量 —— 相平面、 平衡态——对应相图中的点 对应相图中的点 平衡态 平衡过程——对应相图中的线 对应相图中的线 平衡过程 例: 等温、等压、 等温、等压、等体过程的相图
三、系统内能 热力学主要研究系统能量转换规律 1.系统内能 E 系统内能 广义: 广义: 系统内所有粒子各种能量总和 平动、转动、振动能量、化学能、原子能、核能... 平动、转动、振动能量、化学能、原子能、核能 不包括系统整体机械能 狭义: 狭义:所有分子热运动能量和分子间相互作用势能 例:实际气体 理想气体
dQ=dE+pdV
M i dQ = RdT + pdV µ 2
2. 物理意义: 物理意义: 涉及热运动和机械运动的能量转换及守恒定律。 涉及热运动和机械运动的能量转换及守恒定律。 3.又一表述: 3.又一表述: 又一表述 第一类永动机是不可能制成的 第一类永动机:系统不断经历状态变化后回到初态, 第一类永动机:系统不断经历状态变化后回到初态, 不消耗内能,不从外界吸热, 不消耗内能,不从外界吸热,只对外做功 即:
v r dA = F ⋅ dl = psdl = pdV
大学物理上册(第五版)重点总结归纳及试题详解第五章热力学基础

⼤学物理上册(第五版)重点总结归纳及试题详解第五章热⼒学基础第五章热⼒学基础⼀、基本要求1.掌握功、热量、内能的概念,理解准静态过程。
2.掌握热⼒学第⼀定律,能分析、计算理想⽓体等值过程和绝热过程中功、热量、内能的改变量。
3.掌握循环过程和卡诺循环等简单循环效率的计算。
4.了解可逆过程和不可逆过程。
5.理解热⼒学第⼆定律及其统计意义,了解熵的玻⽿兹曼表达式及其微观意义。
⼆、基本内容1. 准静态过程过程进⾏中的每⼀时刻,系统的状态都⽆限接近于平衡态。
准静态过程可以⽤状态图上的曲线表⽰。
2. 体积功pdV dA = ?=21V V pdV A功是过程量。
3. 热量系统和外界之间或两个物体之间由于温度不同⽽交换的热运动能量。
热量也是过程量。
4. 理想⽓体的内能2iE RT ν=式中ν为⽓体物质的量,R 为摩尔⽓体常量。
内能是状态量,与热⼒学过程⽆关。
5. 热容定体摩尔热容 R i dT dQ C V m V 2)(,== 定压摩尔热容 R i dT dQ C p mp 22)(,+== 迈耶公式 R C C m V m p +=,, ⽐热容⽐ ,,2p m V mC i C iγ+==6.热⼒学第⼀定律A E Q +?=dA dE dQ +=(微分形式)7.理想⽓体热⼒学过程主要公式(1)等体过程体积不变的过程,其特征是体积V =常量。
过程⽅程: =-1PT 常量系统对外做功: 0V A =系统吸收的热量:()(),21212V V m iQ vC T T v R T T =-=-系统内能的增量:()212V iE Q v R T T ?==-(2)等压过程压强不变的过程,其特征是压强P =常量。
过程⽅程: =-1VT 常量系统对外做功:()()212121V P V A PdV P V V vR T T ==-=-?系统吸收的热量: (),2112P P m i Q vC T v R T T ??=?=+-系统内能的增量: ()212iE v R T T ?=-(3)等温过程温度不变的过程,其特征是温度T =常量。
第五章 化学热力学基础

