2019-2020武汉市九年级元月调考数学模拟试卷(2)
武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)

武汉市2019—2020学年元月调考模拟考试九年级数学试卷(二)一、选择题(共10小题;每小题3分;共30分)1.方程3x 2+1=6x 的二次项系数和一次项系数分别为( )A .3和6B .3和-6C .3和-1D .3和12.下列事件中;必然发生的事件是( )A .随意翻到一本书的某页;这页的页码是奇数B .通常温度降到0℃以下;纯净的水结冰C .地面发射一枚导弹;未击中空中目标D .测量某天的最低气温;结果为-150℃3.将抛物线y =-x 2向上平移3个单位;再向左平移2个单位;那么得到的抛物线解析式为( )A .y =-(x +2)2+3B .y =-(x -2)2+3C .y =-(x +2)2-3D .y =-(x -2)2-34.方程09242=+-x x 的根的情况是( )A .有两个不相等实根B .有两个相等实根C .无实根D .以上三种情况都有可能5.下列说法正确的是( ) A .掷两枚骰子;面朝上的点数和是偶数的概率为21 B .连续摸了两次彩票都中奖的概率为21 C .投两次硬币;朝上的面都为正面的概率为21 D .任何人连续投篮两次;投中的概率为21 6.如图;A 、B 、C 三点都在⊙O 上;∠ABO =50°;则∠ACB =( )A .50°B .40°C .30°D .25°7.如图;在下面的网格中;每个小正方形的边长均为1;△ABC 的三个顶点都是网格线的交点.已知A (-2;2)、C (-1;-2);将△ABC 绕着点C 顺时针旋转90°;则点A 对应点的坐标为( )A .(2;-2)B .(-5;-3)C .(2;2)D .(3;-1)8.某树主干长出若干数目的支干;每个支干又长出同样数目小分支;主干、支干和小分支总数共73.若设主干长出x 个支干;则可列方程是( )A .(1+x )2=73B .1+x +x 2=73C .(1+x )x =73D .1+x +2x =739.二次函数y =x 2+mx +1的图象的顶点在坐标轴上;则m 的值( )A .0B .2C .±2D .0或±210.若二次函数y =ax 2+bx +c 的图象的顶点在第一象限;且过点(0;1)和(-1;0);则s =a +b +c的值的变化范围是( )A.0<s<1 B.0<s<2 C.1<s<2 D.-1<s<2二、填空题(本大题共6个小题;每小题3分;共18分)11.点A(-2;5)关于原点的对称点B的坐标是___________;12.抛物线y=x2-2x-2的顶点坐标是___________.13.方程3x2-1=2x+5的两根之和为___________.14.如图;有一块长30m、宽20m的矩形田地;准备修筑同样宽的三条直路;把田地分成六块;种植不同品种的蔬菜;并且种植蔬菜面积为矩形田地面积的5039;则道路的宽为___________.15.如图;在矩形ABCD中;AB=4;AD=3;以顶点D为圆心作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内;且至少有一个点的圆外;则r的取值范围是.16.如图;正方形ABCD的边长为2;P为BC上一动点;将DP绕P逆时针旋转90°;得到PE;连接EA;则△PAE面积的最小值为__________.三、解答题(共8题;共72分)17.(本题8分)已知关于x的方程x2+2x+a-2=0(1) 若该方程有两个不相等的实数根;求实数a的取值范围;(2) 当该方程的一个根为1时;求a的值及方程的另一根.18.(本题8分)如图;菱形ABCD和Rt△ABE;∠AEB=90°;将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF;(2)若∠ABC=130°;直接写出∠AEF的度数.AB CDE19.(本题8分)如图;⊙O中;直径CD⊥弦AB于M;AE⊥BD于E;交CD于N;连AC(1)求证:AC=AN;(2)若OM∶OC=3∶5;AB=5;求⊙O的半径;20.(本题8分)老师和小明玩游戏;老师取出一个不透明口袋;口袋中装有三张分别标有数字1、2、3的卡片;卡片除数字外其余都相同.老师要求小明两次随机摸取一张卡片(第一次取出后放回);并计算两次抽到卡片上的数字之积是奇数的概率.求小明两次抽到卡片上的数字之积是奇数的概率21.(本题8分)一个涵洞成抛物线形;它的截面如图;现测得:当水面宽AB=1.6 m时;涵洞顶点与水面的距离为2.4 m;离开水面1.5 m处是涵洞宽ED;(1)求抛物线的解析式;(2)求ED的长;22.(本题10分)如图所示;为了改造小区环境;某小区决定要在一块一边靠墙(墙的最大可使用长度13 m)的空地上建造一个矩形绿化带.除靠墙一边(AD)外;用长为36 m的栅栏围成矩形ABCD;中间隔有一道栅栏(EF).设绿化带宽AB为x m;面积为S m2(1)求S与x的函数关系式;并求出x的取值范围(2)绿化带的面积能达到108 m2吗?若能;请求出AB的长度;若不能;请说明理由(3)当x为何值时;满足条件的绿化带面积最大E D C B A NM D C B A23.(本题10分)已知等边△ABC ;点D 和点B 关于直线AC 轴对称.点M (不同于点A 和点C )在射线CA 上;线段DM 的垂直平分线交直线BC 的于N ;(1)如图1;过点D 作DE ⊥BC ;交BC 的延长线于E ;若CE =5;求BC 的长;(2)如图2;若点M 在线段AC 上;求证:△DMN 为等边三角形;(3)连接CD ;BM ;若3S ABM DMC S △△;直接写出MBN MCN S △△S .图1 图224.(本题12分)已知抛物线y =ax 2-2amx +am 2+2m +4的顶点P 在一条定直线l 上.