戴维南定理、诺顿定理
第3章第3节戴维南定理和诺顿定理

NS
a I+
外 部
U U U U O C R iI
U b
电 路
——二端网络NS在端口 a,b处的伏安关系
Ia
+ +外
UOC
-
U
Ri -
部 电 路
b
UUOCRiI
——电压源和电阻的串联组合 支路在端口a,b处的伏安关系
两者在端口a,b处的伏安关系完全一样,因此,两者
等效。即:任意的一个含源二端网络可以用一个电压
5Ω
2Ω
+
6V -
1i
+
3A
us=20V
-
1'
解:将电路端钮1和1′左边的电路看作是一个含源二端 网络,根据戴维南定理,此二端网络可以用一个电压 源和电阻的串联组合来等效交换。
〔1〕求开路电压uoc
3Ω
2A
5Ω
2Ω
+
6V -
+1
3A uoc
1'
+1 5A
2.5Ω uoc
1'
uoc 52.51.5 2V
3Ω
2A
5Ω
2Ω
+
6V -
〔2〕求输入电阻Ri
+1
3A uoc
1' 3Ω
2Ω
1
5Ω Ri
Ri Ω 〔3〕组成等效电路
1' 1
i uoc us Ri
+
UOC 12.5V
-
i
+ us=20V
12.5 20 3 A
Ri 2.5
-
2.5
1'
戴维南定理与诺顿定理

戴维南定理与诺顿定理
六、实验报告要求:
1、根据测量数据,在同一坐标系中绘制等效
前后的U-I曲线;
2、将理论值与实验测量数据相比较,分析(fēnxī)
产生误差的原因;
3、实验小结。
共十六页
内容(nèiróng)总结
戴维南定理与诺顿定理。戴维南定理与诺顿定理。戴维南定理与诺顿定 理。1、通过验证戴维南定理与诺顿定理,加深对等效概念的理解。2、学 习测量有源二端网络的开路电压和等效内阻的方法。将原网络端口a、b之 间用导线短接,流过导线的电流就是短路电流Isc。戴维南定理和诺顿定理 是一对互为对偶形式的定理。Uoc = Isc ×Ro。1、利用戴维南定理和诺顿定 理分别计算(jìsuàn)该网络的开路电压U’oc、等效电阻R’o和短路电流I’sc
源Is=10mA,接入实验电路,测量该网络(wǎngluò)的
开路电压Uoc、等效内阻Ro和短路电流Isc,分别 填入表2.3.3中。(注:本实验中开路电压Uoc 、等效内阻Ro 的测量均采用直接测量法。)
Uoc(V)
Isc(mA)
R0(Ω)
Uoc/Isc (Ω)
实测值
共十六页
戴维南定理与诺顿定理
2、诺顿定理:
任何(rènhé)一个线性有源二端网络,对外电路来说,总 可以用一个理想电流源和电导并联的有源支路代替,
其中理想电流(diànliú)源的电流(diànliú)值等于原
网络端口的短路电流Isc,电导等于原网络中所有独 立电源为零时的等效电导。
诺顿等效
共十六页
戴维南定理与诺顿定理
戴维南定理和诺顿定理是一对 互为对偶(duì ǒu)形式的定理。对同一 个电路而言,其开路电压Uoc、短 路电流Isc和等效内阻Ro满足下式:
戴维南定理和诺顿定理

戴维南定理和诺顿定理引言在电路理论中,戴维南定理和诺顿定理都是非常重要的理论。
戴维南定理和诺顿定理是解决电路中相互独立的两个部分联通时的问题,最早于19世纪初被提出。
本文将介绍这两个定理的定义、证明以及应用。
戴维南定理定义戴维南定理是指任何由电阻、电源和电线组成的电路网络,在一对电端子之间的电势差等于这一对电端子在电路网络中所取的任何一条通路的电阻乘以沿此通路的电流的代数和。
证明设电路网络中有一对电端子,其电压为V,电流为I,连接这一对电端子的任意通路电阻为R。
则戴维南定理可以写成如下的方程:V = IR戴维南定理可以很容易地从欧姆定律推导出来。
因为电势差等于电流和电阻的乘积:V = IR应用戴维南定理可以应用于解决电路中的任何问题。
例如,可以使用戴维南定理计算两个点之间的电位差;可以使用戴维南定理计算电路中的总电阻,以及计算电阻的并联和串联等。
诺顿定理定义诺顿定理是指任何由电阻、电流源和电线组成的电路网络,在任意两个电端子之间的电流等于这一对电端子所取的任意一条通路的电流源的代数和和这一对电端子所取的任意一条通路的电阻的倒数之和。
证明设电路网络中有一对电端子,其电流为I,连接这一对电端子的任意通路电阻为R,通路电流源为Is。
则诺顿定理可以写成如下方程式:I = I_s - IR将其化简可得:I_s = IR + I诺顿定理的本质和戴维南定理相同,只是引入了电流源。
应用诺顿定理和戴维南定理可以互相转换。
诺顿定理通常用于求解对称网络中的电路,因为对于这类电路,电压源和电流源的作用是相同的。
戴维南定理和诺顿定理是电路理论中非常基础的两个定理。
熟练掌握这两个定理可以在解决电路问题中起到重要的作用,可以大大简化计算难度。
同时,掌握这两个定理还可以帮助我们更深入地理解电路中电势、电流以及电阻等基本概念。
戴维南定理和诺顿定理

