2019-2020年九年级数学元月调考试题
武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)

武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)一、选择题(共10小题;每小题3分;共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列事件中;必然发生的事件是( )A .随意翻到一本书的某页;这页的页码是奇数B .通常温度降到0℃以下;纯净的水结冰C .地面发射一枚导弹;未击中空中目标D .测量某天的最低气温;结果为-150℃3.将抛物线y =-x 2向上平移3个单位;再向左平移2个单位;那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-34.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能5.下列说法正确的是( ) A .掷两枚骰子;面朝上的点数和是偶数的概率为21 B .连续摸了两次彩票都中奖的概率为21 C .投两次硬币;朝上的面都为正面的概率为21 D .任何人连续投篮两次;投中的概率为21 6.如图;A 、B 、C 三点都在⊙O 上;∠ABO =50°;则∠ACB =( )A .50°B .40°C .30°D .25°7.如图;在下面的网格中;每个小正方形的边长均为1;△ABC 的三个顶点都是网格线的交点.已知A (-2;2)、C (-1;-2);将△ABC 绕着点C 顺时针旋转90°;则点A 对应点的坐标为( )A .(2;-2)B .(-5;-3)C .(2;2)D .(3;-1)8.某树主干长出若干数目的支干;每个支干又长出同样数目小分支;主干、支干和小分支总数共73.若设主干长出x 个支干;则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =739.二次函数y =x 2+mx +1的图象的顶点在坐标轴上;则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限;且过点(0;1)和(-1;0);则s =a +b +c的值的变化范围是( )A.0<s<1 B.0<s<2 C.1<s<2 D.-1<s<2二、填空题(本大题共6个小题;每小题3分;共18分)11.点A(-2;5)关于原点的对称点B的坐标是___________;12.抛物线y=x2-2x-2的顶点坐标是___________.13.方程3x2-1=2x+5的两根之和为___________.14.如图;有一块长30m、宽20m的矩形田地;准备修筑同样宽的三条直路;把田地分成六块;种植不同品种的蔬菜;并且种植蔬菜面积为矩形田地面积的5039;则道路的宽为___________.15.如图;在矩形ABCD中;AB=4;AD=3;以顶点D为圆心作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内;且至少有一个点的圆外;则r的取值范围是.16.如图;正方形ABCD的边长为2;P为BC上一动点;将DP绕P逆时针旋转90°;得到PE;连接EA;则△PAE面积的最小值为__________.三、解答题(共8题;共72分)17.(本题8分)已知关于x的方程x2+2x+a-2=0(1) 若该方程有两个不相等的实数根;求实数a的取值范围;(2) 当该方程的一个根为1时;求a的值及方程的另一根.18.(本题8分)如图;菱形ABCD和Rt△ABE;∠AEB=90°;将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF;(2)若∠ABC=130°;直接写出∠AEF的度数.AB CDE19.(本题8分)如图;⊙O中;直径CD⊥弦AB于M;AE⊥BD于E;交CD于N;连AC(1)求证:AC=AN;(2)若OM∶OC=3∶5;AB=5;求⊙O的半径;20.(本题8分)老师和小明玩游戏;老师取出一个不透明口袋;口袋中装有三张分别标有数字1、2、3的卡片;卡片除数字外其余都相同.老师要求小明两次随机摸取一张卡片(第一次取出后放回);并计算两次抽到卡片上的数字之积是奇数的概率.求小明两次抽到卡片上的数字之积是奇数的概率21.(本题8分)一个涵洞成抛物线形;它的截面如图;现测得:当水面宽AB=1.6 m时;涵洞顶点与水面的距离为2.4 m;离开水面1.5 m处是涵洞宽ED;(1)求抛物线的解析式;(2)求ED的长;22.(本题10分)如图所示;为了改造小区环境;某小区决定要在一块一边靠墙(墙的最大可使用长度13 m)的空地上建造一个矩形绿化带.除靠墙一边(AD)外;用长为36 m的栅栏围成矩形ABCD;中间隔有一道栅栏(EF).设绿化带宽AB为x m;面积为S m2(1)求S与x的函数关系式;并求出x的取值范围(2)绿化带的面积能达到108 m2吗?若能;请求出AB的长度;若不能;请说明理由(3)当x为何值时;满足条件的绿化带面积最大E D C B A NM D C B A23.(本题10分)已知等边△ABC ;点D 和点B 关于直线AC 轴对称.点M (不同于点A 和点C )在射线CA 上;线段DM 的垂直平分线交直线BC 的于N ;(1)如图1;过点D 作DE ⊥BC ;交BC 的延长线于E ;若CE =5;求BC 的长;(2)如图2;若点M 在线段AC 上;求证:△DMN 为等边三角形;(3)连接CD ;BM ;若3S ABM DMC S △△;直接写出MBN MCN S △△S .图1 图224.(本题12分)已知抛物线y =ax 2-2amx +am 2+2m +4的顶点P 在一条定直线l 上.(1)直接写出直线l 的解析式;(2)若存在唯一的实数m ;使抛物线经过原点.①求此时的a 和m 的值;②抛物线的对称轴与x 轴交于点A ;B 为抛物线上一动点;以OA 、OB 为边作□OACB ;若点C 在抛物线上;求B 的坐标.(3)抛物线与直线l 的另一个交点Q ;若a =1;直接写出△OPQ 的面积的值或取值范围.BBACA BDBDB10. 将点(0;1)和(-1;0)分别代入抛物线解析式;得c=1;a=b-1;∴S=a+b+c=2b ;由题设知;对称轴x=-错误!>0且a <0;∴2b >0.又由b=a+1及a <0可知2b=2a+2<2.∴0<S <2.故本题答案为:0<S <2. 11. (2;-5) 12. (1;-3) 13. 错误!14. 2 15. 3<r<5 16. 错误! 16. 