天津市南开区2020-2021年新人教版九年级数学上周测试卷及答案(全套样卷)

合集下载

2021南开区九年级数学中考模拟试卷(附答案)

2021南开区九年级数学中考模拟试卷(附答案)

2020~2021学年度第二学期南开区九年级模拟数学试卷本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分. 考试时间100分钟.答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)计算)3()6(-÷- 的结果是(A )2 (B )-2 (C )-9 (D )-3(2)︒30cos 2的值等于(A )33(B (C )1 (D )3 (3)今年“五一”假期前三日,我市五大道文化旅游区共接待游客23.5万人次,将“23.5万”用科学计数法表示为(A )310235⨯ (B )4105.23⨯(C )51035.2⨯(D )610235.0⨯(4)下列图形中,既是轴对称图形,又是中心对称图形的是(A ) (B) (C) (D)(5)如图是由几个相同的正方体搭成的一个几何体,它的主视图是(A ) (B )(C ) (D ) (6)估计29的值在(A )2和3之间 (B )3和4之间 (C )4和5之间 (D )5和6之间(7)方程组⎩⎨⎧=-=+52332y x y x ,的解是(A )⎩⎨⎧==32y x , (B ) ⎪⎩⎪⎨⎧==212y x ,(C )⎩⎨⎧==11y x , (D )⎩⎨⎧-==11y x , (8)已知分式A =442-x ,B =xx -++2121,其中2±≠x ,则A 与B 的关系是 (A )A =B(B )A =﹣B(C )A >B(D )A <B(9)若点)2(1y ,-,)1(2y ,-,)3(3y ,在反比例函数6y x=-的图象上,则321y y y ,,的大小关系是(A )321y y y << (B )123y y y << (C )312y y y <<(D )213y y y <<(10)如图,在平面直角坐标系xOy ,四边形OABC 为正方形,若点B (1,3),则点C 的坐标为 (A ))2,1(-(B ))25,1(-(C ))2,23(- (D ))23,1(-(11)如图,在R t △ABC 中,∠C =90°,AC =6,BC =9,点D 为BC 边上的中点,将△ACD 沿AD 对折, 使点C 落在同一平面内的点C '处,连接BC ', 则BC '的长为 (A )29 (B )527 (C )23 (D )32 (12)二次函数5)1(2+--=x y ,当m ≤x ≤n 且mn <0时,y 的最小值为5m ,最大值为5n ,则m +n 的值为(A )0 (B )-1 (C )-2 (D )-32020~2021学年度第二学期南开区九年级模拟数学试卷第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔). 2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)(13)计算23)2(y -的结果是 .(14)计算)37)(37(-+的结果等于 .(15)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,则它是白球的概率为 . (16)已知函数b kx y +=(k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集 为 .(17)如图,菱形ABCD 和菱形EFGH 的面积分别为9 cm 2和64 cm 2,CD 落在EF 上, ∠A =∠E ,若△BCF 的面积为4cm 2, 则△BDH 的面积是 2cm . (18)如图,在每个小正方形的边长为1的网格中,A ,C 为格点,点B 为所在小正方形 边长的中点.(Ⅰ)BC 的长为 ;(Ⅱ)若点M 和N 在边BC 上,且∠BAM =∠MAN =∠NAC ,请在如图所示的网格中,用无刻度...的直尺作图,并简要说明点M 和N 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题8分)解不等式组组⎪⎩⎪⎨⎧-≥--+②①,>423117)1(5x x x x请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .(20)(本小题8分)某校为了解学生每周参加家务劳动的情况,随机调查了该校部分学生每周参加家务劳动的时间.根据调查结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求统计的这组每周参加家务劳动时间数据的众数、中位数和平均数; (Ⅲ)根据统计的这组每周参加家务劳动时间的样本数据,若该校共有800名学生,估计该校每周参加家务劳动的时间大于1h 的学生人数.3-032-1-12已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.(22)(本小题10分)图1是电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度,研究表明:如图2,当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为34cm.(I)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(II)求显示屏项端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.95,≈1.4,≈1.7)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(I)根据图象信息填表:加工时间t(时) 3 4 8甲组加工零件的数量(个)a=(Ⅱ)填空:①甲组工人每小时加工零件个;②乙组工人每小时加工零件个;③甲组加工小时的时候,甲、乙两组加工零件的总数为480个;(Ⅲ)分别求出y甲、y乙与t之间的函数关系式.(24)(本小题10分)如图,将平行四边形OABC放置在平面直角坐标系xOy内,已知A(3,0),B(0,4).(I)点C的坐标是(,);(II)若将平行四边形OABC绕点O逆时针旋转90°得OFDE,DF交OC于点P,交y轴于点F,求△OPF的面积;(III )在(II )的情形下,若再将平行四边形OFDE 沿y 轴正方向平移,设平移的距离为d ,当平移后的平行四边形''''E D F O 与平行四边形OABC 重叠部分为五边形时,设其面积为S ,试求出S 关于d 的函数关系式,并直接写出d 的取值范围.(25)(本小题10分)在平面直角坐标系中,抛物线k k x k x y 25)1(222-+--=(k 为常数). (I )当k =2时,求该抛物线的解析式及顶点坐标; (II )若抛物线经过点)1(2k ,,求k 的值;(III )若抛物线经过点)2(1y k ,和点)2(2y ,,且21y y >,求k 的取值范围; (IV )若将抛物线向右平移1个单位长度得到新抛物线,当21≤≤x 时,新抛物线对应的函数有最小值23-, 求k 的值.2020~2021学年度第二学期南开区九年级阶段练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ABCADDBBDABD二、填空题(本大题共6小题,每小题3分,共18分)(13)64y (14)4 (15)21 (16)2<x (17)217(18)(I )265(II )取格点G 、H ,分别连结AG 、AH 交边BC 于 点M 、点N ,即为所求.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题8分)解: (Ⅰ)3<x ; 2分(Ⅱ)2-≥x ; 4分 (Ⅲ) 6分(Ⅳ) 32<x ≤-. 8分3-032-1-1220.(本小题8分)解:(Ⅰ)40,25; 2分 (Ⅱ)观察条形统计图,∵x =5.1310158425.2102155.18145.0=++++⨯+⨯+⨯+⨯+⨯4分∴ 这40个样本数据的平均数是1.5 .∵在这组样本数据中,1.5出现了15次,出现的次数最多,∴ 这组样本数据的众数是1.5 . 5分 将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是1.5,有5.125.15.1=+, ∴这组样本数据的中位数是1.5. 6分 (Ⅲ) ∵在40名学生中,每周参加家务劳动的时间大于1h 的学生比例为(37.5%+25%+7.5%)∴800×(37.5%+25%+7.5%)=800×70%=560,答:该校800名学生中每周参加家务劳动的时间大于1h 的学生有560人. 8分21.(本小题10分)(I )解:连接OB 1分 ∵P A 、PB 与圆O 相切于点A,B∴PO 平分∠APB 且∠PBO =90° 2分 ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° 3分 ∴∠BPO =90°-∠BOP =90°-56°=34°∴∠APB =2∠BPO =2×34°=68° 4分又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC =62)56180(21=-∴∠APB =68°,∠BDC=62 5分(II )连接OB ∵BC =CE∴∠CBE =∠CEB 6分 ∵∠BCP =28°∴∠CBE =76228180=- 7分∵OB =OC∴∠OBC =∠OCB =28° 8分 ∴∠EBO =∠CBE -∠OBC =76°-28°=48° 9分 ∵P A 与圆O 相切于点A ∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42° 10分22.(本小题10分)(I )由已知得:∠AEP =18°,AP =BP =AB =17, 2分 在Rt △APE 中, ∵AEAP AEP =∠sin ,∴573.01718sin sin ≈≈︒=∠=AP AEP AP AE ,答:眼睛E 与显示屏顶端A 的水平距离AE 约为57cm ; 4分 (II )如图,过点B 作BF ⊥AC 于点F , 5分 ∵∠EAB +∠BAF =90°,∠EAB +∠AEP =90°, ∴∠BAF =∠AEP =18°, 6分 在Rt △ABF 中,AF =AB •cos ∠BAF =34×cos18°≈34×0.95≈32.3,BF =AB •sin ∠BAF =34×sin18°≈34×0.3≈10.2, 8分 ∵BF ∥CD ,∴∠CBF =∠BCD =30°,∴CF =BF •tan ∠CBF =10.2×tan30°=10.2×≈5.78, 9分∴AC =AF +CF =32.3+5.78≈38.答:显示屏顶端A 与底座C 的距离AC 约为38cm . 10分(23)(本小题10分) (Ⅰ)3分(II ) ① 40; ② 120; ③ 7 6分 (III ) (1)当03t 时,t y 40=甲; 当43≤t <时,120=甲y ;当84≤t <时,140b t y +=甲加工时间t (时) 3 4 8 甲组加工零件的数量(个)120120a =280∵图象经过(4,120),则1440120b +⨯=, 解得:401-=b∴ 当84≤t <时,4040-=t y 甲.∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲 9分(2)设2b kt y +=乙把(5,0),(8,360)分别代入,得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y . 10分 24.(本小题10分)解:(Ⅰ)(﹣3,4); 2分 (Ⅱ)由旋转的性质,可得:OF =OA =3,OB =OD =4 ∵∠DFO =∠BAO =∠C , ∴∠DFO +∠BOC =90°, ∴∠FPO =90°,由sin ∠BOC =53,cos ∠BOC =54∴PF =53OF ,OP =54OF∴S△OPF=PF •OP =255435354212=⨯⨯⨯;7分(III )当1<d <413时, ∵OF ’=d+3,OO ’=d ,BF ’=d+3-4∴S =222)43(3421545321)3(545321-+⨯-⨯⨯-+⨯⨯x x d 7511275208322++-=d d .10分25.(本小题10分)解:(I )当k =2时,1254)12(222--=-+--=x x x x y , 1分 2)1(1222--=--=x x x y ,∴此抛物线顶点坐标为(1,-2); 2分(II )把)1(2k ,代入抛物线解析式,得k k k k 25)1(2122-+--=,解得:32=k 3分 (III )依题意,有k k k k k k k y 23252)1(202(2221+=-+⋅--=,8213252)1(222222+-=-+⨯--=k k k k k y 5分∵21y y >, ∴82132322+-+k k k k >, 解得:1>k 6分 (IV )∵ )12()1(25)1(2222--++-=-+--=kk x k k x k x y 将抛物线向右平移1个单位长度得到的新解析式为 )12()(2--+-=kk x y 7分 ① 当1<k 时,21≤≤x 时对应的抛物线部分位于对称轴右侧,∴当1=x 时y 有最小值,k k k k y 25121)1(22-=---=最小 ∴23252-=-k k 解得231=k (舍),12=k (舍) 8分② 当21≤≤k 时,顶点为图象最低点 ∴当k x =时y 有最小值,121--=k y 最小 ∴23121-=--k 解得:1=k 9分 ③ 当2>k 时,21≤≤x 时对应的抛物线部分位于对称轴左侧, ∴当2=x 时y 有最小值,329121)2(22+-=---=k k k k y 最小 ∴233292-=+-k k 解得231=k (舍),32=k综上,1=k 或3=k 10分。

