全等三角形的判定3--角边角和角角边(ASA__AAS)定理
全等三角形的判定ASA

全等三角形的判定ASA在初中数学的几何世界里,全等三角形是一个非常重要的概念。
而全等三角形的判定方法有多种,其中“ASA”(角边角)就是一种常用且重要的判定方法。
首先,咱们来理解一下什么是“ASA”。
“角边角”说的就是如果两个三角形的两个角及其夹边分别相等,那么这两个三角形就是全等的。
比如说,有三角形 ABC 和三角形 DEF。
如果角 A 等于角 D,角 B等于角 E,而且 AB 这条边和 DE 这条边相等,那么就能够得出三角形ABC 全等于三角形 DEF。
那为什么“ASA”能判定两个三角形全等呢?咱们来仔细想想。
如果两个角相等,那第三个角是不是肯定也相等?因为三角形的内角和是固定的 180 度嘛。
所以两个角相等了,第三个角也就跟着相等了。
再加上夹边相等,那这两个三角形的形状和大小就完全确定了。
就好像咱们用模具做东西,角度和边都确定了,做出来的东西肯定是一模一样的。
咱们通过具体的例子来感受一下“ASA”的魅力。
假设在三角形 ABC 中,角 A 是 60 度,角 B 是 40 度,AB 边的长度是 5 厘米。
然后有另一个三角形 DEF,角 D 是 60 度,角 E 是 40 度,DE 边也是 5 厘米。
那咱们就可以很确定地说,三角形 ABC 全等于三角形 DEF。
在实际做题的时候,怎么运用“ASA”来证明两个三角形全等呢?这就需要我们仔细观察题目中给出的条件。
比如说,题目可能会告诉我们两个三角形中的一组对应角相等,然后再告诉我们这两个角之间的夹边相等。
这时候,我们就要敏锐地意识到,可以用“ASA”来证明全等。
又或者,题目中可能会通过一些角度的计算,让我们得出两个角相等,然后再给出夹边相等的条件。
咱们再来说说“ASA”和其他全等三角形判定方法的关系。
“ASA”和“AAS”(角角边)有时候容易让人混淆。
但其实“AAS”可以通过三角形内角和定理转化为“ASA”。
而“SSS”(边边边)则是通过三条边的相等来判定全等,和“ASA”的角度和边的结合方式有所不同。
三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。
第十二讲 三角形全等的判定定理3(ASA)(含解析)(人教版)

第十二讲三角形全等的判定定理3(ASA)【学习目标】1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.【新课讲解】知识点1:三角形全等的判定(“角边角”定理)1.文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).2.几何语言:在△ABC和△A′ B′ C′中,∴ △ABC≌△A′ B′ C′ (ASA).【例题1】已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.【答案】见解析。
【解析】证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA ).知识点2:用“角角边”判定三角形全等1.文字表述。
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.2.几何语言表述。
在△ABC和△A′B′C′中,∴ △ABC≌△A′B′C′(AAS).【例题2】如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.【答案】见解析。
【解析】证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∴△BDA≌△AEC(AAS).(2)证明:∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.知识点3:应用1.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.2.全等三角形对应边上的高也相等.【例题3】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.【答案】见解析。
全等三角形的判定(ASA)

04 边角边(sas)判定定理
定理内容
两个三角形中,如果两边和它们之间的夹角分别相等,则 这两个三角形全等。
用数学符号表示为:如果$Delta ABC cong Delta DEF$, 且$AB = DE, BC = EF, angle B = angle E$,则$angle A = angle D$。
三角形全等在几何证明中的应用
证明线段相等
通过构造两个全等的三角形 ,利用全等三角形的对应边 相等,证明两条线段相等。
证明角度相等
利用全等三角形的对应 角相等,证明两个角度
相等。
证明垂直关系
通过证明两个三角形全等, 利用全等三角形的对应角为 直角,证明两条线段垂直。
证明平行关系
通过证明两个三角形全等, 利用全等三角形的对应边平
第六步,根据第三步和第五步的 结论,可得 $AC = A'C'$。
第七步,由全等三角形的判定条 件,有 $triangle ABC cong triangle A'B'C'$。
定理应用
01
在几何证明中,角边角(asa)判定 定理常用于证明两个三角形全等 ,从而可以进一步推导出其他几 何性质和结论。
定理证明
其次,根据已知条件$AB = AB$和$AC = AC$,利用 SSS判定定理可得$triangle ABC cong triangle ACD$。
首先,由已知条件可知,$angle A = angle A$和 $angle B = angle B$,所以$angle C = angle C$ (三角形的内角和性质)。
全等三角形判定(ASA和AAS)

在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)
全等三角形的判定定理

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的
三条边及三个角都对应相等。
判定定理
SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等
三角形。
ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角
形全等。
RHS(Right angle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是
用SSS原理)
下列两种方法不能验证为全等三角形:
AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似
三角形。
SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。
三角形全等的定义与判定方法