(1)直接写出直线l 的解析式;(2)若存在唯一的实数m ;使抛物线经过原点.①求此时的a 和m 的值;②抛物线的对称轴与x 轴交于点A ;B 为抛物线上一动点;以OA 、OB 为边作□OACB ;若点C 在抛物线上;求B 的坐标.(3)抛物线与直线l 的另一个交点Q ;若a =1;直接写出△OPQ 的面积的值或取值范围.BBACA BDBDB10. 将点(0;1)和(-1;0)分别代入抛物线解析式;得c=1;a=b-1;∴S=a+b+c=2b ;由题设知;对称轴x=-错误!>0且a <0;∴2b >0.又由b=a+1及a <0可知2b=2a+2<2.∴0<S <2.故本题答案为:0<S <2. 11. (2;-5) 12. (1;-3) 13. 错误!14. 2 15. 3<r<5 16. 错误! 16. 过E 作EF ⊥BC 于F ;EG ⊥AD 于G ;设GE=a ;可证AG=2-a ;EFP AGE AGFP AEP S S S S △△梯△--==错误!(a-1)2+错误!;当a=1时;AEP S △=错误!17. (1)a<3 (2)a=-1;-318. 65°;AEBO 共圆19. (1)连AC ;△AMN ≌△AMC ;(2)连OA ;设OM=3x ;OC=5x ;r=错误!20. 错误!21. (1)y=-错误!x 2 (2)562 22. (1)S=-3x 2+36x (错误!≤x<12)(2)不能 (3)错误!23. (1)连CD ;∠DCE=60°;CD=BC=10;(2)∠DCA=60°;连CD ;过N 作NG ⊥CD 于G ;NH ⊥AC 于H ;∠GCN=60°;∴∠NCH=60°;∴NG=NH ;∴Rt △MNH ≌Rt △DNG (HL );∴∠CMQ=∠NDG ;∴∠MCQ=∠MND=60°;∴△DMN 为等边三角形;(3)连AD ;BD 交AC 于P ;BP=PB ;△ADM ≌△CND ≌△ABM ;∵3S =ABM DMC S △△;∴31=MC AM ;MBN MCN S △△S =51=BN CN ;当M 在CA 延长线上时;MBN MCN S △△S =1;答案:51或1. 24.(1) y=a (x-m )2+2m+4;P (m ;2m+4);∴y=2x+4;(2) ①将x=0;y=0代入;∴am 2+2m+4=0∴△=0;a=错误!;m=-4;②B 、C 关于对称轴对称;∴B 的横坐标为-2;y=错误!(x+4)2-4;∴B (-2;-3);(3) y=2x+4与x 轴交于点B (-2;0);交y 轴于点A (0;4);作OM ⊥AB 于M 。
湖北省武汉市2019-2020学年中考数学一模考试卷含解析

湖北省武汉市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2432.下列几何体中,俯视图为三角形的是( ) A .B .C .D .3.把图中的五角星图案,绕着它的中心点O 进行旋转,若旋转后与自身重合,则至少旋转( )A .36°B .45°C .72°D .90°4.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .45.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( ) A .0.76×104B .7.6×103C .7.6×104D .76×1026.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A.2个B.3个C.4个D.5个7.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、308.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.13πB.23πC.49πD.59π9.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.1010.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A.10 B.11 C.12 D.1311.在实数0,2-,1,5中,其中最小的实数是()A.0B.2-C.1D.512.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.22C.2D.31-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程有解,则k的取值范围是_____.14.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF15.太阳半径约为696000千米,数字696000用科学记数法表示为千米.16x2-x的取值范围是.17.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.18.方程组538389x yx y-=⎧⎨+=⎩的解一定是方程_____与_____的公共解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
湖北省武汉市部分学校2019-2020学年度第一学期九年级上册数学元月调考模拟(2)测试题含答案解析