天津市南开中学2020-2021年九年级上册期末数学试题(含答案)

天津市南开中学2020-2021年九年级上册期末数学试题(含答案)

天津市南开中学2020-2021年九年级上册期末数学试题(含答案)一、选择题1.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<2.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm3.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.45.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 6.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,27.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .238.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =9.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .1610.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断12.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10014.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm15.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.已知∠A=60°,则tan A=_____.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.19.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.20.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.21.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.22.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm2.23.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.24.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.25.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.26.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.32.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =4GB =,求O 的半径.33.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.34.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,35.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,53).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.四、压轴题36.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.4.D解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.5.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.6.C解析:C【解析】【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.7.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴2EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴()62tan312xEGACDCG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.8.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.9.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 =,【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.10.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.12.B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 15.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.二、填空题16.3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.19.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.20.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.23.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,∴<.k3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.25.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.26.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m ≥34且m≠1. 27.x1>2或x1<0. 【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y =(x+k )(x ﹣k ﹣2解析:x 1>2或x 1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y 1>y 2,列出关于x 1的不等式即可求出结论.【详解】解:y =(x +k )(x ﹣k ﹣2)=(x ﹣1)2﹣1﹣2k ﹣k 2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、2553,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.32.(1)见解析;(2)O 的半径为4. 【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可.【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.33.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解;②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P,12+,12). 【解析】【分析】。