过E 作EF ⊥BC 于F ;EG ⊥AD 于G ;设GE=a ;可证AG=2-a ;EFP AGE AGFP AEP S S S S △△梯△--==错误!(a-1)2+错误!;当a=1时;AEP S △=错误!17. (1)a<3 (2)a=-1;-318. 65°;AEBO 共圆19. (1)连AC ;△AMN ≌△AMC ;(2)连OA ;设OM=3x ;OC=5x ;r=错误!20. 错误!21. (1)y=-错误!x 2 (2)562 22. (1)S=-3x 2+36x (错误!≤x<12)(2)不能 (3)错误!23. (1)连CD ;∠DCE=60°;CD=BC=10;(2)∠DCA=60°;连CD ;过N 作NG ⊥CD 于G ;NH ⊥AC 于H ;∠GCN=60°;∴∠NCH=60°;∴NG=NH ;∴Rt △MNH ≌Rt △DNG (HL );∴∠CMQ=∠NDG ;∴∠MCQ=∠MND=60°;∴△DMN 为等边三角形;(3)连AD ;BD 交AC 于P ;BP=PB ;△ADM ≌△CND ≌△ABM ;∵3S =ABM DMC S △△;∴31=MC AM ;MBN MCN S △△S =51=BN CN ;当M 在CA 延长线上时;MBN MCN S △△S =1;答案:51或1. 24.(1) y=a (x-m )2+2m+4;P (m ;2m+4);∴y=2x+4;(2) ①将x=0;y=0代入;∴am 2+2m+4=0∴△=0;a=错误!;m=-4;②B 、C 关于对称轴对称;∴B 的横坐标为-2;y=错误!(x+4)2-4;∴B (-2;-3);(3) y=2x+4与x 轴交于点B (-2;0);交y 轴于点A (0;4);作OM ⊥AB 于M 。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________ 三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;2;连接BE;P为BE的中点;连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△P AD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61 B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, 2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
九年级元月调考数学模拟试题

九年级元月调考数学模拟试题满分:120分时间:120分钟编辑人:丁济亮祝考试顺利!一、选择题(共12 小题,每小题3分,共36分)1.要使式子a-3在实数范围内有意义,字母a的取值必须满足()A.a≥3 B.a≤ 3 C.a≠3 D.a≠0.2.有两个事件,事件A:挪一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则()A.只有事件 A是随机事件 B.只有事件 B是随机事件.C.事件 A和 B都是随机事件 D.事件 A和 B都不是随机事件.3.方程 x2+7=8x的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根.C.有一个实数根 D.没有实数根.4.两圆的半径分别为3和5,圆心距为2,则这两个圆的位置关系是()A.相交 B.内切 C.外切 D.相离5.下列图形中是中心对称图形的是()A B C D6.一个布袋中有只有颜色不同的10个黄球和90个白球,从中任取一个球,则取到黄球的概率是()A.1090B.19C.910D.1107.如图,点 C 、D 、Q 、B 、A 都在方格纸的格点上,若△AOB 是由△COD 绕点O 按顺时针方向旋转而得的.则旅转的角底为( ) A 30° B .45° C .90° D .135°8.一元二次方程x 2-l =4x 的两根为1x 和2x ,则12x +x 的值为( ) A .-4 B .1 C .-1 D .49.如图,点C 是弧AB 的中点,则AB 和2AC 的大小关系是( )A .AB <2AC B .AB=2AC C .AB >2ACD .不能确定10.为迎接“2011 李娜和朋友们国际网球精英赛”,某款桑普拉斯网球包原价 168元,连续两次降价 a %后售价为 128元.下列所列方程中正确的是( ) A .168(1+a %)2=128. B .168(1-a 2%)=128. C .168(1-2a %)=128. D .168(1-a %)2=128.二、填空题(共4小题,每小题3分,共12分)11= ,(-3a 2)2= ,2)5(-= 。
湖北省武汉市部分学校2019-2020学年度第一学期九年级上册数学元月调考模拟(2)测试题含答案解析

武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分) 17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图第12题图AB第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BADBAD21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BFBD F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA图1图2A BC DE FNM图3ABCDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠1答案:D02.下列四种图案中,不是中心对称图形的为()答案:D03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起答案:B04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个答案:C05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60答案:D06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm答案:C07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-4答案:C08.