01
பைடு நூலகம்
戴维南定理
任何有源线性二端网络,总可以用一个电压源和一个电阻串联来表示。
电压源的电压等于网络的开路电压,电阻等于网络内部所有独立源为零
时的等效电阻。
02
诺顿定理
任何有源线性二端网络,总可以用一个电流源和一个电阻并联来表示。
电流源的电流等于网络的短路电流,电阻等于网络内部所有独立源为零
时的等效电阻。
交叉学科研究
随着电子工程与其他学科的交叉融合,戴维南定理和诺顿定理可以与其他学科的理论和方法相结合,开 展交叉学科的研究和应用。
THANKS
戴维南定理与诺顿定理在电路分析中的应用选择
选择应用戴维南定理或诺顿定理取决于具体电路的特性和需求。如果需要计算一端口网络的开路电压 或短路电流,则应用戴维南定理;如果需要计算一端口网络的等效电阻或等效电流,则应用诺顿定理 。
在实际应用中,可以根据一端口网络的性质和电路分析的目的选择合适的定理。例如,对于一个无源 一端口网络,如果需要计算其等效电阻,则可以选择应用诺顿定理;对于一个有源一端口网络,如果 需要计算其开路电压或短路电流,则可以选择应用戴维南定理。
诺顿定理
任何一个有源线性二端网络,对其外部电路来说,都可以用一个等效的理想电流 源和电阻并联的电源模型来代替。其中,理想电流源的电流等于有源线性二端网 络的短路电流,电阻等于该网络的开路电压与电流源电流的比值。
戴维南定理和诺顿定理的重要性
简化电路分析
通过应用戴维南定理和诺顿定理,可以将复杂的有源电路简化为简单的电源模型,从而简化电路 分析过程。
电子设备设计
在电子设备设计中,可以利用戴维南定理来计算电路的性能 参数,如电压放大倍数、输入电阻等。
戴维南定理和诺顿定理

戴维南定理和诺顿定理1.戴维南定理一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻串联的电路等效替换。
电压源电压等于该一端口网络的开路电压uoc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′1′1戴维南等效电路u oc+–u oc+–R eq2.诺顿定理一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻并联的电路等效替换。
电流源电流等于该一端口网络的短路电流isc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′诺顿等效电路i scR eq1′1i sc3.定理证明R eq u oc +–线性含源网络支路支路i u +–i线性含源网络u (1)+–线性含源网络)2()1(u u +=oc u =i R eq −=iu (2)+–线性无源网络i R u eq oc −==+R eq iR u eq oc −=u +–i–u +i有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)线性无源网络4.定理应用线性含源网络支路支路线性含源网络u oc :将代求支路断开后的一端口的开路电压。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
u oc +–R eqR eq u oc+–戴维南定理的应用线性无源网络R eq 的计算方法(1)一端口内部不含受控源,电阻串联、并联和Y-∆等效法。
(2)一端口内部含有受控源,电压比电流法:加电压求电流或加电流求电压。
(3)开路电压-短路电流法。
iuR =eq i sc i sc u oc +–scoc eq i u R =eqocR u =线性含源网络R eq u oc+–ii u +–线性无源网络线性含源网络支路支路线性含源网络i sc :将代求支路断开后的一端口的短路电流。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
R eq诺顿定理的应用i scR eq 诺顿等效电路可由戴维南等效电路经电源等效变换得到i scu oc+–sc oceq i u R =惠斯通电桥x eq oc R R u I +=+–u s R 2R 4R 1R 3I R x +–u s 11′R 2R 4R 1R 3R eq u oc+–11′R x I 求戴维南等效电路)(211433s oc -R R R R R R u u ++=4422R R R R R R R R R +++=3311eq 断开R x 支路42423131s 424313sc R R R R R R R R u R R R R R R i ++++−+=)(i sc R 411′R 2R 1R 3。
(整理)戴维南定理和诺顿定理

戴维南定理和诺顿定理一、戴维南定理图2-7-1二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1(a)(b)所示。
图2-7-2任一线性有源一端口网络(如图2-7-2(a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2(b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。
这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。
要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:1、计算:利有电路分析方法,计算相应端口的开路电压;2、计算:当线性有源一端口网络A中不含受控源时,令A内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。
图2-7-3例2-7-1 利用戴维南定理求图2-7-4(a)所示电路中的电流I 为多少?图2-7-4 例2-7-1附图解:将A、B左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4(b)所示。
(1)求:将A、B端口开路,得到图2-10-4(c)所示电路。
由米尔曼公式得:(2)求等效电阻:令A、B以左的三个独立源为零,得到图2-10-4(d)所示电路,则A、B端口的等效电阻为:(3)从图2-10-4(b)中求I:图2-10-5 例2-7-2附图例2-7-2 在图2-7-5(a)所示电路中,已知,,求A、B端口的戴维南等效电路。
解:(1)求:图2-10-5(a)中A、B端口处于开路状态,列写KVL方程:(2)求等效电阻:下面分别用两种方法求解。
戴维南定理及诺顿定理