天津市2020-2021学年人教版九年级期末数学上册试卷 含解析

天津市2020-2021学年人教版九年级期末数学上册试卷  含解析

九年级(上)期末数学试卷一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.109.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.如图所示,写出一个能判定△ABC∽△DAC的条件.15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 718.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.参考答案与试题解析一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】根据点与圆的位置关系进行判断.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π【分析】根据弧长公式l=,计算即可.【解答】解:弧长==,故选:D.4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.【分析】利用列表法展示所以36种等可能的结果数,找出向上一面的两个骰子的点数相同的占6种,然后根据概率公式进行计算.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.10【分析】直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则把y=﹣4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm2【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH =9cm,由等边三角形的面积公式即可得出答案.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.如图所示,写出一个能判定△ABC∽△DAC的条件AC2=DC•BC(答案不唯一).【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为4.【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为20cm.【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC 的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为﹣1 .x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 7【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为﹣1 .【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得OD∥AC,即可求得∠CAD=∠BAD,继而求得答案;(2)首先连接OE,OD,由(1)得:OD∥AC,由点F为的中点,易得△AOF是等边三角形,继而求得答案.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【分析】(Ⅰ)由DE∥BC,可得,由此即可解决问题;(Ⅱ)由PB∥DC,可得,可得PA的长.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴PA=.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DE、EC,使所求线段集中在Rt△BHD中利用勾股定理解决.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x 轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.。

天津南开区2020-2020年学年度九年级数学第一学期期末试卷及答案

天津南开区2020-2020年学年度九年级数学第一学期期末试卷及答案

南开区2020-2020学年度第一学期期末质量检测九年级数学试卷一选择题:每小题3分,共36分。

1.下列事件中是不可能事件的是()(A)降雨时水位上升 (B)在南极点找到东西方向(C)体育运动时消耗卡路里 (D)体育运动中肌肉拉伤2.下列图形既是轴对称图形又是中心对称图形的是( )3.若关于x的一元二次x2+2x+k=0无实数根,则k值可以是( )A.3B.1C.0D.-54.如图,在正方形网格上有两个相似三角形△ABC和△EDF,则∠BAC的度数为( )A.135°B.125°C.115°D. 105°5.如图,在⊙O中,弦AB的长为10,圆周角∠ACB=45°,则这个圆的直径为( )A.52B.102C.152D.2026.在平面直角坐标系中,反比例函数x aa y222+ -=图象的两个分支分别在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限7.点(-1,y1)、(-2,y2)、(3,y3)均在xy6-=的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B. y2<y3<y1C.y3<y2<y1D.y3<y1<y28.将抛物线y=(x-1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( )A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如图,AC是⊙0的直径,∠ACB=60°,连接AB,过A,B两点分别作⊙O的切线,两切线交于点P.若已知⊙0半径为1,则△PAB的周长为( )A.33 B.233 C.3 D.310.如图,以点O为位似中心,将△ABC缩小后得到△A/B/C/,已知OB=3OB/,则△A/B/C/与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:911.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP//DF ,且与AD 相交于点P ,则图中相似三角形的组数为( )A.3B.4C.5D.612.如图在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴只有一个交点M,与平行于x 轴的直线l 交于A,B 两点.若AB=3,则点M 到直线l 的距离为( )A.25B.49 C.2 D.47第II 卷(非选择题共84分) 二 填空题:每小题3分,共18分。

2020-2021年天津市中考数学试题(原卷版)

2020-2021年天津市中考数学试题(原卷版)
18.如图,在每个小正方形的边长为1的网格中, 的顶点 均落在格点上,点B在网格线上,且 .
(Ⅰ)线段 的长等于___________;
(Ⅱ)以 为直径的半圆与边 相交于点D,若 分别为边 上的动点,当 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 ,并简要说明点 的位置是如何找到的(不要求证明)_______.
15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球 概率是_______.
16.将直线 向上平移1个单位长度,平移后直线的解析式为________.
17.如图, 顶点C在等边 的边 上,点E在 的延长线上,G为 的中点,连接 .若 , ,则 的长为_______.
②若折叠后 与 重叠部分的面积为S,当 时,求S的取值范围(直接写出结果即可).
25.已知点 是抛物线 ( 为常数, )与x轴的一个交点.
(1)当 时,求该抛物线的顶点坐标;
(2)若抛物线与x轴的另一个交点为 ,与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点, .
①当点E落在抛物线上(不与点C重合),且 时,求点F的坐标;
2020年天津市初中毕业生学业考试试卷
数学
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算 的结果等于()
A.10B. C.50D.
2.2sin45°的值等于()
A. 1B. C. D. 2
3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()