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 2答案:C09.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 答案:A10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3 答案:B提示:如图所示,也可用求根公式分析.二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 答案:x 1=x 2=112.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为 答案:4π13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 答案:y =-2(x -1)-3 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 答案:35002(x +1)=5040 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为 答案:-2≤m第8题图第9题图C B第12题图16.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O于点E,则BE的最大值为答案:4 3三、解答题(共72分)17.(8分)用公式法解方程:x2-4x+2=0.解:x1=22,x2=22,18.(8分)如图,⊙O的直径AB为10cm,点E是圆内接正△ABC的内心,CE的延长线交⊙O于点D.⑴求AD的长;⑵求DE的长;解:⑴连接OD,∵点E是圆内接△ABC的内心,∴∠ACD=∠BCD,∴∠AOD=∠BOD.在Rt△AOD中,AD=A B第16题图=p2BADB AD⑵连接AE ,∠CAE =∠BAE ,∠BAD =∠BCD =∠DCA , ∠DAE =∠DEA ,AD =DE =19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .解:⑴13.⑵由题意,可列如下树状图:由此可知,共有9种等可事件,其中两次记录的数字和小于数字4的只有3种, ∴P (两次记录的数字和小于数字4)=39=13.⑶2920.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.乙甲312321233211解:⑴在图中画出线段CD ,保留作图痕迹. ⑵a =.⑶4. 21.(8分)(2019-9-1 36501)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.解:略 22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?解:⑴(1800-6x )千克;(10+0.5x )元/千克.⑵简解:由题意得:-3x 2+840x +18000-10×1800-240x =22500, 解方程得:x 1=50,x 2=150(不全题意,舍去), 故需将这批产品存放50天后出售. ⑶简解:设利润为w ,由题意得:w =-3x 2+840x +18000-10×1800-240x =-32(x -100)+30000. ∵a =-3<0,∴抛物线开口方向向下, ∴x =90时,w 最大=29700,∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.BFBF23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .⑴证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,∴△ADF ≌△ABG ,可得DF =BG ,易知△AFE ≌△AGE ,术EF =GE ,∴EF =BE +DF . ⑵解法1:猜测:EF 2=BE 2+DF 2.理由:过点A 作AG ⊥AF 且AG =AF ,连接BG 、EG ,延长FN 交BG 于H ,易知△AFD ≌△AGB 和△AFE ≌△AGE . 在△AND 与△NHB 中,可得FH ⊥BG ,而BM ∥DN ,∴BE ⊥BG . 在Rt △BEG 中,得EF 2=BE 2+DF 2.解法2:作AH =AD 且∠F AH =∠DAF ,连接EH ,易知△AFD ≌△AFH 和△AEB ≌△AEH ,G FE DCBA图1图2A BC DE FNM图3ABCDEFH MNFE DC BA 图2GMNFE DCB A 图2H⑶解:当点E 、F 分别在对角线BD 、边CD 上,若FC =3cm ,则BE.24.(12分)已知一次函数y =kx +b 的图象1l 与抛物线F :y =ax 2分别交于A 、B 两点,与x 轴,y 轴分别交于点C 、D 两点,记点A (m ,n ),且m ≠0. ⑴若m =-32,n =98,k =34,求a 、b 的值及点B 的坐标; ⑵如图1,若a =12,k =-12m ,求CDBD的值;⑶如图2,若k =-am ,过点A 的直线2l 与抛物线F 只有一个公共点,与y 轴交于点E ,连接BO ,求证:∠AED =∠BOD .⑴解:F :y =12x 2,1l :y =34x +94,B (3,92). ⑵解:∵A (m ,n )在抛物线上,∴A (m ,12m 2),则1l :y =-12mx +m 2. 联立221212y mx m y x ⎧⎪⎪⎨⎪⎪⎩=-+=,∴x A +x B =-m ,x B =-2m .又x C =2m ,作BH ⊥y 轴于H ,得△COD ≌△BHD ,∴CD =BD ,CDBD=1. ⑶证明:∵A (m ,n )在抛物线上,∴A (m ,a m 2),k =-am ,则1l :y =-am (x -m )+am 2=-amx +2am 2,FEDCBA图3G图3ABCD EFNM图3ABCDEF联立22y mx m y ax⎧⎪⎨⎪⎩=-a +2a =,∴x A +x B =-m ,x B =-2m ,y B =4am 2.则点B 关于y 轴对称点B '(2m ,4am ), ∴OB l :y =2amx .∵直线2l 过点A ,设2l : y =k 2(x -m )+am 2, 联立222AE y x m m y ax⎧⎪⎨⎪⎩=k (-)+a =, ∴∆=0,∴k 2=2am ,∴AE ∥O B ',即∠AEO =∠B 'OD =∠BOD .。
九年级元月调考数学模拟试卷(二)