5-2 基本概念
5-2-1 系统与环境 5-2-2相 5-2-3状态与状态函数 5-2-4过程 5-2-5 热与功 5-2-6 热力学标准态
5-2-1 系统与环境
被人为划定的作为研究对象的物质叫 系
统(体系或物系) 系统(体系)以外的与系统有密切关系 的周围部分称为环境。
系统的分类
按照系统和环境之间的物质、能量的交换关系, 将系统分为三 类: (1)开放系统 体系和环境之间既有物质的交换又有能量的交换。
5-2-5 热与功
1. 定义:
热(Q)是体系与环境之间因温度差异而引起的能量传递 形式。即热不是物质,不是系统的性质,而是大量物质微 粒作无序运动引起的能量传递形式。 除热之外,体系与环境之间所有其他能量传递形式都叫功 (W)。 在热力学中又把功分为两大类,一类叫膨胀功(体积 功);另一类则是除膨胀功而外的 “其他功”,或叫“有 用功”,也叫非体积功。
非均相系统(或多相系统)
1、定义: 状态:由表征体系宏观性质的物理量所确定的体系存 在形式称为体系的状态。表征体系宏观性质的 物理量主要有P、V、T、n 、U 、H、S、G等。 状态函数: 确定体系状态的物理量, 如P、V、T、n 、U 、 H、S、G 等是状态函数。 2、状态函数的分类: (1)广度性质,也称容量性质:它的数值与体系中的 物质的数量成正比。在一定的条件下,具有加合性。 如V 、 n 、 m 、 U 、H、S、G等。 (2)强度性质:它的数值与体系中的物质的数量无 关,没有加合性,仅有体系中物质本身的特性所决定 的。如T、P、密度、粘度等性质, 无加合性, 称强度 性质的物理量。
注意:热力学标准态未对温度加以限定,所以任何温度 下都有热力学标态。环境状态:298K,101.325kPa;理 想气体标准状态:273K,101.325kPa。 一般情况下,如果未指定温度时,温度T=298.15K 。
无机化学(人卫版)第五章化学热力学基础

CO 2 (g)
mol △ rHm (2) = -282.98kJ· -1 计算298.15K下,下列反应的反应热:
1 O2 (g) C(s) 2
CO(g) △ rHm (3)
解法一: (利用 △ rHm (1) 由始态 CO2 g 到终态 途径1 的不同 途径)
2
解:利用Hess定律 △ rHm (3) C(s) O (g )
B —物质B的化学计量数
B为物质B的化学计量数,其量纲为一,反应物的
化学计量数为负值,而生成物的化学计量数为正值。
νA=-a, νB=-b, νY=y, νZ=z 。
例: 反应 1/2N2 + 3/2H2 = NH3 化学计量数 B分别为:
(NH3) = 1 ,(N2)= 1/2, (H2) = -3/2
mol △ rHm (298.15K) = -571.66kJ· -1
△ • 化学计量数不同时, rHm 不同。 1 H2(g)+ O2(g) H2O(g) 2 mol △ rHm (298.15K) = -241.82kJ· -1
2.3.3 盖斯(Hess)定律 △ rHm 始态 终态
△ rHm,1 △ rHm,2
结论: aA + bB → yY + zZ
rHm(T)
=Σν B fHm(生成物) +Σ νBfHm(反应物)
= Σν B fHm(B)
§2.4 热力学第二定律
2.4.1 化学反应的自发性
•水从高处流向低处; •热从高温物体传向低温物体;
•铁在潮湿的空气中锈蚀;
•锌置换硫酸铜溶液反应: Zn(s)+Cu2+(aq)
解: 该反应在恒温恒压下进行,所以
大学物理课后答案第5章

第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。
(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为ghp gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
从氧气质量的角度来分析。
利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。
解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。
5第五章 热力学基础