2020-2021学年最新天津市九年级上期末模拟数学试卷及答案

2020-2021学年最新天津市九年级上期末模拟数学试卷及答案

九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下面图案中是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形的概念判断即可.中心对称图形要寻找对称中心,旋转180度后两部分重合.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.2. 下列事件中,必然事件是()A. 昨天太阳从东方升起B. 任意三条线段可以组成一个三角形C. 打开电视机正在播放“天津新闻”D. 袋中只有5个红球,摸出一个球是白球【答案】A【解析】解:A、昨天太阳从东方升起是必然事件;B、任意三条线段可以组成一个三角形是随机事件;C、打开电视机正在播放“天津新闻”是随机事件;D、袋中只有5个红球,摸出一个球是白球是不可能事件;故选:A.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3. 将抛物线y=−x2向右平移3个单位,再向上平移2个单位后,抛物线的解析式是()A. y=−(x+3)2+2B. y=−(x−3)2+2C. y=−(x+3)2−2D.y=−(x−3)2−2【答案】B【解析】解:∵将抛物线y=−x2向右平移3个单位,再向上平移2个单位,∴平移后的抛物线的解析式为:y=−(x−3)2+2.故选:B.直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出解析式.此题主要考查了二次函数图象的平移变换,正确掌握平移规律是解题关键.4. 二次函数y=(x+1)2−2的图象大致是()A. B.C. D.【答案】C【解析】解:在y=(x+1)2−2中由a=1>0知抛物线的开口向上,故A错误;其对称轴为直线x=−1,在y轴的左侧,故B错误;由y=(x+1)2−2=x2+2x−1知抛物线与y轴的交点为(0,−1),在y轴的负半轴,故D错误;故选:C.分别根据抛物线的开口方向、对称轴的位置及抛物线与y轴的交点位置逐一判断可得.本题考查了对二次函数的图象和性质的应用,注意:数形结合思想的应用,主要考查学生的观察图象的能力和理解能力.5. 如图,在⊙O中,直径CD⊥弦AB,若∠C=30∘,则∠BOD的度数是()A. 30∘B. 40∘C. 50∘D. 60∘【答案】D【解析】解:如图,连接AO,∵∠C=30∘,∴∠AOD=60∘,∵直径CD⊥弦AB,∴A^D=B^D,∴∠AOD=∠BOD=60∘,故选D.连接AO,由圆周角定理可求得∠AOD,由垂径定理可知A^D=B^D,可知∠AOD=∠BOD,可求得答案.本题主要考查圆周角定理及垂径定理,掌握同弧所对的圆周角等于心角的一半是解题的关键.6. 从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边心距是()A. 5√2B. 10√2C. 5√3D. 10√3【答案】C【解析】解:连接OA、OB,过O作OD⊥AB于D;∵圆内接多边形是正六边形,∴∠AOB=360∘6=60∘,∵OA=OB,OD⊥AB,∴∠AOD=12∠AOB=12×60∘=30∘.∴OD=OA⋅cos30∘=10×√32=5√3.故选C.根据题意画出图形,连接OA、OB,过O作OD⊥AB于D,进而由正六边形的性质可求出∠AOB的度数;再依据等腰三角形的性质求出∠AOD的度数,则由直角三角形的性质即可求出OD的长.本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.7. 圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A. 360πcm2B. 720πcm2C. 1800πcm2D. 3600πcm2【答案】D【解析】解:圆锥的侧面积=12×80π×90=3600cm2,故选:D.根据圆锥的侧面积公式计算即可.本题考查的是圆锥的侧面积的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,圆锥的侧面积:S侧=12⋅2πr⋅l=πrl.8. 某校八年级举行拔河比赛,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(1)班同学的概率是( )A. 13B. 12C. 23D. 56【答案】A【解析】解:∵共有6名同学,七(1)班有2人,∴被选中的这名同学恰好是七(1)班同学的概率是=26=13,故选:A.用七(1)班的学生数除以所有报名学生数的和即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.9. 若关于x的一元二次方程kx2−4x+3=0有实数根,则k的非负整数值是()A. 1B. 0,1C. 1,2D. 1,2,3【答案】A【解析】解:根据题意得:△=16−12k≥0,且k≠0,解得:k≤43,则k的非负整数值为1或0.∵k≠0,∴k=1.故选:A.根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10. 某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A. x(x+12)=210B. x(x−12)=210C. 2x+2(x+12)=210D. 2x+2(x−12)=210【答案】B【解析】解:设场地的长为x米,则宽为(x−12)米,根据题意得:x(x−12)=210,故选:B.根据题意设出未知数,利用矩形的面积公式列出方程即可.此题主要考查了由实际问题抽象出一元二次方程;根据矩形的面积公式得到方程是解决本题的基本思路.11. 某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=−x2+70x−800,要想获得最大利润,则销售单价为()A. 30元B. 35元C. 40元D. 45元【答案】B【解析】解:∵y=−x2+70x−800=−(x−35)2+425,∴当x=35时,y取得最大值,最大值为425,即销售单价为35元时,销售利润最大,故选:B.将函数解析式配方成顶点式后,利用二次函数的性质求解可得.本题主要考查二次函数的应用,解题的关键是熟练将二次函数的一般式化为顶点式的能力及掌握二次函数的性质.12. 已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a−b+c<0;③4a+b+c=0;④抛物线的顶点坐标为(2,b);⑤当x<1时,y随x增大而增大.其中结论正确的是()A. ①②③B. ①④⑤C. ①③④D. ③④⑤【答案】C【解析】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),∴抛物线与x轴的另一个交点为(0,0),故①正确,当x=−1时,y=a−b+c>0,故②错误,∵−b2a =2,得4a+b=0,b=−4a,∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax2+bx=a(x+b2a )2−b24a=a(x+−4a2a)2−(−4a)24a=a(x−2)2−4a=a(x−2)2+b,∴此函数的顶点坐标为(2,b),故④正确,当x<1时,y随x的增大而减小,故⑤错误,故选C.根据题意和二次函数的性质可以判断各个小题是否成立,从而可以解答本题.本题考查二次函数的图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(本大题共6小题,共18.0分)13. 若x=1是一元二次方程x2+3x+m=0的一个根,则m=______.【答案】−4【解析】解:把x=1代入一元二次方程x2+3x+m=0,得1+3+m=0,即m=−4.故本题答案为m=−4.一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.14. 将线段AB绕点O顺时针旋转180∘得到线段A′B′,那么A(−3,2)的对应点A′的坐标是______.【答案】(3,−2)【解析】解:将线段AB绕点O顺时针旋转180∘得到线段A′B′,对应点关于原点对称,A(−3,2)的对应点A′的坐标是(3,−2);故答案为:(3,−2)将线段AB绕点O顺时针旋转180∘得到线段A′B′,对应点关于原点对称,利用关于原点对称的性质解答即可.本题考查了旋转的性质的运用,解答时利用关于原点对称的性质解答是关键.15. 已知蚂蚁在如图所示的正方形ABCD的图案内爬行(假设蚂蚁在图案内部各点爬行的机会是均等的),蚂蚁停留在阴影部分的概率为______.【答案】12,【解析】解:由题意可得出:图中阴影部分占整个面积的12因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:1.2.故答案为:12,进而得出答案.根据正方形的性质求出阴影部分占整个面积的12本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点D为A^C的中点,若∠B=50∘,则∠A的度数为______度.【答案】65【解析】解:连接OD、OC,∵点D为A^C的中点,∴∠AOD=∠COD,∵∠B=50∘,∴∠AOC=100∘,∴∠AOD=∠COD=50∘,∴∠A=∠ODA=65∘,故答案为:65.