武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分) 17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图第12题图AB第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BADBAD21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BFBD F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA图1图2A BC DE FNM图3ABCDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠1答案:D02.下列四种图案中,不是中心对称图形的为()答案:D03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起答案:B04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个答案:C05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60答案:D06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm答案:C07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-4答案:C08.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 2答案:C09.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 答案:A10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3 答案:B提示:如图所示,也可用求根公式分析.二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 答案:x 1=x 2=112.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为 答案:4π13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 答案:y =-2(x -1)-3 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 答案:35002(x +1)=5040 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为 答案:-2≤m第8题图第9题图C B第12题图16.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O于点E,则BE的最大值为答案:4 3三、解答题(共72分)17.(8分)用公式法解方程:x2-4x+2=0.解:x1=22,x2=22,18.(8分)如图,⊙O的直径AB为10cm,点E是圆内接正△ABC的内心,CE的延长线交⊙O于点D.⑴求AD的长;⑵求DE的长;解:⑴连接OD,∵点E是圆内接△ABC的内心,∴∠ACD=∠BCD,∴∠AOD=∠BOD.在Rt△AOD中,AD=A B第16题图=p2BADB AD⑵连接AE ,∠CAE =∠BAE ,∠BAD =∠BCD =∠DCA , ∠DAE =∠DEA ,AD =DE =19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .解:⑴13.⑵由题意,可列如下树状图:由此可知,共有9种等可事件,其中两次记录的数字和小于数字4的只有3种, ∴P (两次记录的数字和小于数字4)=39=13.⑶2920.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.乙甲312321233211解:⑴在图中画出线段CD ,保留作图痕迹. ⑵a =.⑶4. 21.(8分)(2019-9-1 36501)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.解:略 22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?解:⑴(1800-6x )千克;(10+0.5x )元/千克.⑵简解:由题意得:-3x 2+840x +18000-10×1800-240x =22500, 解方程得:x 1=50,x 2=150(不全题意,舍去), 故需将这批产品存放50天后出售. ⑶简解:设利润为w ,由题意得:w =-3x 2+840x +18000-10×1800-240x =-32(x -100)+30000. ∵a =-3<0,∴抛物线开口方向向下, ∴x =90时,w 最大=29700,∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.BFBF23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .⑴证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,∴△ADF ≌△ABG ,可得DF =BG ,易知△AFE ≌△AGE ,术EF =GE ,∴EF =BE +DF . ⑵解法1:猜测:EF 2=BE 2+DF 2.理由:过点A 作AG ⊥AF 且AG =AF ,连接BG 、EG ,延长FN 交BG 于H ,易知△AFD ≌△AGB 和△AFE ≌△AGE . 在△AND 与△NHB 中,可得FH ⊥BG ,而BM ∥DN ,∴BE ⊥BG . 在Rt △BEG 中,得EF 2=BE 2+DF 2.解法2:作AH =AD 且∠F AH =∠DAF ,连接EH ,易知△AFD ≌△AFH 和△AEB ≌△AEH ,G FE DCBA图1图2A BC DE FNM图3ABCDEFH MNFE DC BA 图2GMNFE DCB A 图2H⑶解:当点E 、F 分别在对角线BD 、边CD 上,若FC =3cm ,则BE.24.