有限元单元的选择
有限元二阶单元-概述说明以及解释

有限元二阶单元-概述说明以及解释1.引言1.1 概述有限元方法是一种数值计算方法,用于求解微分方程的近似解。
在实际工程应用中,通常需要通过数值模拟来分析结构的力学行为,了解结构在不同条件下的响应情况。
有限元方法通过将结构离散为有限个小单元,再在每个小单元上建立适当的数学模型,最终将整个结构的力学行为近似为每个小单元的力学行为,从而得到结构整体的响应。
本文将重点介绍有限元二阶单元,即在有限元计算中常用的一种单元类型。
通过对二阶单元的概念、优势以及应用前景的讨论,旨在帮助读者更深入地了解该方法在工程领域的应用和意义。
1.2 文章结构本文共分为引言、正文和结论三个部分。
在引言部分中,将对有限元方法和二阶单元进行简要介绍,并明确文章的目的。
在正文部分中,将详细讨论有限元方法的基本概念,介绍二阶单元的概念及其优势。
最后,在结论部分中对全文进行总结,并展望二阶单元在未来的应用前景。
整个文章结构清晰,条理分明,旨在全面展示有限元二阶单元的重要性和价值。
1.3 目的本文旨在探讨有限元二阶单元的特点和优势,对于有限元方法的进一步理解与应用具有重要意义。
通过深入研究二阶单元的概念和特性,可以更好地应用于实际工程问题的求解中,提高计算效率和精度。
同时,借助二阶单元的优势,可以更好地模拟复杂结构的力学行为,为工程设计和分析提供更加准确和可靠的结果。
因此,本文旨在帮助读者深入了解有限元二阶单元,为其在工程领域的应用奠定基础。
2.正文2.1 有限元方法简介有限元方法是一种数值分析技术,用于在给定几何和物理条件下解决工程和科学领域的复杂问题。
它可以将连续的实体分解为有限数量的子域,每个子域称为有限元,然后通过对有限元进行数学建模和计算,得到整个实体的近似解。
有限元方法可以应用于结构力学、热传导、流体力学等不同领域的问题求解。
有限元方法的基本思想是将连续的问题转化为离散的线性代数方程组,通过求解这些方程组得到问题的近似解。
这种离散化的处理可以有效地简化问题的复杂性,同时可以方便地应用计算机进行求解。
Abaqus单元类型选择解析

A1.2
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• ABAQUS单元库中大量的单元为不同几何体和结构建模提供了非常大的灵活性。 – 可以通过以下的特征为单元分类: •族 • 节点个数 • 自由度 • 公式 • 积分点
二次插值 全积分 减缩积分
一次插值
A1.10
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation S8RT: Shell, 8-node, Reduced integration, Temperature
A1.4
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
族 • 有限元族是一种广泛的分类 方法。 • 同族的单元共享许多基本特 征。 • 在同一族单元中又有许多变 异。
刚体单元 薄膜单元 连续体(实体单元) 壳单元 梁单元
无限单元
特殊单元,如弹簧、 阻尼器和质量单元
桁架单元
A1.5
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
节点个数 (插值) • 节点的单元编号决定了单元域内 节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方 式的单元。
一次插值 二次插值
A1.6
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子: – 位移 – 转动 – 温度 – 电势 • 一些单元具有与用户定义的节点不相关的内部自由度。
有限元分析中常用单元类型与单位制

SOLID453-D结构实体单元产品:MP ME ST <> <> PR <> <> <> PP EDSOLID45单元说明solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度.单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。
有用于沙漏控制的缩减积分选项。
有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。
类似的单元有适用于各向异性材料的solid64单元。
Solid45单元的更高阶单元是solid95。
图 45.1 SOLID45几何描述SOLID45输入数据该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。
该单元可定义8个结点和正交各向异性材料。
正交各向异性材料方向对应于单元坐标方向。
单元坐标系方向参见坐标系部分。
单元荷载参见结点和单元荷载部分。
压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。
正压力指向单元内部。
可以输入温度和流量作为单元节点处的体载荷。
节点 I 处的温度 T(I) 默认为 TUNIF。
如果不给出其它节点处的温度,则默认等于 T(I)。
对于任何其它的输入方式,未给定的温度默认为 TUNIF。
对于流量的输入与此类似,只是默认值用零代替了TUNIF。
KEYOPT(1)用于指定包括或不包括附加的位移形函数。
KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。
当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。
均匀缩减积分在进行非线性分析时有如下好处:∙相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。
∙当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。
单元与网格选择技术在有限元分析中的应用