连接OD、OC,根据圆周角定理求出∠AOC=100∘,根据三角形内角和定理计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17. 为了估计一个不透明的袋子中白球的数量(袋中只有白球),现将5个红球放进去(这些球除颜色外均相同)随机摸出一个球记下颜色后放回(每次摸球前先将袋中的球摇匀),通过多次重复摸球试验后,发现摸到红球的频率稳定于0.2,由此可估计袋中白球的个数大约为______.【答案】20个【解析】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,∵假设有x个白球,=0.2,∴55+x解得:x=20,∴口袋中有白球约有20个.故答案为:20个.根据口袋中有5个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.18. 如图,半圆O的直径DE=10cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=10cm,半圆O以1cm/s的速度从右到左运动,在运动过程中,D、E点始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的右侧,OC=6cm,那么,当t为______s时,△ABC的一边所在直线与半圆O所在的圆相切.【答案】1或6或11或26【解析】解:如图,∵OC=6,DE=10,∴OD=OE=5,CD=1,EC=11,∴t=1或11s时,⊙O与直线AC相切;当⊙O′与AB相切时,设切点为M,连接O′M,在Rt△BMO′中,BO′=2MO′=10,∴OO′=6,当⊙O″与AB相切时,设切点为N,连接O′N,同法可得BO″=10,OO″=26,∴当t=6或26s时,⊙O与AB相切.故答案为1或6或11或26分四种情形分别求解即可解决问题.本题考查切线的判定,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、计算题(本大题共1小题,共10.0分)19. 如图,⊙O的直径AB为20cm,弦AC=12cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.【答案】解:∵AB是⊙O的直径,∴∠ACB=90∘,∴BC=√AB2−AC2=16(cm);∵CD是∠ACB的平分线,∴A^D=B^D,×AB=10√2(cm).∴AD=BD=√22【解析】根据圆周角定理得到∠ACB=90∘,根据勾股定理求出BC,根据圆周角定理得到AD=BD,根据勾股定理计算即可.本题考查的是圆周角定理、勾股定理,掌握直径所对的圆周角是直角是解题的关键.四、解答题(本大题共6小题,共56.0分)20. 用适当的方法解下列方程(1)x2−8x+1=0(2)x(x−3)+x−3=0.【答案】解:(1)∵x2−8x=−1,∴x2−8x+16=15,即(x−4)2=15,则x−4=±√15,∴x=4±√15;(2)∵(x−3)(x+1)=0,∴x−3=0或x+1=0,解得:x=3或x=−1.【解析】(1)配方法求解可得;(2)因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21. 如图,△ABC,∠C=90∘,将△ABC绕点B逆时针旋转90∘,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)【答案】解:(1)如图所示,△A′BC′即为所求;(2)若AC=3、BC=4,则BC′=BC=4,∴CC′=√BC2+BC′2=√42+42=4√2;(3)∵AC=3、BC=4,∴AB=√AC2+BC2=5,∴ÂA′=90∘⋅π⋅5180∘=52π,即点A经过的路径长为52π.【解析】(1)分别作出点A、C绕点B逆时针旋转90∘所得对应点,再顺次连接可得;(2)由旋转性质知BC′=BC=4,再根据勾股定理可得;(3)根据勾股定理知AB=5,再根据弧长公式计算可得.本题主要考查作图−旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22. 向阳村种植的水稻2013年平均每公顷产7200kg,近几年产量不断增加,2015年平均每公顷产量达到8712kg.(1)求该村2013至2015年每公顷水稻产量的年平均增长率;(2)若年增长率保持不变,2016年该村每公顷水稻产量能否到达10000kg?【答案】解:(1)设该村2013至2015年每公顷水稻产量的年平均增长率为x,依题意得:7200(1+x)2=8712,解得x1=0.1=10%,x2=−2.1(舍去)答:该村2013至2015年每公顷水稻产量的年平均增长率为10%;(2)由题意,得8712×(1+0.1)=9583.2(kg)因为9583.2<10000,所以,2016年该村每公顷水稻产量不能到达10000kg.【解析】(1)设该村2013至2015年每公顷水稻产量的年平均增长率为x,就可以表示出2014年水稻的产量,根据2015年平均每公顷产量达到8712kg建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.23. 在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.【答案】解:(1)同学甲的方案公平.理由如下:由树状图可以看出:共有12种可能,摸到“一红一白”有4种,摸到“一白一蓝”的概率有2种,故小刚获胜的概率为412=13,小明获胜的概率为212=16,所以这个游戏不公平.(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.【解析】(1)这个游戏不公平,分别求出两人获胜的概率即可判断;(2)拿出一个红球或放进一个蓝球,其他不变.此题主要考查了用列树状图的方法解决概率问题;得到两次都摸出相同颜色球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.24. 已知△ABC的边AB是⊙O的弦.(1)如图1,若AB是⊙O的直径,AB=AC,BC交⊙O于点D,且DM⊥AC于M,请判断直线DM与⊙O的位置关系,并给出证明;(2)如图2,AC交⊙O于点E,若E恰好是A^B的中点,点E到AB的距离是8,且AB长为24,求⊙O的半径长.【答案】证明:(1)连接OD.∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD//AC,∵DM⊥AC,∴DM⊥OD,∴DM是⊙O的切线.(2)连接OA、连接OE交AB于点H,∵E是AB中点,AB=24,AB=12,∴OE⊥AB,AH=12连接OA,设OA=x,∵EH=8,可得OH=x−8,在Rt△OAH中,根据勾股定理可得(x−8)2+122=x2,解得x=13,∴⊙O的半径为13.【解析】(1)连接OD,只要证明OD//AC即可解决问题;(2)连接OA、连接OE交AB于点H,连接OA,设OA=x,在Rt△OAH中,根据勾股定理可得(x−8)2+122=x2,解方程即可;本题考查直线与圆的位置关系、切线的判定、勾股定理、平行线的判定和性质等知识,解题的关键是学会添加常用辅助线.属于中考常考题型.25. 如图1,抛物线y=−x2+mx+n交x轴于点A(−2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】解:(1)A(−2,0),C(0,2)代入抛物线的解析式y =−x 2+mx +n , 得{n =2−4−2m+n=0,解得{n =2m=−1,∴抛物线的解析式为y =−x 2−x +2.(2)由(1)知,该抛物线的解析式为y =−x 2−x +2,则易得B(1,0),设M(m,n)然后依据S △AOM =2S △BOC 列方程可得: 12⋅AO ×|n|=2×12×OB ×OC , ∴12×2×|−m 2−m +2|=2, ∴m 2+m =0或m 2+m −4=0,解得x =0或−1或−1±√172, ∴符合条件的点M 的坐标为:(0,2)或(−1,2)或(−1+√172,−2)或(−1−√172,−2).(3)设直线AC 的解析式为y =kx +b ,将A(−2,0),C(0,2)代入得到{b =2−2k+b=0,解得{b =2k=1,∴直线AC 的解析式为y =x +2,设N(x,x +2)(−2≤x ≤0),则D(x,−x 2−x +2),ND =(−x 2−x +2)−(x +2)=−x 2−2x =−(x +1)2+1,∵−1<0,∴x =−1时,ND 有最大值1.∴ND 的最大值为1.【解析】(1)把A(−2,0),C(0,2)代入抛物线的解析式求解即可;(2)由(1)知,该抛物线的解析式为y =−x 2−x +2,则易得B(1,0).然后依据S △AOM =4S △BOC 列方程求解即可;(3)设直线AC 的解析式为y =kx +t ,将A(−320),C(0,2)代入可求得直线AC 的解析式,设N 点坐标为(x,x +2),(−2≤x ≤0),则D 点坐标为(x,−x 2−x +2),然后列出ND 与x 的函数关系式,最后再利用配方法求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应了待定系数法求一次函数、二次函数的解析式,解题的关键是学会构建二次函数,利用二次函数解决最值问题,属于中考压轴题.。