九年级元月调考数学模拟试卷(二)编辑人:袁几 考试时间:120分钟一、选择题(每小题3分,共36分)1.函数y=2+x 中,自变量x 的取值范围是( )A.x>-2 B .x ≥-2 C.x≠-2 D.x≤-22.下列运算正确的是( )A .3+2 =5B .3³2=6C . 2)13(-=3-1 D.2235- =5-33.已知关于x 的方程2x -kx-6=0的一个根为3,则实数k 的值为( ) A 。
1 B.-1 C.2 D .—24.两圆的圆心距为3,两圆半径分别是方程2x -4x+3=0的两个根,则两圆的位置关系是( ) A 。
相交 B.外离C.内含 D ,外切5.下列事件中,必然事件是( )、A .打开电视,它正在播广告B .掷两枚质地均匀IC.早晨的太阳从东方升起D.没有水分,种子发芽6.下列五幅图是世博会吉祥物照片,质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则抽到2010年上海世博会吉祥物照片的概率是( ) A.21 B.31 C.41 D.512010年 中国 2005年日本 2000年德国 1992年西班牙 1998 葡萄牙上海世博会爱知世博会 汉诺威世博会 塞维利亚世博会 里斯本世博会7.下列图形中.既是轴对称图形又是中心对称图形的是( )8.⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB=( )A.30°B.45°C.55°D.60°AE9.武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的 影响,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x ﹪,则x%满足的关系是( )A.12%+7﹪=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2²x%D.(1+12%)(1+7%)=(1+x%)210.如图,在△ABC 中,AB=AC,AB=8,BC=12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A.64π -127B.16π-32 ,C.16π-247D.16π -127 11.下列命题: ①若b=2a+21c,则一元二次方程a 2x +bx+c=O 必有一根为-2;②若ac<0, 则方程 c 2x +bx+a=O 有两个不等实数根; ③若2b -4ac=0, 则方程 c 2x +bx+a=O 有两个相等实数根; 其中正确的个数是( )A.O 个B.l 个C.2个 D 。
2019年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)

武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程x (x -5)=0化成一般形式后,它的常数项是( )A .-5B .5C .0D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6B .最大值为-6C .最小值为3D .最大值为33.下列交通标志中,是中心对称图形的是( )A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( )A .相离B .相切C .相交D .相交或相切8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )A .1个B .2个C .3个D .4个10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )A .-6B .-2C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_______14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则ABAP =___________16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+x -3=018.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1) 请画树状图,列举所有可能出现的结果(2) 请直接写出事件“取出至少一个红球”的概率20.(本题8分)如图,在平面直角坐标系中有点A (-4,0)、B (0,3)、P (a ,-a )三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=-4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a=___________时,四边形ABCD为正方形21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1) 求证:AC平分∠DAE(2) 若AB=6,BD=2,求CE的长22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1) 如图1,若点C是AB的中点,则∠AED=___________(2) 如图2,若点C不是AB的中点①求证:△DEF为等边三角形②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1) 求抛物线的解析式(2) 若m=3,直线l与抛物线只有一个公共点,求k的值(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标。
吉林省长春市名校调研(市命题N)2019-2020年九年级(上)第一次月考数学试卷 解析版