(12分)已知一次函数y =kx +b 的图象1l 与抛物线F :y =ax 2分别交于A 、B 两点,与x 轴,y 轴分别交于点C 、D 两点,记点A (m ,n ),且m ≠0. ⑴若m =-32,n =98,k =34,求a 、b 的值及点B 的坐标; ⑵如图1,若a =12,k =-12m ,求CDBD的值;⑶如图2,若k =-am ,过点A 的直线2l 与抛物线F 只有一个公共点,与y 轴交于点E ,连接BO ,求证:∠AED =∠BOD .⑴解:F :y =12x 2,1l :y =34x +94,B (3,92). ⑵解:∵A (m ,n )在抛物线上,∴A (m ,12m 2),则1l :y =-12mx +m 2. 联立221212y mx m y x ⎧⎪⎪⎨⎪⎪⎩=-+=,∴x A +x B =-m ,x B =-2m .又x C =2m ,作BH ⊥y 轴于H ,得△COD ≌△BHD ,∴CD =BD ,CDBD=1. ⑶证明:∵A (m ,n )在抛物线上,∴A (m ,a m 2),k =-am ,则1l :y =-am (x -m )+am 2=-amx +2am 2,FEDCBA图3G图3ABCD EFNM图3ABCDEF联立22y mx m y ax⎧⎪⎨⎪⎩=-a +2a =,∴x A +x B =-m ,x B =-2m ,y B =4am 2.则点B 关于y 轴对称点B '(2m ,4am ), ∴OB l :y =2amx .∵直线2l 过点A ,设2l : y =k 2(x -m )+am 2, 联立222AE y x m m y ax⎧⎪⎨⎪⎩=k (-)+a =, ∴∆=0,∴k 2=2am ,∴AE ∥O B ',即∠AEO =∠B 'OD =∠BOD .。
九年级元月调考数学模拟试卷(二)

九年级元月调考数学模拟试卷(二)编辑人:袁几 考试时间:120分钟一、选择题(每小题3分,共36分)1.函数y=2+x 中,自变量x 的取值范围是( )A.x>-2 B .x ≥-2 C.x≠-2 D.x≤-22.下列运算正确的是( )A .3+2 =5B .3³2=6C . 2)13(-=3-1 D.2235- =5-33.已知关于x 的方程2x -kx-6=0的一个根为3,则实数k 的值为( ) A 。
1 B.-1 C.2 D .—24.两圆的圆心距为3,两圆半径分别是方程2x -4x+3=0的两个根,则两圆的位置关系是( ) A 。
相交 B.外离C.内含 D ,外切5.下列事件中,必然事件是( )、A .打开电视,它正在播广告B .掷两枚质地均匀IC.早晨的太阳从东方升起D.没有水分,种子发芽6.下列五幅图是世博会吉祥物照片,质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则抽到2010年上海世博会吉祥物照片的概率是( ) A.21 B.31 C.41 D.512010年 中国 2005年日本 2000年德国 1992年西班牙 1998 葡萄牙上海世博会爱知世博会 汉诺威世博会 塞维利亚世博会 里斯本世博会7.下列图形中.既是轴对称图形又是中心对称图形的是( )8.⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB=( )A.30°B.45°C.55°D.60°AE9.武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的 影响,预计今年比2010年增长7%,若这两年GDP 年平均增长率为x ﹪,则x%满足的关系是( )A.12%+7﹪=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2²x%D.(1+12%)(1+7%)=(1+x%)210.如图,在△ABC 中,AB=AC,AB=8,BC=12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A.64π -127B.16π-32 ,C.16π-247D.16π -127 11.下列命题: ①若b=2a+21c,则一元二次方程a 2x +bx+c=O 必有一根为-2;②若ac<0, 则方程 c 2x +bx+a=O 有两个不等实数根; ③若2b -4ac=0, 则方程 c 2x +bx+a=O 有两个相等实数根; 其中正确的个数是( )A.O 个B.l 个C.2个 D 。
武汉初三元月调考数学试卷及答案(图片版)

武汉初三元月调考数学试卷及答案(图片版)数学网编辑保举:
2019武汉初三元月调考语文试卷及答案(图片版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
数学网编辑保举:
2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)
2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
第 1 页。
(word版)2019-2020学年湖北省武汉市部分学校上学期九年级数学元调模拟试题 答案