2020-2021学年天津市南开区九年级(上)期末数学试卷

2020-2021学年天津市南开区九年级(上)期末数学试卷

2020-2021学年天津市南开区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.投掷一枚正六面体骰子,朝上一面的点数为5C.在只装了红色卡片的袋子里,摸出一张白色卡片D.明天太阳从东方升起3.对于反比例函数y=,下列判断正确的是()A.图象经过点(﹣1,3)B.图象在第二、四象限C.不论x为何值,y>0D.图象所在的第一象限内,y随x的增大而减小4.如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=25°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.25°B.40°C.90°D.50°5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.6B.4C.2D.16.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.已知A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1x2<0B.x1x3<0C.x2x3<0D.x1+x2<08.若k1<0<k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.9.如图,P A切⊙O于点A,PB切⊙O于点B,PO交⊙O于点C,下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.AB⊥OP D.∠P AB=2∠APO 10.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.011.如图,⊙O的半径为1,点O到直线a的距离为2,点P是直线a上的一个动点,P A 切⊙O于点A,则P A的最小值是()A.1B.C.2D.12.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点为B(4,0),直线y2=mx+n(m≠0)与抛物线交于A、B两点,结合图象分析下列结论:①2a+b=0;②abx>0;③方程ax2+bx+c=3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤抛物线与x轴的另一个交点是(﹣1,0),其中正确的是()A.①②③B.②④C.①③④D.①③⑤二、填空题(本大题共6小题,每小题3分,共18分13.如果4a=5b,则=.14.现有4条线段,长度依次为2,4,6,7,从中任选三条,能组成三角形的概率是.15.下列y关于x的函数中,y随x的增大而增大的有.(填序号)①y=﹣2x+1,②y=,③y=(x+2)2+1(x>0),④y=﹣2(x﹣3)2﹣1(x<0).16.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为.17.如图,正六边形ABCDEF的边长为2,点B为圆心,AB长为半径,作扇形ABC,则图中阴影部分的面积为.18.如图,在由小正方形组成的网格中,△ABC的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC的高AH,并简要说明作图方法(不要求证明):.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种;(Ⅱ)求两次摸出的球的标号相同的概率;(Ⅲ)求两次摸出的球的标号的和等于4的概率.20.如图,A、B是双曲线y=上的点,点A的坐标是(1,4),B是线段AC的中点.(Ⅰ)求k的值;(Ⅱ)求△OAC的面积.21.如图,在等边三角形ABC中,点E为CB边上一点(与点C不重合),点F是AC边上一点,若AB=5,BE=2,∠AEF=60°,求AF的长度.22.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(Ⅰ)如图①,连接AD,若∠CAD=25°,求∠B的大小;(Ⅱ)如图②,若点F为的中点,⊙O的半径为2,求AB的长.23.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为Sm2,平行于墙的边为xm.若x不小于17m.(Ⅰ)求出S关于x的函数关系式;(Ⅱ)求S的最大值与最小值.24.平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6)P是射线OB上一点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点.(Ⅰ)如图(1)当OP=2时,求点Q的坐标;(Ⅱ)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(Ⅲ)当BP+BQ=8时,求点Q的坐标(直接写出结果即可).25.在平面直角坐标系中,设二次函数y=x2﹣x﹣a2﹣a,其中a>0.(Ⅰ)若函数y的图象经过点(1,﹣2),求函数y的解析式;(Ⅱ)若抛物线与x轴的两个交点分别为A,B(A点在B点的左侧),与y轴的交点为C,满足OC=2OB时,求a的值.(Ⅲ)已知点P(x0,m)和Q(1,n)在函数y的图象上,若m<n,求x0的取值范围.。

天津市南开区2020年12月9日新人教版九年级数学上册周末练习及答案(全套样卷)

天津市南开区2020年12月9日新人教版九年级数学上册周末练习及答案(全套样卷)