2019-2020学年九年级(上)第一次月考数学试卷一.选择题(共6小题)1.﹣的相反数是()A.6 B.﹣6 C.D.﹣2.下列方程中,是一元二次方程的是()A.2x+1=3 B.x2+y=2 C.3x2+2x=4 D.3.下列运算结果正确的是()A.a8÷a2=a4B.x3x3=x6C.(﹣m)2m3=﹣m5D.(a3)3=a64.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)5.若函数y=(3﹣m)x﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.96.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900二.填空题(共8小题)7.一元二次方程2x=x2﹣3化成一般形式为.8.若二次函数y=x2﹣2x+a﹣4的图象经过原点,则a=.9.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为零,则m的值为.10.已知二次函数y=(x﹣2)2﹣3,当x时,y随x的增大而减小.11.若a是方程x2﹣2x﹣1=0的解,则代数式﹣3a2+6a+2020的值为.12.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为.13.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.14.如图是二次函数y=ax2+bx+c的图象,已知点(﹣1,y1)、(2,y2)是函数图象上的两个点,则y1、y2的大小关系是.三.解答题(共12小题)15.先化简,再求值:,其中x=3.16.用配方法解方程:x2﹣8x+1=0.17.用公式法解方程:x2﹣3x+1=0.18.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在2017年春节共收到红包400元,2019年春节共收到红包484元,求小王在这两年春节收到红包的年平均增长率.19.已知关于r的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.20.如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上(1)求证:△ABD≌△ACE;(2)若AE=2,CE=3,求BE的长;(3)求∠BEC的度数21.已知抛物线的顶点坐标为(2,﹣1),且过点(﹣1,2).(1)求此抛物线的函数解析式;(2)直接写出该抛物线的开口方向及对称轴.22.某校数学综合实践小组的同学以“绿色出行”为主题•把某小区的居民对共享单车的了解和使用情况进行了问卷调查,在这次调查中,发现有20人对于共享单车不了解.使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如图所示.(1)本次调查人数共人,使用过共享单车的有人;(2)将条形统计图补充完整,则使用共享单车骑行的居民每天骑行路程的中位数落在范围内;(3)如果这个小区大约有3000名居民,请估算每天骑行路程不超过4千米的有多少人?23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.24.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于,直接写出m的值.25.暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该纪念品的当天销售销售利润是2610元.(3)当该纪念品的销售单价定为多少元时,该纪念品的当天销售销售利润达到最大值?求此最大利润.26.如图,二次函数y=ax2+bx+c的图象交x轴于点A(﹣2,0),点B(1,0),交y轴于点C(0,2)(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上有一点N,过点N作y轴的平行线,交直线AC 于点F,设点N的横坐标为n,线段NF的长为l,求l关于n的函数关系式;(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共6小题)1.﹣的相反数是()A.6 B.﹣6 C.D.﹣【分析】根据相反数的定义即可得到结论.【解答】解:﹣的相反数是,故选:C.2.下列方程中,是一元二次方程的是()A.2x+1=3 B.x2+y=2 C.3x2+2x=4 D.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、该方程中未知数的最高次数是1,不属于一元二次方程,故本选项错误;B、该方程中未知数的最高次数是2且含有2个未知数,不属于一元二次方程,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程是分式方程,不属于一元二次方程,故本选项错误;故选:C.3.下列运算结果正确的是()A.a8÷a2=a4B.x3x3=x6C.(﹣m)2m3=﹣m5D.(a3)3=a6【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断即可得出答案.【解答】解:A、a8÷a2=a6,故本选项错误;B、x3x3=x6,故本选项正确;C、(﹣m)2m3=m5,故本选项错误;D、(a3)3=a9,故本选项错误;故选:B.4.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=﹣(x﹣3)2+1的顶点坐标为(3,1).故选:A.5.若函数y=(3﹣m)x﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.9【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵函数y=(3﹣m)x﹣x+1是二次函数,∴m2﹣7=2,且3﹣m≠0,解得:m=﹣3.故选:B.6.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900【分析】设AD=xm,则AB=(60﹣x)m,根据矩形面积公式列出方程.【解答】解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.二.填空题(共8小题)7.一元二次方程2x=x2﹣3化成一般形式为x2﹣2x﹣3=0 .【分析】移项合并即可得到结果.【解答】解:方程去括号得:x2﹣2x﹣3=0.故答案为:x2﹣2x﹣3=0.8.若二次函数y=x2﹣2x+a﹣4的图象经过原点,则a= 4 .【分析】根据二次函数图象上点的坐标特征,把原点坐标代入解析式求出a=4.【解答】解:把(0,0)代入y=x2﹣2x+a﹣4得a﹣4=0,解得a=4,所以a的值为4.故答案为4.9.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为零,则m的值为﹣1 .【分析】常数项为零即m2﹣1=0,再根据二次项系数不等于0,即可求得m的值.【解答】解:一元二次方程(m﹣1)x2+5x+m2﹣1=0的常数项为m2﹣1=0,所以m=±1,又因为二次项系数不为0,所以m=﹣1.10.