三角形全等的定义与判定方法三角形是几何学中的基本图形之一,研究三角形的性质和关系是几何学的重要内容之一。
在几何证明中,我们经常会遇到需要判定两个三角形是否全等的问题。
本文将介绍三角形全等的定义和常用的判定方法。
一、三角形全等的定义两个三角形全等的定义如下:如果两个三角形的对应的三边全部相等,那么它们是全等的。
记作ΔABC≌ΔDEF。
二、SAS判定法(边角边法)SAS判定法是指,如果两个三角形的一个边和两个非邻边的夹角分别相等,那么这两个三角形全等。
三、SSS判定法(边边边法)SSS判定法是指,如果两个三角形的三边分别相等,那么这两个三角形全等。
四、ASA判定法(角边角法)ASA判定法是指,如果两个三角形的两个夹角和它们对应的边分别相等,那么这两个三角形全等。
五、AAS判定法(角角边法)AAS判定法是指,如果两个三角形的两个角和它们的一个边分别相等,那么这两个三角形全等。
六、HL判定法(斜边高)HL判定法是指,如果两个三角形的一个斜边和一个高分别相等,那么这两个三角形全等。
在实际问题中,我们经常使用这些判定法来解决三角形全等的证明问题。
下面将通过一些例题来进一步说明这些判定法的应用。
例题1:已知△ABC中,AB=BC,∠ABC=60°,△DEF中,DE=EF,∠DEF=60°,证明△ABC≌△DEF。
解析:根据SAS判定法,我们可以得知:因为AB=DE,∠ABC=∠DEF,BC=EF,所以根据SAS判定法,△ABC≌△DEF。
例题2:已知△ABC中,AC=BC,∠ABC=∠ACB,D是AB的中点,E是AC的中点,证明△BDE≌△ABC。
解析:根据ASA判定法,我们可以得知:因为∠BDE=∠ABC,BE=BC,DE=DA,所以根据ASA判定法,△BDE≌△ABC。
通过以上两个例题,我们可以看出,在解决三角形全等的问题时,选择合适的判定法可以简化证明的过程。
综上所述,三角形全等的判定方法有SAS判定法、SSS判定法、ASA判定法、AAS判定法和HL判定法。
全等三角形五大判定方法(两篇)

引言概述:三角形是几何学中最基本的形状之一。
在三角形中,全等三角形是指具有相等的三个角度和相等的三条边的三角形。
全等三角形的判定是几何学中的重要内容之一,它具有广泛的应用。
本文将介绍全等三角形的五大判定方法——边边边(SSS)、角边角(ASA)、边角边(SAS)、角角边(AAS)和直角边(HL)。
正文内容:一、边边边(SSS)判定方法:1.说明边边边(SSS)判定方法是三边相等的三角形判定方法。
2.介绍边边边(SSS)判定方法的步骤和要点。
3.详细解释如何利用边边边(SSS)判定方法来判断两个三角形是否全等。
4.举例说明边边边(SSS)判定方法的应用场景。
5.总结边边边(SSS)判定方法的特点和注意事项。
二、角边角(ASA)判定方法:1.介绍角边角(ASA)判定方法是角度和边相等的三角形判定方法。
2.说明角边角(ASA)判定方法的步骤和要点。
3.详细解释如何利用角边角(ASA)判定方法来判断两个三角形是否全等。
4.举例说明角边角(ASA)判定方法的实际应用。
5.总结角边角(ASA)判定方法的特点和适用条件。
三、边角边(SAS)判定方法:1.说明边角边(SAS)判定方法是一边、一角和另一边相等的三角形判定方法。
2.介绍边角边(SAS)判定方法的具体步骤和要点。
3.详细解释如何利用边角边(SAS)判定方法来判断两个三角形是否全等。
4.引用实际问题,说明边角边(SAS)判定方法的应用场景。
5.总结边角边(SAS)判定方法的特点和限制条件。
四、角角边(AAS)判定方法:1.介绍角角边(AAS)判定方法是两个角和一边相等的三角形判定方法。
2.说明角角边(AAS)判定方法的步骤和要点。
3.详细解释如何利用角角边(AAS)判定方法来判断两个三角形是否全等。
4.举例说明角角边(AAS)判定方法在实际问题中的应用。
5.总结角角边(AAS)判定方法的特点和使用条件。
五、直角边(HL)判定方法:1.介绍直角边(HL)判定方法是直角边和斜边相等的三角形判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
B′
在△ABC和△ A'B'C'中
{
∠A= ∠A' ∠B= ∠B' BC= B'C' ∴ △ABC≌△ A'B'C'
(AAS)
例3、已知:点D在AB上,点E在AC上, AB=AC,∠B=∠C。 求证: AD=AE A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) ∵ AB=AC(已知) ∠B=∠C(已知) ∴ △ABE≌△ACD(ASA) ∴AD=AE
三角形全等的判定(3)--角边角 和角角边定理(ASA、AAS)
A E
B
F
C
判定两个三角形全等有哪些方法?
边边边(SSS)
边角边 (S A S) 问题 S S A 成立吗?
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
利用“角边角”可知,带第(2)块去, 可以配到一个与原来全等的三角 形玻璃。
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?
A D
B
E C
F
角角边定理
如果两个三角形的两个角及其中一个角的对AS) A A′
E C C′ D
A
B
A′
B′
通过实验你发现了什么结论?
角边角定理 如果两个三角形的两个角及其夹边分别对应相等, 那么这两个三角形全等. (ASA) A′ A
B′
B
C
C′
在△ABC和△ A'B'C'中 ∠A= ∠A' AB= A'B' ∠B= ∠B' ∴ △ABC≌△ A'B'C'
{
(ASA)
(2) (1)
怎么办?可以 帮帮我吗?
A
D
C
E
B
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B 把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
C
A
B
作法: 1、作A/B/=AB; 2、在 A/B/的同旁作∠DA/ B/ =∠A ,
∠EB/A/ =∠B, A/ D与B/E交于点C/。
B C
D
E
1、要使下列各对三角形全等,需要增加 什么条件?
∠A=∠D,
∠ A=∠ D, ∠ B=∠ F, _________;
AB=DE, _________;
练一练
3、如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长。为什么?
A B C D E F
练习2
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
两角和它们的夹边对应相等的两个三角 形全等,简写成“角边角”或“ASA”。
(ASA)
(AAS)
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
作业
课本P第5题 练习册