2020-2021学年度第一学期九年级数学周测练习题12.09姓名:_______________班级:_______________得分:_______________一选择题:1.下列各组线段(单位:cm)中,是成比例线段的为( )A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,2,32.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是( )A.5 cmB.10 cmC.15 cmD.30 cm3.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A. B. C. D.4.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25°B.30°C.35°D.50°第4题图第5题图第6题图5.如图所示,一般书本的纸张是对原纸张进行多次对折得到的,矩形ABCD沿EF对折后,再把矩形EFCD沿MN 对着,依此类推,若所得各种矩形都相似,那么等于( )A.0.618B.C.D.26.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论正确的是( )①弦AB的长等于圆内接正六边形的边长;②弦AC的长等于圆内接正十二边形的边长;③弧AC=弧AB;④∠BAC=30°;A.①②④B.①③④C.②③④D.①②③7.如图,∠ABC=∠CDB=90°,BC=3,AC=5,如果△ABC与△CDB相似,那么BD的长( )A. B. C. D.或8.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B 的横坐标是( )A. B. C. D.第8题图第9题图第10题图9.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.已知:如图,⊙O是△ABC的内切圆,下列说法错误的是( )A.点O在△ABC的三边垂直平分线上B.点O在△ABC的三个内角平分线上C.如果△ABC的面积为S,三边长为a,b,c,⊙O的半径为r,那么r=D.如果△ABC的三边长分别为5,7,8,那么以A、B、C为端点三条切线长分别为5,3,211.如图,⊙O的外切正六边形ABCDEF的边长为1,则图中阴影部分的面积为( )A.-B.-C.-D.-12.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16B.2020C.25D.30二填空题:13.若,则的值为14.若等边三角形的边长为4 cm,则它的外接圆的面积为.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形,已知OA=10cm,=2020,则五边形ABCDE的周长与五边形的周长的比值是______16.如图,△与△是位似图形,且顶点都在格点上,则位似中心的坐标是.17.如图,中,,若=4,则= .18.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=______.19.如图是一个正方形及其内切圆,随机地往正方形内投一粒米,落在圆内的概率为.2020图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是______m.三简答题:21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.23.第十五届中国“西博会”将于2020年10月底在成都召开,现有2020愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这2020随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?并说明理由.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.(1)求证:BP是⊙O的切线;(2)求证:AE•EB=DE•EF;(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.25.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB、BC于点F、G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB∶OA=1∶2 时,求、AM、AF围成的阴影部分面积.26.如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明.27.阅读下面材料:上课时李老师提出这样一个问题:对于任意实数,关于的不等式恒成立,求的取值范围.小捷的思路是:原不等式等价于,设函数,,画出两个函数的图象的示意图,于是原问题转化为函数的图象在的图象上方时的取值范围.请结合小捷的思路回答:对于任意实数,关于的不等式恒成立,则的取值范围是___________.参考小捷思考问题的方法,解决问题:关于的方程在范围内有两个解,求的取值范围.参考答案1、B2、C3、B4、A5、B6、D7、D8、D9、D 10、A 11、A 12、A13、2/3 14、cm2 15、1︰2; 16、(6,0)17、12 18、1:2020 19、.20203.6 m.21、【解答】解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.22、【解答】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.23、(1)2020有12人是女生,∴P(女生)==.(2)解法一(枚举法):任取2张,所有可能的结果23,24,25,34,35,45,共6种,其中和为偶数的结果有:“24”和“35”2种,∴P(甲参加)==,P(乙参加)=,∴游戏不公平.解法二(列表法):列表如下:2 3 4 52 (3,2) (4,2) (5,2)3 (2,3) (4,3) (5,3)4 (2,4) (3,4) (5,4)5 (2,5) (3,5) (4,5)∴P(甲参加)==,P(乙参加)=,∴游戏不公平.解法三(树状图法):画树状图如下:∴P(甲参加)==,P(乙参加)=,∴游戏不公平.24、【解答】(1)证明:连结BC,∵AB是ʘO的直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,又∵∠ABC=∠ADC,∠ADC=∠BPF,∵PF∥AC,∴∠CAB=∠PEB,∴∠PEB+∠BPF=90°,∴PB⊥AB,∴PB是ʘO的切线;(2)连结AF、BD.在△AEF和△DEB中,∠AEF=∠DEB.∠AFE=∠DBE,∴△AEF∽△DEB,∴=,即AE•EB=DE•EF;(3)在Rt△ABC中,BC2=(2)2﹣22∴BC=4,在Rt△ABC和Rt△EPB中,∠ABC=∠ADC=∠BPF,∴△ABC∽△EPB,∴=,∴BP==2.25、(1)略;(2)26、(1)证明:连接OA,∵PA为⊙O的切线,∴∠PAO=90°.∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA.在△PBO和△PAO中,,∴△PBO≌△PAO,∴∠PBO=∠PAO=90°,∴PB为⊙O的切线.(2)AB2=2AD•PC.证明:∵∠OBP=∠BCO=90°,∴△OCB∽△BCP,∴,即BC2=OC•PC.∵OC=AD,BC=AB,∴=AD•PC,∴AB2=2AD•PC.27、的顶点坐标为(1,-2),函数的图象在=a的图象上方,所以;解决问题:将原方程转化为·设函数,,记函数在内的图象为G,于是原问题转化为与G有两个交点时的取值范围,结合图象可知的取值范围是:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017 学年度第一学期九年级数学一选择题:姓名:_周末测试题11.25班级:_得分:_1.下列图形中既是轴对称,又是中心对称的是()A. B. C. D.2.如图,A、D 是⊙O 上的两个点,BC 是直径,若∠ D=35°,则∠OAC 的度数是()A.35°B.55°C.65°D.70°第2 题图第3 题图第 4 题图 3.如图,四边形ABCD 是⊙O 的内接四边形,若∠B=30°,则∠ADC 的度数是( )A.60°B.80°C.90°D.100°4.如图,已知AB 是⊙O 的切线,点A 为切点,连接OB 交⊙O 于点C,∠B=38°,点D 是⊙O 上一点,连接CD,AD.则∠D 等于()A.76°B.38°C.30°D.26°5.将抛物线C:y=x2+3x﹣10,将抛物线C 平移到C’.若两条抛物线C,C′关于直线x=1 对称,则下列平移方法中正确的是()A.将抛物线C 向右平移5个单位 B.将抛物线C 向右平移3 个单位2C.将抛物线C 向右平移5 个单位D.将抛物线C 向右平移6 个单位6.函数y=ax+1 与y=ax2+bx+1(a≠0)的图象可能是()A. B. C. D.7.如图,已知双曲线 y= k(k<0)经过直角三角形 OAB 斜边 OA 的中点 D ,且与直角边 AB 相交于点 C .若点 A 的x坐标为(﹣6,4),则△AOC 的面积为()A.12B.9C.6D.4第 7 题图 第 8 题图 第 9 题图8.一个商标图案如图中阴影部分,在长方形 ABCD 中,AB=8cm ,BC=4cm ,以点 A 为圆心,AD 为半径作圆与 BA 的 延长线相交于点 F ,则商标图案的面积是( )A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm 29.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升 10 ℃,加热到 100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至 30 ℃,饮水机关机.