已知二次函数y=(x﹣2)2﹣3,当x<2 时,y随x的增大而减小.【分析】根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【解答】解:在y=(x﹣2)2﹣3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.11.若a是方程x2﹣2x﹣1=0的解,则代数式﹣3a2+6a+2020的值为2017 .【分析】根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2﹣2a=1,然后将其代入所求的代数式并求值即可.【解答】解:∵a是方程x2﹣2x﹣1=0的解,∴a2﹣2a=1,则﹣3a2+6a+2020=﹣3(a2﹣2a)+2020=﹣3+2020=2017;故答案为:2017.12.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为y =4(x+2)2+3 .【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=4x2向上平移3个单位得到解析式:y=4x2+3,再向左平移2个单位得到抛物线的解析式为:y=4(x+2)2+3.故答案为y=4(x+2)2+3.13.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.【分析】根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【解答】解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB===,∵四边形OABC是矩形,∴AC=OB,∴AC=14.如图是二次函数y=ax2+bx+c的图象,已知点(﹣1,y1)、(2,y2)是函数图象上的两个点,则y1、y2的大小关系是y1<y2.【分析】先求出抛物线对称轴,由图象可知抛物线开口向下,再根据两个点与对称轴距离的大小及抛物线的增减性即可判断纵坐标的大小.【解答】解:抛物线的对称轴是x==3,开口向下,∴在对称轴左侧,y随x的增大而增大,∵﹣1<2<3,∴y1<y2.故答案为:y1<y2.三.解答题(共12小题)15.先化简,再求值:,其中x=3.【分析】首先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:原式=÷=×=,当x=3时,原式==.16.用配方法解方程:x2﹣8x+1=0.【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得.17.用公式法解方程:x2﹣3x+1=0.【分析】找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.【解答】解:x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=.18.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在2017年春节共收到红包400元,2019年春节共收到红包484元,求小王在这两年春节收到红包的年平均增长率.【分析】设小王在这两年春节收到的红包的年平均增长率为x,根据小王2017年及2019年春节收到红包的金额,可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设小王在这两年春节收到的红包的年平均增长率为x,依题意,得:400(1+x)2=484,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:小王在这两年春节收到的年平均增长率是10%.19.已知关于r的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.【分析】(1)利用判别式的意义得到△=(﹣4)2﹣4(m+1)>0,然后解关于m的不等式即可;(2)当m=﹣1时,方程变形为x2﹣4x=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得△=(﹣4)2﹣4(m+1)>0,解得m<3;(2)当m=﹣1时,方程变形为x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.20.如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上(1)求证:△ABD≌△ACE;(2)若AE=2,CE=3,求BE的长;(3)求∠BEC的度数【分析】(1)依据等边三角形的性质,由SAS即可得到判定△ABD≌△ACE的条件;(2)依据等边三角形的性质以及全等三角形的性质,即可得出BD=CE,DE=AE,进而得到AE+CE=BE,代入数值即可得出结果;(3)依据等边三角形的性质以及全等三角形的性质,即可得出∠BEC的度数.【解答】(1)证明∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴BD=CE,∵△ADE是等边三角形,∴DE=AE,∵DE+BD=BE,∴AE+CE=BE,∴BE=2+3=5;(3)解:∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=180°﹣∠ADE=180°﹣60°=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.21.已知抛物线的顶点坐标为(2,﹣1),且过点(﹣1,2).(1)求此抛物线的函数解析式;(2)直接写出该抛物线的开口方向及对称轴.【分析】(1)根据抛物线的顶点坐标设出抛物线的顶点形式,将(﹣1,2)代入求出a 的值,即可确定出解析式;(2)根据解析式即可求得抛物线的开口方向与对称轴.【解答】解:(1)∵抛物线顶点坐标(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过点(﹣1,2),∴a(﹣1﹣2)2﹣1=2,解得:a=,则该抛物线解析式为y=(x﹣2)2﹣1;(2)∵抛物线解析式为y=(x﹣2)2﹣1,∴该抛物线的开口向上,对称轴为直线x=2.22.某校数学综合实践小组的同学以“绿色出行”为主题•把某小区的居民对共享单车的了解和使用情况进行了问卷调查,在这次调查中,发现有20人对于共享单车不了解.