2019—2020学年度上学期九年级数学元调模拟试题一、选择题(共10小题,每小题3分,共30分)1.一元二次方程3x 2-x -2=0的二次项系数是3,它的一次项系数是() A .-1B .-2C .1 D .0 答案A2.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D . 答案B3.下列事件中,必然事件是()A .任意掷一枚均匀的硬币,正面朝上B .从一副扑克牌中,随意抽出一张是大王C .通常情况下,抛出的篮球会下落D .三角形内角和为360° 答案C4.抛物线y =2(x +3)2+5的顶点坐标是()A .(3,5)B .(-3,5)C .(3,-5)D .(-3,-5) 答案B5.关于x 的一元二次方程x 2+(2k +1)x +k 2=0有两个不相等的实数根,则k 的取值范围为() A .k >-14B .k >4C .k <-1D .k <4答案A6.在Rt △ABC 中,∠C =90°,∠B =30°,AB =4,以点C 为圆心2为半径作⊙C ,直线AB 与⊙C 的位置关系是()A .相离B .相切C .相交D .相切或相交 答案C7.将抛物线y =2x 2向左平移2个单位后所得到的抛物线解析式为() A .y =2x 2-2B .y =2x 2+2C .y =2(x -2)2 D .y =2(x +2)2 答案D8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:下面由三个推断,合理的是()①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总是在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. A .①B .②C .①②D .①③ 答案B9.如图,AB 为⊙O 的直径,点C 、D 在O 上,若∠AOD =30°, 则∠BCD 的度数是() A .100°B .105° C .110°D .115° 答案B10.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为() A .1或-2B .2C .-2或2D .1 答案D二、填空题(本大题共6个小题,每小题3分,共18分)11.已知x =-1是一元二次方程x 2+mx +1=0的一个根,那么m 的值是. 答案212.已知电流在一定时间段内正常通过某一个电子元件的概率是0.5,则在如图所示的电路中,在一定时间段内,A 、B 之间电流能够正常通过的概率是. 答案3413.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x 名同学,根据题意列出方程为. 答案(1)2256x x -=14.已知圆锥的侧面积是其底面积的3倍,这个圆锥的侧面展开图的扇形角的度数为___. 答案120°15.如图,⊙O 的半径为2,正八边形ABCDEFGH 内接于⊙O ,对角线CE 、DF 相交于点M ,则△MEF 的面积是.答案216.如图,⊙O 的半径为42,点B 是圆上一动点,点A 为⊙O 内一定点,OA =4,将AB 绕A 点顺时针方向旋转120°到AC ,以AB 、BC 为邻边作□ABCD ,对角线AC 、BD 交于E ,则OE 的最大值为.答案三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-2x -3=0. 解:(1)(3)0x x +-=11x ∴=-,23x =18.(本题8分)已知AB 是⊙O 的直径,C 是圆上的点,D 是优弧ABC 的中点. (1)若∠AOC =100°,则∠D 的度数为, ∠A 的度数为,(2)求证:∠ADC =2∠DAB . 解(1)50°,25°;(2)证明:连OD ,∵⌒AD =⌒CD ∴AD =CD 在△AOD 与△COD 中,OD ODAO CO AD CD =⎧⎪=⎨⎪=⎩∴△AOD ≌ △COD ∴∠1=∠2,∴∠ADC=2∠1∵AO =OD ,∴∠1=∠DAB,∴∠ADC =2∠DAB19.(本题8分)武汉市某中学进行九年级理化实验考查,有A 和B 两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查. (1)用列表或画树状图的方法求小孟、小柯都参加实验A 考查的概率; (2)他们三人中至少有两人参加实验B 的概率(直接写出结果) . 解:(1)由题意列树状图如下:共有8种结果,每种结果出现的可能性相等,其中小明和小丽都参加A 考查有:AAA,AAB 共2种。
湖北省武汉市部分学校2019-2020学年度第一学期九年级上册数学元月调考模拟(2)测试试题(无答案

武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2B .43m 2C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( )A .xy =16B .y =2xC .y =2x 2D .xy =810.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分)17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图C B第12题图A B第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字.⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率;⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D .⑴在图中画出线段CD ,保留作图痕迹;⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BA DB A D21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元;⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BF B F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ;小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA 图1图2AB C D E FN M图3A B CDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.。