饮水机关机后即刻 自动开机,重复上述自动程序.若在水温为 30 ℃时,接通电源后,水温 y(℃)和时间 x(min)的关系如图,为了 在上午第一节下课时(8:45)能喝到不超过 50 ℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:5010.如图,OA ⊥OB,等腰直角△CDE 的腰 CD 在 OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转 75°,点 E 的对应点 N 恰好落在 OA 上,则OC的值为()CDA.1 B.1 C.2 D. 32323第 10 题图第 11 题图 第 12 题图 11.平时我们在跳绳时,绳摇到最高点处的形状可近似地看做抛物线,如 图所示.正在摇绳的甲、乙两名同学拿绳的手间距为 4 m ,距地高均为 1 m ,学生丙、丁分别站在距甲拿绳的手水平距离 1 m ,2.5 m 处.绳子在摇到最高 处时刚好通过他们的头顶.已知学生丙的身高是 1.5 m ,则学生丁的身高为 ()A.1.5 mB.1.625 mC.1.66 mD.1.67 m12.已知二次函数 y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列 5 个结论:①abc<0;②b<a+c ; ③4a+2b+c>0;④c<4b ;⑤a+b<k(ka+b)(k 为常数,且 k ≠1).其中正确的结论有( )A.2 个B.3 个C.4 个D.5 个2 二 填空题:13.若梯形的下底长为 x,上底长为下底长的1,高为 y,面积为 60,则 y 与 x 的函数解析式是(不考虑 x3的取值范围).14.如图,A 是反比例函数 y k的图像上一点,已知 Rt △AOB 的面积为 3,则 k=.x15.二次函数 y=x 2﹣2x+6 的最小值是16.在平面直角坐标系中,将解析式为 y=2x 2的图象沿着 x 轴方向向左平移 4 个单位,再沿着 y 轴方向向下平移 3 个单位,此时图象的解析式为.17.已知扇形半径是 3cm ,弧长为 2πcm ,则扇形的圆心角为 °.(结果保留π) 18.抛物线的部分图象如图所示,则当 y<0 时,x 的取值范围是.第 18 题图 第 19 题图 第 20 题图 19.如图,木工师傅从一块边长为 60cm 的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长 为cm .20.如图,四边形 ABCD 是☉O 的内接四边形,∠ABC=2∠D,连接 OA 、OB 、OC 、AC ,OB 与 AC 相交于点 E.若∠COB=3∠AOB ,OC=2 3 ,则图中阴影部分面积是(结果保留π和根号).21.如图,在平面直角坐标系 xOy 中,⊙P 的圆心 P 为(﹣3,a ),⊙P 与 y 轴相切于点 C.直线 y=﹣x 被⊙P 截得的线段 AB 长为 4 ,则过点 P 的双曲线的解析式为第 21 题图 第 22 题图22.如图,一段抛物线:y=x(x-2)(0≤x ≤2),记为 C 1,它与 x 轴交于点 O ,A ,;将 C 1 绕点 A 1 旋转 180°得 C 2,交 x 轴于点 A 2;将 C 2 绕点 A 2 旋转 180°得 C 3,交 x 轴于点 A 3;…,如此进行下去,直至得 C 2016.若 P(4031,a)在第 2016 段抛物线 C 2016 上,则 a=.三 简答题:23.如图,正方形网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点.△ABC 的三个顶点 A ,B , C 都在格点上,将△ABC 绕点 A 按顺时针方向旋转 90°得到△AB ′C ′. (1)在正方形网格中,画出△AB ′C ′; (2)计算线段 AB 在变换到 AB ′的过程中扫过区域的面积.24.如图,在平面直角坐标系中,反比例函数 y 4(x>0)图象与一次函数 y=﹣x+b 图象的一个交点为 A(4,m).x(1)求一次函数的解析式; (2)设一次函数 y=﹣x+b 的图象与 y 轴交于点 B ,P 为一次函数 y=﹣x+b 的图象上一点,若△OBP 的面积为 5, 求点 P 的坐标.25.如图,AB 是⊙O 的直径,弦 CD ⊥AB 于点 E ,点 P 在⊙O 上,PB 与 CD 交于点 F ,∠PBC=∠C . (1)求证:CB ∥PD ;(2)若∠PBC=22.5°,⊙O 的半径 R=2,求劣弧 AC 的长度.26.张师傅准备用长为8cm 的铜丝剪成两段,以围成两个正方形的线圈,设剪成的两段铜丝中的一段的长为x cm,围成的两个正方形的面积之和为Scm2.(1)求S 与x 的函数关系式,并写出自变量的取值范围;(2)当x 取何值时,S 取得最小值,并求出这个最小值.27.已知在⊙O 中,AB 是直径,AC 是弦,OE⊥AC 于点E,过点C 作直线FC,使∠FCA=∠AOE,交AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G,若OG=2,求⊙O 半径的长;(3)在(2)的条件下,当OE=3 时,求图中阴影部分的面积.28.已知点O 是等边△ABC 内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是;②用等式表示线段OA,OB,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2 中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.参考答案1、B2、B3、D4、D5、C6、C7、B8、A9、A 10、C 11、B 12、B 13、y=90 14、-6 15、5. 16、y=2(x+4)2﹣3. 17、120 °18、x >3 或 x <﹣1. 19、20x203π- 2 3 , 21、y=﹣ 32+9 x. 22、123、【解答】解:(1)如图所示:△AB ′C ′即为所求;(2)∵AB==5, ∴线段 AB 在变换到 AB ′的过程中扫过区域的面积为: 25π.424、解:(1)∵点 A (4,m )在反比例函数 y = 4(x >0)的图象上,∴m=1,∴A 点坐标为(4,1),x将 A (4,1)代入一次函数 y=﹣x+b 中,得 b=5.∴一次函数的解析式为 y=﹣x+5;(2)由题意,得 B (0,5),∴OB=5.设 P 点的横坐标为 x P . ∵△OBP 的面积为 5,∴x P =±2. 当 x=2,y=﹣x+5=3;当 x=﹣2,y=﹣x+5=7,∴点 P 的坐标为(2,3)或(﹣2,7). 25、解:(1)∵∠PBC=∠D ,∠PBC=∠C ,∴∠C=∠D ,∴CB ∥PD ; (2)∵AB 是⊙O 的直径,弦 CD ⊥AB 于点 E ,∴弧 BC=弧 BD ,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧 AC 的长为: 3π2 26、解:(1)设一段铁丝的长度为 x ,另一段为(8﹣x ),则边长分别为 1 x , 1(8﹣x ),44则 S= 1x 2+ 1 (8﹣x )(8﹣x )= 1x 2﹣x+4;自变量的取值范围:0<x <8;16 168(2)S= 1 (x ﹣4)2+2,所以当 x=4cm 时,S 最小,最小为 2cm 2. 8 27、【解答】证明:(1)连接 OC (如图①),∵OA=OC ,∴∠1=∠A .∵OE ⊥AC ,∴∠A+∠AOE=90°.∴∠1+∠AOE=90°. ∵∠FCA=∠AOE ,∴∠1+∠FCA=90°.即∠OCF=90°.∴FD 是⊙O 的切线.(2)连接 BC ,(如图②)∵OE ⊥AC ,∴AE=EC (垂径定理).又∵AO=OB ,∴OE ∥BC 且 BC=2OE .∴∠OEG=∠GBC (两直线平行,内错角相等),∠EOG=∠GCB (两直线平行,内错角相等), ∴△OEG ∽△CBG (AA ).∴OG = OE = 1.∵OG=2,∴CG=4.∴OC=OG+GC=2+4=6.即⊙O 半径是 6. CG CB 2(3)∵OE=3,由(2)知 BC=2OE=6,∵OB=OC=6,∴△OBC 是等边三角形.∴∠COB=60°.∵在 Rt △OCD 中,CD=OC•tan60°=6 3 ,∴S 阴影=S △OCD ﹣S 扇形 OBC =18 3 -6π.28、解:(1)①90°. ②线段 OA ,OB ,OC 之间的数量关系是 OA 2+OB 2=OC 2. 如图 1,连接 OD.∵△BOC 绕点 C 按顺时针方向旋转 60°得△ADC ,∴△ADC ≌△BOC ,∠OCD=60°.∴CD = OC,∠ADC =∠BOC=120°, AD= OB. ∴△OCD 是等边三角形.∴OC=OD=CD ,∠COD=∠CDO=60°.∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°.∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°. 在 Rt △ADO 中,∠DAO=90°,∴OA 2+AD 2=OD 2.∴OA 2+OB 2=OC 2. (2)①如图 2,当α=β=120°时,OA+OB+OC 有最小值. 作图如图 2 的实线部分. 如图 2,将△AOC 绕点 C 按顺时针方向旋转 60°得△A’O’C,连接 OO’. ∴△A’O’C≌△AOC ,∠OCO’=∠ACA’=60°.∴O’C=OC, O’A’=OA,A’C=BC, ∠A’O’C=∠AOC. ∴△OC O’是等边三角形.∴OC= O’C = OO’,∠COO’=∠CO’O=60°.∵∠AOB=∠BOC=120°,∴∠AOC =∠A’O’C=120°.∴∠BOO’=∠OO’A’=180°. ∴四点 B ,O ,O’,A’共线.∴OA+OB+OC= O’A’ +OB+OO’ =BA’ 时值最小.②当等边△ABC 的边长为 1 时,OA+OB+OC 的最小值 A’B= 3 .。

相关文档
最新文档