3
断开待求支 路,求开路 电压U0 ;
求等效电阻 R0 ;
画出戴维南 等效电路, 求出待求量。
1、诺顿定理的描述
任何一个线性的、含源的二端网络对于外部电路而言, 都可以等效为一个电流源模型。 理想电流源电流 Is :为二端网络输出端的短路电流; 内阻R0 :等于该有源二端网络中所有电源移去后得到 的无源网络ab两端之间的等效电阻。
R4
B
U 0 I 2R2 I 4 R4 R2 R4 E E R1 R2 R3 R4 30 20 10 10 20 30 30 20 2 43; C E
Step2 求 等 效 电 阻
_
R2 D
R 00 U
R R33 B
R4
R0
R0 R1 // R2 R3 // R4 20 // 30 30 // 20 24()
(1)当R0=∞的时候,没有戴维南等效电路
(2)当R0=0的时候,没有诺顿等效电路
含授控源电路
3 I I 3
4I
4I
解
10V 10V
U
UO 2
4A 4A
I=4A
UO 4I 3I 10 14V
I 3 I 3 4I
4I
10V
R 0
U
2
I
I5 R5
C
R3 B R4
D
R0
R3
R4
已知: R1=20 , R2=30 R3=30 , R4=20 E=10V
R0 R1 // R2 R3 // R4 24
等效电路
I5 A 10 B
R1
+ _
R2
戴维南定理和诺顿定理

戴维南定理和诺顿定理一、戴维南定理图2-7-1二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1(a)(b)所示。
图2-7-2任一线性有源一端口网络(如图2-7-2(a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2(b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。
这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。
要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:1、计算:利有电路分析方法,计算相应端口的开路电压;2、计算:当线性有源一端口网络A中不含受控源时,令A内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。
图2-7-3例2-7-1 利用戴维南定理求图2-7-4(a)所示电路中的电流I 为多少?图2-7-4 例2-7-1附图解:将A、B左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4(b)所示。
(1)求:将A、B端口开路,得到图2-10-4(c)所示电路。
由米尔曼公式得:(2)求等效电阻:令A、B以左的三个独立源为零,得到图2-10-4(d)所示电路,则A、B端口的等效电阻为:(3)从图2-10-4(b)中求I:图2-10-5 例2-7-2附图例2-7-2 在图2-7-5(a)所示电路中,已知,,求A、B端口的戴维南等效电路。
解:(1)求:图2-10-5(a)中A、B端口处于开路状态,列写KVL方程:(2)求等效电阻:下面分别用两种方法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
戴维南定理、诺顿定理
戴维南定理和诺顿定理是电路分析中常用的两个重要定理。
它们分别用于简化复杂电路的计算和分析,为工程师提供了便利。
本文将依次介绍戴维南定理和诺顿定理的原理和应用。
一、戴维南定理
戴维南定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电源和等效电阻,简化了电路的计算过程。
根据戴维南定理,我们可以将电源替换为一个等效电压源,其电压等于原电源的电压,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电压源和一个等效电阻的串联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
二、诺顿定理
诺顿定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电流源和等效电阻,简化了电路的计算过程。
根据诺顿定理,我们可以将电源替换为一个等效电流源,其电流等
于原电源的电流,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电流源和一个等效电阻的并联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
三、戴维南定理和诺顿定理的应用
戴维南定理和诺顿定理在电路分析中有着广泛的应用。
它们可以用于计算电路中的电流、电压、功率等参数,帮助工程师进行电路设计和故障排查。
通过戴维南定理,我们可以将复杂的电路转化为等效电路,从而简化计算。
例如,在求解电路中某个分支的电流时,我们可以将其他分支看作一个等效电阻,这样就可以利用欧姆定律直接计算电流。
而诺顿定理则更适用于电流的计算。
通过将电路中的电源和负载分离,我们可以更方便地计算负载电流。
例如,在计算电路中某个负载的电流时,我们可以将电源看作一个等效电流源,利用欧姆定律计算电流。
戴维南定理和诺顿定理为电路分析提供了重要的工具和方法。
它们通过简化复杂电路,使得电路的计算更加方便和高效。
工程师们在电路设计和故障排查中经常使用这两个定理,从而提高工作效率和
准确性。
通过本文的介绍,相信读者对戴维南定理和诺顿定理有了更深入的了解。
这两个定理的应用不仅仅局限于电路分析,还可以扩展到其他领域。
在实际工程中,我们可以灵活运用这些定理,解决各种电路问题,提升工作效率。