单元与网格选择技术在有限元分析中的应用作者:李跃超来源:《智能制造》 2014年第7期本文结合SolidWorks Simulation软件中单元的技术特点与网格划分的规则,阐述了结构有限元分析中常见的单元类型和力学模型,并在此基础上讨论了仿真分析中单元的选取技术和网格的离散规则,为得到准确的有限元仿真结果提供了技术参考。
撰文/北京盛维安泰系统技术有限公司李跃超一、引言有限元法解决工程实际问题一般包括前处理、计算和后处理三部分。
其中前处理部分的工作量占整个分析过程工作量的40%~50%,后处理过程占45%~55%,而计算只占5%左右。
计算和后处理过程是建立在前处理过程的基础上的,因此有限元的前处理过程相当重要。
在有限元的前处理过程中,进行的主要工作是划分网格。
网格划分的好坏直接关系到计算与分析的结果,是有限元分析的关键。
SolidWorksSimulation用四面体实体单元、三角形壳单元分别划分实体与面几何信息,只有这两种网格单元才能对几乎任何几何实体或面进行可靠的网格划分。
二、SolidWorks Simulation网格特点SolidWorks Simulation是一款基于三维设计软件SolidWorks界面的有限元仿真分析软件。
根据模型几何特点并考虑设计工程师对操作速度的要求,Simulation中对网格分为五种基本单元类型:实体单元、壳单元、梁(杆)单元和2D单元。
其他如接触单元、刚性杆单元等存在于软件内核中,使用者不需要直接操作此类单元。
1.实体单元Simulation中的3D实体单元分为两种类型:一阶四面体单元也称为【草稿品质】,二阶四面体单元称为【高品质】。
一阶四面体单元在实体内沿着面和边缘模拟一阶线性位移场,即一阶单元。
每一个一阶四面体单元共有四个节点,分别对应四面体的四个角点。
每个节点有三个自由度,节点位移可完全由三个位移分量来表示。
一阶单元的边是直线,面是平面。
在单元加载变形后,这些边和面仍保持直线和平面,不能很好模拟曲面型几何模型。
ansys三角形和四边形单元

一、概述在有限元分析中,选择合适的单元类型对于模拟结果的准确性和可靠性至关重要。
在ANSYS软件中,三角形和四边形单元是常用的两种单元类型,它们在不同的工程问题中具有各自的特点和适用范围。
本文将对ANSYS中的三角形和四边形单元进行介绍和分析,以期帮助工程师和研究人员在实际工程中做出正确的选择。
二、三角形单元的特点和适用范围1. 三角形单元是由三个节点和三个自由度构成的平面单元,适用于对称轴或面对称加载条件的问题。
它具有较好的形状适应性,可以适应复杂的几何形状。
2. 三角形单元适用于轻负载和小变形条件下的结构分析,例如弹性力学问题和轻负载的非线性分析。
3. 由于三角形单元仅有三个节点,所以对于边界条件和加载较复杂的问题,可能需要引入大量的单元来进行建模,从而增加了计算量和求解时间。
4. 三角形单元在非线性分析和大变形条件下的模拟效果较差,容易产生“锯齿”效应和收敛性问题。
三、四边形单元的特点和适用范围1. 四边形单元是由四个节点和四个自由度构成的平面单元,适用于矩形和正交结构的问题。
它具有简单的几何形状和稳定的性能。
2. 四边形单元适用于大变形和非线性条件下的结构分析,例如接触问题、塑性问题和大变形的非线性弹性力学问题。
3. 四边形单元相对于三角形单元具有更好的计算稳定性和收敛性,适用于对称和非对称加载条件的问题。
4. 由于四边形单元具有较好的几何适应性和稳定性,所以在建模过程中可以减少单元数量,从而降低了计算量和求解时间。
5. 在一些规则的结构问题中,四边形单元可能出现局部变形的问题,需要适当处理。
四、结论和建议在实际工程中,选择合适的单元类型是非常重要的。
根据上述分析,对于对称轴或面对称加载条件的问题可以选择三角形单元,而对于大变形和非线性条件下的问题可以选择四边形单元。
根据实际的工程需求和计算资源,也可以选择合适的单元类型,进行合理的建模和分析。
希望本文能够为工程师和研究人员在使用ANSYS软件进行有限元分析时提供一定的参考和帮助,使得模拟结果更加准确和可靠。
有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0
证
N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )
abaqus一次单元和完全积分单元