2020年湖北省武汉市九年级元月调考数学模拟试卷

2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°9.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二.填空题(满分18分,每小题3分)10.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=.11.如图,小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,由弦A1C1和弧A1C1围成的弓形面积记为S1,由弦A2C2和弧A2C2围成的弓形面积记为S2,…,以此下去,由弦A n∁n和弧A n∁n围成的弓形面积记为S n,其中S2020的面积为.12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉九年级元月调考数学模拟试卷二一、 选择题(每小题3分,满分30分)1. 将一元二次方程2279x x +=化成一般形式后,二次项系数和一次项系数分别为( ) A 、2,9 B 、2,7 C 、2,-9 D 、2x 2,-9x 2.抛物线3)2(2+--=x y 的对称轴是 ( )A .直线x=-2B .直线x=2C .直线x=3 D.直线x=-33、在不透明的布袋中,装有大小、形状完全相同的3个黑球、1个红球,从中摸一个球,摸出1个黑球这一事件是( )A. 必然事件B. 随机事件C. 确定事件D. 不可能事件 4.下列图形中,为中心对称图形的是( )5.不解方程,判别方程:290x -+=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6、不透明的口袋中装有除颜色外其余均相同的2个白球、2个黄球、4个绿球,从中任取一球出来,它不是黄球的概率是( )A 、14 B 、34 C 、13 D 、237.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B .21x (x ﹣1)=28C .x (x +1)=28D .x (x ﹣1)=28 8. 若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线m x x y --=42的图象上,则1y 、2y 、3y 的大小关系是 ( )A.1y >2y >3yB.2y >1y >3yC.2y >3y >1yD.3y >1y >2y9、如图,四边形ABCD 中,AD 平行BC ,∠ABC=90°,AD=2, AB=6,以AB 为直径的半⊙O 切CD 于点E ,F 为弧BE 上一 动点,过F 点的直线MN 为半⊙O 的切线,MN 交BC 于M ,交CD 于N ,则△MCN 的周长为( )A 、9B 、10C 、D 、10. 二次函数y=ax 2+bx+c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:给出了结论:(1)二次函数y=ax 2+bx+c 有最小值,最小值为﹣3; (2)当时,y <0;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是( )A.3B.2C.1D.0 二、填空题(每小题3分,满分18分)11.设方程x 2-3x-1=0的两根分别为x 1,x 2,则x 1+x 2= 12、点A (-2,3)关于原点O对称的点B (b ,c ),则=+c b _________.13. 自2012年9月11日日本实行所谓钓鱼岛“国有化”后,中国民众群情激愤并开始大规模抵制日货,某日本品牌汽车在中国的销售量逐月下降,9月份销售量为1.3万台,十月、十一月一共销售量为1.5万台,设九月份到十一月份平均每月下降的百分率为x ,则可列方程为_______________ _________.14.关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0有一个根为0,则m =______ 15. 用一个半径为10㎝半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为16.如图Rt ⊿ABC 中∠BAC=900,AB=6,AC=8,AD 是BC 上的高,另有一Rt ⊿DEF (其直角顶点在D 点)绕D 点旋转,在旋转过程中,DE ,DF 分别与边AB ,AC 交于M 、N 点,则线段MN 的最小值为______________ 三、解答下列各题17. 解方程:x ²-3x +1=0.18. 如图,M 为⊙O 上一点,AM BM =,MD ⊥OA 于D ,ME ⊥OB 于E.求证:MD =ME .19.(本题满分7分) 小明同学报名参加运动会,有以下5个项目可供选择: 径赛项目:100m ,200m ,400m (分别用A 1 、A 2 、A 3表示); 田赛项目:跳远 ,跳高(分别用B 1 、B 2表示).⑴ (2分)该同学从5个项目中任选一个,恰好是田赛项目的概率为 ;⑵ (5分)该同学从5个项目中任选两个,利用树状图或列表法列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.20. (本题7分)已知关于x 的一元二次方程222(110m x m x +-+=)有实数根。
(1)(4分)求实数m 的范围;(2)(3分)由(1),该方程的两根能否互为相反数?请证明你的结论。