热力学基础
第五章 热力学基础
5-1 热力学第一定律及应用
5-2 循环过程 卡诺循环
5-3 热力学第二定律
教学基本要求
一、理解准静态过程及其图线表示法. 二、理解热力学中功和热量的概念及功、热量和内能的微观意 义,会计算体积功及图示. 会计算理想气体的定压和定体摩 尔热容. 三、掌握热力学第一定律,能分析计算理想气体等体、等压、 等温和绝热过程中的功、热量和内能的改变量.
m i dQV dE RdT M 2
摩尔定容热容: 在体积不变的条件下, 1mol 的理想气体 温度升高(或降低)1K时吸收(或放出) 的热量. 1mol 理想气体 CV ,m
dQV dT
单位
J mol K
1
1
i 由 dQV CV ,mdT RdT 2 i 可得 CV ,m R 2 m 物质的量 为 的理想气体 M
以S表示活塞的面积,p表示气体的压强,dl Fdl pSdl
dW pdV
W
V2
1
p
dV
S
dl
V
pdV
p
1
功的大小等于在p-V图 中曲线下的面积.
3. 准静态微元过程能量关系
p
2
dQ dE pdV
O V dV 1
V2
V
功的图示
p
p1
I
m Q p C p ,m (T2 T1 ) M
( E2 E1 ) p(V2 V1 )
m m CV ,m (T2 T1 ) R(T2 T1 ) M M m (CV ,m R )( T2 T1 ) M
可得 C p,m CV ,m R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课题目(章节或主题):
第五章热力学基础
第一讲热力学第一定律及其应用
教学目的与要求:
1.了解热力学过程;
2.掌握功与能的关系;
3.掌握热力学第一定律。
教学重点:
气体对外做功的求解
热力学第一定律的内容与应用
教学难点:
气体对外做功的求解
热力学第一定律的应用
教学过程设计:
课程导入(3分钟)
讲授新课(70分钟)
课堂巩固(8分钟)
小结(3分钟)
课后思考(5分钟)
作业(1分钟)
第五章热力学基础
第一讲热力学第一定律及其应用一、学时:2学时
二、时间:
三、班级:11级理工类本科
四、教学内容:
导入新课:1,热力学的规律有哪些?
2,热力学过程有哪些?
式中,为气体膨胀时体积的微小增量。
由上式可以看到,系统对外
表示
外界对系统做的功
增量。
由于热力学中系统能量的增量即为内能的增量,故有
的负值,即
热力学第一定律的内容与应用
六、课堂小结:
1、热力学过程
2、热力学第一定律的内容与应用
七、布置作业:
5.5、5.8
八、参考资料:
马文蔚主编《物理学教程》,高等教育出版社,2006
祝之光主编《物理学》学习辅导,高等教育出版社,2010
九、预习内容:
卡诺循环
十、板书:
十一、课后小结:
授课题目(章节或主题):
第五章热力学基础
第二讲循环过程卡诺循环热力学第二定律
教学目的与要求:
1.掌握循环过程;
2.掌握卡诺循环的效率计算;
3. 了解热力学第二定律。
教学重点:
热机效率
制冷机的制冷系数
教学难点:
热力学第二定律的理解
教学过程设计:
课程导入(3分钟)
讲授新课(70分钟)
课堂巩固(8分钟)
小结(3分钟)
课后思考(5分钟)
作业(1分钟)
第五章热力学基础
第二讲循环过程卡诺循环热力学第二定律
一、学时:2学时
二、时间:
三、班级:11级理工类本科
四、教学内容:
导入新课:1,热力学循环的过程是什么?
2,如何考虑热机的效率问题?
能力点二:推理能力
“气体向真空中绝热自由膨胀的过程是不可逆的”
以上三个典型的实际过程都是按一定的方向进行的,是不可逆的。
相反方向的过程不能自动地发生,或者说,可以发生,但必然会产生其它后果。
由于自然界中一切与热现象有关的实际宏观过程都涉及热功转换或热传导,特
上曾有人试图制造效率
律的开尔文表述的。
因此,我们把这种效率
卡诺循环
六、课堂小结:
1、卡诺循环
2、热机效率
3、制冷系数
七、布置作业:
阅读
八、参考资料:
马文蔚主编《物理学教程》,高等教育出版社,2006
祝之光主编《物理学》学习辅导,高等教育出版社,2010
九、预习内容:
气体动理论
十一、课后小结。