abaqus是一个用于有限元分析的强大软件。
在使用abaqus进行有限元分析时,用户需要选择合适的单元进行建模和求解。
abaqus中包含了多种类型的单元,其中一次单元和完全积分单元是比较常见且重要的两种类型。
本文将对这两种单元进行介绍和比较,以帮助用户更好地理解它们的特点和适用范围。
一次单元(C3D8)是abaqus中常用的一种典型六面体单元,其具有以下特点:1.1. 六面体单元:一次单元是一个六面体单元,具有8个节点和27个自由度。
它可以用于模拟各种三维结构的应力、应变分布和变形情况。
1.2. 简单高效:一次单元具有结构简单、计算高效的特点,适用于大多数情况下的有限元分析。
1.3. 局限性:但是,一次单元并不适用于所有情况。
在模拟高梯度场、弯曲效应或者非常规加载条件下,一次单元可能无法提供准确的结果。
相对而言,完全积分单元(C3D8I)是对一次单元的改进和扩展,其特点如下:2.1. 对弯曲效应和非线性材料有更好的适用性:完全积分单元具有更好的适用性,尤其是在模拟高梯度场、弯曲效应或者非线性材料的情况下更能提供准确的结果。
2.2. 全积分:完全积分单元是指在有限元积分时采用全积分法,这意味着对于单元内部的应力和应变的计算更加准确。
2.3. 计算量大:由于采用全积分法,完全积分单元的计算量较大,因此在处理大型模型或者需要高精度结果的情况下,需要考虑计算成本和时间。
一次单元和完全积分单元各有其特点和适用范围。
在实际应用中,用户需要根据具体的分析对象和需求来选择合适的单元类型。
对于结构简单、加载条件不太复杂的情况下,一次单元是一个非常合适的选择,它能够在保证计算效率的同时提供较为准确的结果;而对于复杂的加载条件或者非线性材料的模拟,完全积分单元则更能满足精度的要求。
对于有限元分析工程师来说,熟练掌握并灵活运用这两种单元类型是非常重要的。
3. 适用范围的具体案例在工程实践中,一次单元和完全积分单元的选择取决于具体的分析对象和需求。
有限元单元介绍

第二章单元在显式动态分析中可以使用下列单元:·LINK160杆·BEAM161梁·PLANE162平面·SHELL163壳·SOLID164实体·COMBI165弹簧阻尼·MASS166质量·LINK167仅拉伸杆本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。
除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。
因此,实体单元和壳体单元的缺省算法采用单点积分。
当然,这两种单元也可以采用全积分算法。
详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。
这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。
因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。
线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。
值得注意的是,显单元不直接和材料性能相联系。
例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。
如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。
参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。
也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。
2.1实体单元和壳单元2.1.1 SOLID164SOLID164单元是一种8节点实体单元。
缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。
单点积分的优点是省时,并且适用于大变形的情况下。
当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于SOLID164的详细描述,请参见《ANSYS Element Reference》和《LS-DYNA Theoretical Manual》中的§3.3节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元类型的选择
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?
这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:
1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?
对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
通常情况下,shell63单元就够用了。
3.实体单元的选择。
实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。
常用的实体单元类型有solid45, solid92,solid185,solid187这几种。
其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。
Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。
实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?
如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。
新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。
六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。
前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。
选取的基本原则是优先选用编号高的单元。
比如第一类中,应该优先选用solid185。
第二类里面应该优先选用solid187。
ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。
对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选solid185。
.
总结:
线单元:用于单个单元上应力为常数的情况
梁单元:用于螺栓、薄壁管件、角钢、型材或细长薄膜构建等模型
杆单元:用于弹簧、螺杆、预应力螺杆或桁架等模型
弹簧单元:用于弹簧、螺杆、细长结构或通过刚度等效替代复杂结构等模型
壳单元:用于薄板或曲面模型(面板厚度需小于其版面尺寸的1/10)
面单元:普遍用于各种2D模型或可简化为2D的模型
实体单元:用于各种3D实体模型。