21. (本题7分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(-1,3)、(-4,1),先将线段AB 沿一确定方向平移得到线段A 1B 1,点A 的对应点为A 1,点B 1的坐标为(0,2),在将线段A 1B 1绕远点O 顺时针旋转90°得到线段A 2B 2,点A 1的对应点为点A 2.(1) 画出线段A 1B 1、A 2B 2;(2)写出A 2B 2 坐标;A 2 B 2 (3)直接写出在这两次变换过程中,点A 经过A 1到达A 2的路径长 .22. (本小题满分8分)如图,以Rt △ABC 的边AC 为直径的⊙O 交斜边AB 于点D ,点F 为BC 上一点,AF 交⊙O 于点E ,且D E ∥AC.(1)求证:∠CAF=∠B.(2)若⊙O 的半径为4,AE=2AD ,求DE 的长23.(本题满分10分)如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A处发出,把球看成点,其运行高度y (m )与运行水平距离x (m )满足关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围) (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h 的取值范围.B24. (本题满分10分) 已知ABC ∆,以AC 为边在ABC ∆外作等腰ACD ∆,其中AC AD =. (1) 如图1,若AE AB =,︒=∠=∠60EAB DAC ,求BFC ∠的度数; (2) 如图2,α=∠ABC ,β=∠ACD ,4=BC ,6=BD .①若︒=︒=60,30βα,AB 的长为 ;②若改变βα,的大小,但︒=+90βα ,ABC ∆的面积是否变化,若不变,求出其值;若变化,说明变化的规律.25、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .(1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由.(图1)B C (图2)参考答案二、填空题(3′×6)11. ___3__________ 12. ____-1____ 13. ___1.3(1-x)+1.3(1-x)2=1.5_14. 8、60、 15. 35 16. 52417、略 18、略 19、(1)52;(2)53 20、略 21、(3)17+25∏ 22.(1)略. (2)过点E 作EM ⊥AC 于M ,过点O 作ON ⊥DE 于N ,连接EC 、OD.设AE=2AD=2CE=2x ,在Rt △AEC 中由勾股定理可以求出55EC AE ==. 所以165ON EM ==.在Rt △OND 中由勾股定理可以求出125ND =,所以245DE =.23、⑴由题意得:点A (0,2)在抛物线y=a (x-6)2+2.6上, ∴2=36a+2.6 ∴601-=a ∴抛物线的解析式为y=601-(x-6)2+2.6⑵令x=9得:y=601-×9+2.6=2.45>2.43 ∴球能越过球网 令y=0得:601-(x-6)2+2.6=0 解得:x1=6-239(舍去) x2=6+239>18 ∴球会出界⑶将点A (0,2)在抛物线y=a (x-6)2+h 得:2=36a+h ∴h=2-36a∴抛物线的解析式为y=a (x-6)2+2-36a由题意可知,当x=9时,y >2.43 当x=18时,y ≤0∴⎩⎨⎧≤-+-+036214443.23629a a a a 解得:a ≤541-∴h ≥3824、(1)∠BFC=1200(2)将⊿BCD 绕点C 逆时针旋转600,得⊿ACG 连BG易证⊿BCG 为等边,证∠ABG=900,在Rt ⊿ABG 中AG=6,BG=4 4,则AB=25(3)⊿ABC 面积不变将⊿ABD 绕点A 逆时针旋转得⊿ACG 连BG 易证∠GBC=900,求BG=25,S ⊿ABC=21BC ·BH=2525、解:(1)由已知得:A (-1,0) B (4,5)------------1分∵二次函数2y x bx c =++的图像经过点A (-1,0)B(4,5) ∴101645b c b c -+=⎧⎨++=⎩ ------------2分解得:b=-2 c=-3 ------------3分 (2如25题图:∵直线AB 经过点A (-1,0) B(4,5)∴直线AB 的解析式为:y=x+1∵二次函数223y x x =--∴设点E(t , t+1),则F (t ,223t t --) ------------4分 ∴EF= 2(1)(23)t t t +--- ------------5分 =2325()24t --+∴当32t =时,EF 的最大值=254∴点E 的坐标为(32,52) ------------------------6分(3)①如25题图:顺次连接点E 、B 、F 、D 得四边形EBFD.可求出点F 的坐标(32,154-),点D 的坐标为(1,-4) S EBFD 四边行 = S BEF+ SDEF=12531253(4)(1)242242⨯-+⨯- =758-----------------------------------9分②如25题备用图:ⅰ)过点E 作a ⊥EF 交抛物线于点P,设点25题图25题备用图24题224题2②P(m ,223m m --)则有:25232m m --=解得:1m =,2m =∴15)2p , 25)2p ⅱ)过点F 作b ⊥EF 交抛物线于3P ,设3P (n ,223n n --)则有:215423n n --=- 解得:112n =,232n =(与点F 重合,舍去)∴3P 11524(,-)综上所述:所有点P 的坐标:125()22p ,225()22p 3P (11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.------------------------------------12分。