使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如图所示.(1)本次调查人数共200 人,使用过共享单车的有90 人;(2)将条形统计图补充完整,则使用共享单车骑行的居民每天骑行路程的中位数落在2~4千米范围内;(3)如果这个小区大约有3000名居民,请估算每天骑行路程不超过4千米的有多少人?【分析】(1)“不了解”的有20人,从统计图中“不了解”占10%,可求出调查人数,求出使用共享单车的百分比,求出使用共享单车的人数,(2)求出使用共享单车中行驶路程不超过4千米的人数,即可补全条形统计图,排序后处在第45、46位数据落在那个范围内即可,(3)样本估计总体,样本中篮球比足球多的人数占调查人数的,估计总体中篮球比足球多的人数也占,【解答】解:(1)20÷10%=200人,200×(1﹣10%﹣45%)=90人,故答案为:90.(2)90﹣25﹣10﹣5=50人,补全条形统计图如图所示:将使用共享单车的90人骑车路程数从小到大排序处在第45、46位的数一定在2~4千米范围,故答案为:2~4千米.(3)3000×=1125人,答:估算每天骑行路程不超过4千米的有1125人.23.快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【分析】(1)根据函数图象中的数据可以求得快车和慢车的速度;(2)根据函数图象中的数据可以求得点E和点C的坐标,从而可以求得y1与x之间的函数表达式;(3)根据图象可知,点F表示的是快车与慢车行驶的路程相等,从而以求得点F的坐标,并写出点F的实际意义.【解答】解:(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135(3.5≤x≤5.5);(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,快车与慢车行驶的路程相等.24.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于,直接写出m的值.【分析】(1)把点M(3,4)代入y=ax2﹣3x+4中,即可求出a;(2)①把m=﹣2代入解析式即可求n的值;②由点Q到x轴的距离等于,可得m2﹣3m+4=,解得即可;【解答】解:(1)把点M(3,4)代入y=ax2﹣3x+4中得9a﹣9+4=4,∴a=1,∴y=x2﹣3x+4,∵y=x2﹣3x+4=(x﹣)2+,∴顶点坐标为(,);(2)①当m=﹣2时,n=4+6+4=14,②点Q到x轴的距离等于,∴n=,∴m2﹣3m+4=,解得m=或,∴m的值为或.25.暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为230 件.(2)当该纪念品的销售单价为多少元时,该纪念品的当天销售销售利润是2610元.(3)当该纪念品的销售单价定为多少元时,该纪念品的当天销售销售利润达到最大值?求此最大利润.【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(3)直接利用当天的销售利润=每件的利润×当天销售量,得出函数关系式进而求出最值即可.【解答】解:(1)280﹣(45﹣40)×10=230(件).故答案为:230;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=2610,整理,得:x2﹣98x+2301=0,整理,得:x1=39(不合题意,舍去),x2=59.答:当该纪念品的销售单价为59元时,该产品的当天销售利润是2610元;(3)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,设当天销售销售利润为y元,依题意,得:y=(x﹣30)[280﹣(x﹣40)×10]=﹣10x2+980x﹣20400=﹣10(x﹣49)2+3610,当该纪念品的销售单价定为49元时,该纪念品的当天销售销售利润达到最大值,最大利润为3610元.26.如图,二次函数y=ax2+bx+c的图象交x轴于点A(﹣2,0),点B(1,0),交y轴于点C(0,2)(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上有一点N,过点N作y轴的平行线,交直线AC 于点F,设点N的横坐标为n,线段NF的长为l,求l关于n的函数关系式;(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.【分析】(1)抛物线的表达式为:y=a(x+2)(x﹣1)=a(x2+x﹣2),故﹣2a=2,解得:a=﹣1;(2)设点N(n,﹣n2﹣n+2),则点F(n,n+2),l=﹣n2﹣n+2﹣(n+2)=﹣n2﹣2n;(3)分CB=CM、BC=BM、BM=CM三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+2)(x﹣1)=a(x2+x﹣2),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣x+2;(2)由点A、C的坐标得,直线AC的表达式为:y=x+2,设点N(n,﹣n2﹣n+2),则点F(n,n+2),l=﹣n2﹣n+2﹣(n+2)=﹣n2﹣2n;(3)设点M(m,0),而点B(﹣1,0),点C(0,2),则BC2=5,BM2=(m+1)2,CM2=m2+4;①当CB=CM时,m2+4=5,解得:m=±1(舍去1);②当BC=BM时,同理可得:m=1;③当BM=CM时,同理可得:m=﹣;综上,点M的坐标为:(﹣1,0)或(1,0)或(1﹣,0)或(﹣,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学元月调考试题
亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:
1.本试卷由第1卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共6页,三大题,满分120分。
考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写
姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不得答在“试卷”上
.........。
4.答第Ⅱ卷(非选择题)时,用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在第
....
...I.、Ⅱ卷的
试卷上无效。
......
预祝你取得优异成绩!
一、选择题(共10小题,每小题3分,共30分)
下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号
涂黑:
1.方程5x2-4x -1 =0的二次项系数和一次项系数分别为
A.5和4 B.5和-4 C.5和-1 D.5和1
2.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
3.抛物线y=x2向下平移一个单位得到抛物线
A.y=(x+1)2B.y=(x-1)2C.y=x2+1 D. y=x2-1
4.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指
A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次.
B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次.
C.抛掷2n次硬币,恰好有n次“正面朝上”.
D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5.
5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD
为
A.正方形 B.菱形 C.矩形 D.直角梯形
6.在平面直角坐标系中,点A( -4,1)关于原点的对称点的坐标为
A.(4,1) B.(4,-1) C.( -4, -1) D.(-1, 4)
7.圆的直径为13 cm,,如果圆心与直线的距离是d,则.
A.当d =8 cm,时,直线与圆相交. B.当d=4.5 cm时,直线与圆相离.
C.当d =6.5 fm时,直线与圆相切. D.当d=13 cm时,直线与圆相切.
8.用配方法解方程x2 +10x +9 =0,下列变形正确的是
A.(x+5)2=16. B.(x+10)2=91. C.(x-5)2=34. D.(x+10)2=109
9.如图,在平面直角坐标系中,抛物线y=ax2 +bx +5经过A(2,5),B( -1,2)两点,若点C在该抛物线上,则C点的坐标可能是
A.(-2,0).
B.(0.5,6.5).
C.(3,2).
D.(2,2).
10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D,若⊙O的半径等于1,则OC的长不可能为
A.2- B.-1. C.2. D.+1.
第9题图第10题图
第Ⅱ卷(非选择题共90分)
二、填空题(共6小题,每小题3分,共18分)
下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.
11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为________________.
12.方程x2-x-=0的判别式的值等于________________.
13.抛物线y=-x2 +4x -1的顶点坐标为_________________.
14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平
均增长率为x,根据题意,所列方程为________________________________.
15.半径为3的圆内接正方形的边心距等于________________.
16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为________.
三、解答题(共8小题,共72分)
下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.
17.(本题8分)
解方程:x2 +2x -3=0
18.(本题8分)
不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;
(2)随机摸出两个小球,直接写出两次都是绿球的概率.
19.(本题8分)
如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.
(1)若∠AOB= 56°,求∠ADC的度数;
(2)若BC=6,AE=1,求⊙O的半径.
20.(本题8分)
如图,E是正方形ABCD申CD边上任意一点.
(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;
(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由。
21.(本题8分)
如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.
已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC =6m,点D到BC,AB的距离分别为4m 和2m.
(1)请以BC所在直线为x轴(射线BC的方向为正方向),A B所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;
(2)求AB的长.
22.(本题10分)。
某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100 –x)件.设这段时间内售出该商品的利润为y元.
(1)直接写出利润y与售价x之间的函数关系式;
(2)当售价为多少元时,利润可达1000元;
(3)应如何定价才能使利润最大?
23.(本题10分)
如图,△ABC为等边三角形。
O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.
(1)如图1,若⊙O经过点A,求证:BD+ CD =AD;
(2)如图2,圆心O在BD上,若∠BAD =45°;求∠ADB的度数;
(3)如图3,若AH= OH,求证:BD2+ CD2=AD2.
24.(本题12分)
如图,抛物线y=(x+m)2+m,与直线y= -x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y= -x相交于点D.
(1)若抛物线与y轴的交点坐标为(0,2),求m的值;
(2)求证:⊙H与直线y=1相切;
(3)若DE =2EC,求⊙H的半径。