中学数学解题思想方法:割补法
中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考.例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2).∵六边形ABCDEF的六个内角都相等,∴六边形的各角为120°,∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有GC=BC=3,DH=EH=DE=2,IF=AF,IH=GH=GC+CD+DH=3+3+2=8,∴IE=IH-EH=8-2=6.∴六边形的周长等于:AB+BC+CD+DE+EF+F A=AB+BC+CD+DE+IE=1+3+3+2+6=15.注:本题亦可补成平行四边形求解,如图3.例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE.解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如图5),易证△ABF为等腰三角形,∴BF=2BE,再证△ACD≌△BCF,全等的条件显然满足,故结论成立.例3 某片绿地的形状如图6所示,其中∠A=60°,A B⊥BC,C D⊥AD,AB=200m,CD=100m,求AD,BC的长.解析由题设∠A=60°,A B⊥BC,可将四边形补成图7所示的直角三角形.易得∠E=30°,AE=400,CE=200,然后再由勾股定理或三角函数求出BE=2003,DE=1003.由此得到AD=400-1003,BC=2003-200。
初中数学常见的思想方法

初中数学常见的思想方法专门与一样的数学思想:关于在一样情形下难以求解的问题,可运用专门化思想,通过取专门值、专门图形等,找到解题的规律和方法,进而推广到一样,从而使问题顺利求解。
常见情形为:用字母表示数;专门值的应用;专门图形的应用;用专门化方法探求结论;用一样规律解题等。
整体的数学思想:所谓整体思想,确实是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏捷地洞悉问题的本质,有时也不要舍弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情形讨论,当一个数学问题在一定的题设下,其结论并不唯独时,我们就需要对这一问题进行必要的分类。
将一个数学问题依照题设分为有限的若干种情形,在每一种情形中分别求解,最后再将各种情形下得到的答案进行归纳综合。
分类讨论是依照问题的不同情形分类求解,它表达了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原则是:(1)完全性原则,确实是说分类后各子类别涵盖的范畴之和,应当是原被分对象所涵盖的范畴,即分类不能遗漏;(2)互斥性原则,确实是说分类后各子类别涵盖的范畴之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,确实是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,猎取时期性结果,归纳小结,综合得出结论。
用割补法求几何体的体积

用割补法求几何体的体积――培养学生的空间想象能力内容提要:本文用图形割补的方法来求一些不规则的几何体体积,通过求几何体体积的过程,来培养和提高学生对空间图形的想象能力,进而得出培养和提高学生空间想象能力的途径。
关键字:割补法空间想象能力在高中立体几何的学习中,学生最大的困难在于缺乏良好的空间想象能力,由于目前我们只能在二维平面上通过空间图形的平面直观图来研究空间元素的位置关系和数量关系,这就造成学生难以摆脱在平面几何学习中培养起来的对平面图形的认知经验,具体表现在遇到立几问题时,不会识图,有些学生甚至看不出空间元素的前后位置关系,也不会合理作图。
特别是求几何体体积问题,对于不同的几何体或不规则的几何体,我们可联想熟悉的几何体去计算其体积,这就对学生的空间想象能力有很高的要求。
那么什么是空间想象能力呢?中学数学中的空间想象能力主要是指,学生对客观事物的空间形式进行观察、分析、抽象思考和创新的能力。
空间想象能力的提高必定AB要经过实际的训练,途径也有很多种。
本文就借助于求几何体的体积来提高学生的空间想象能力。
由于几何体的形状多种多样,所以体积的求法也各不相同。
针对一些不规则的几何体,直接运用体积公式可能比较困难,我们常对原几何体进行割补,转化为几个我们熟悉的几何体,其解法也会呈现一定的规律性:① 几何体的“分割”几何体的分割即将已给的几何体,按照结论的要求,分割成若干个易求体积的几何体,进而求之。
② 几何体的“补形”与分割一样,有时为了计算方便,可将已给的几何体补成易求体积的几何体,如长方体,正方体等等。
一、用割补法求锥体的体积例题一:已知三棱锥ABC P -,其中4=PA ,2==PC PB ,ο60=∠=∠=∠BPC APC APB 求:三棱锥ABC P -的体积。
【思路一】作BC 的中点D ,连接PD 、过P 作AD PH ⊥,垂足H易证PH 即为三棱锥ABC P -的高, 由棱锥体积公式 PH S V ABC ABC P ⋅=∆-31即得 三棱锥ABC P -的体积。
几何证题方法探讲——割补法

几何证题方法探讲——割补法作者:余熳炜张勇超来源:《中学生数理化·教研版》2009年第07期在求解平面几何问题时,根据问题的题设和结论,合理适当地将原来的图形割去一部分,或补上一部分,变成一个特殊的、简单的、整体的、熟悉的图形,使原来问题的本质得到充分显示,通过对新图形的分析,探索原来问题的答案,我们把这种方法称之为割补法.一、补出直角三角形如果图形中有直角或者相邻两角互余的情况,可考虑通过整形,补出或补成直角三角形来解题.二、补出等腰三角形如果图形涉及三角形或四边形某角的平分线,或三角形一边上的中线(或高)与角平分线联系,可考虑补出等腰三角形来.例1 如图1,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,且AE=12BD,求证:BD平分∠ABC.三、补出正三角形如果多边形有一个内角为60°或120°,涉及到等线段,可考虑将图形补成一个正三角形.例2如图2,AA′、BB′、CC′交于点O,且AA′=BB′=CC′=1,∠AOC′=∠BOA′=∠COB′=60°.(1)求证:△△△COB′<34;(2)求证:△AOC′、△BOA′、△COB′ 中至少有一个不大于316. 证明:(1)延长AA′至E,使A′E=OA.延长B′B至D,使BD=BO′,连DE.在DE上截取F,使EF=OC′.易证△ODE为正三角形,DF=OC.则△AOC′≌△A′EF,△B′OC≌△BDF.∵△A'EF+△BOA'+△BDF<正△ODE,∴△AOC'+△BOA'+△COB'<正△ODE.又△ODE=34,则△AOC'+△BOA'+△COB'<34.(2)设OA=a,OB=b,OC=c,则OA'=1-a,OB'=1-b,OC'=1-c.∵△AOC'=34a(1-c),△BOA'=34b(1-a),△B'OC=34c(1-b). ∴△AOC'-△BOA'-△∵-a+14≥0 ,∴a(1-a)≤14.同理b(1-b)≤14,c(1-c)≤14.则△AOC'-△BOA'-△∴△AOC'、△BOA'、△COB'中至少有一个不大于316.四、补出平行四边形例3 如图3,凸六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA -CD=3,求BC+DE.解:由题意知,AF∥CD,BC∥EF,则可将六边形补成平行四边形MCNF.△ABM、△DEN均为等边三角形.MC=AB+BC=11. ①FA=MF-AM=CN-AB=CD+DE-AB.于是FA-CD=DE-AB=3.则DE-AB=3. ②①+②得DE+BC=14.五、补出正方形例4 如图4,在△ABC中,AD⊥BC于D,∠CAB=45°,BC=3,CD=2,求△ABC.解:将△ACD沿直线AC翻折得△ACF.将△ABD沿直线AB翻折得△ABE.分别延长FC、EB交于G,可证出AEGF为正方形.设AF=AD=AE=x,则CG=x-2,BG=x-3.在Rt△BCG中,=+∴(2+=(x-+(x-解得x=6(舍去负值).则△ABC=15.五、补出圆已知共顶点的两条相等线段、角之间的关系,可以公共顶点为圆心补圆,以较方便转化角、转化线段之间的关系.例5 如图5,若PA=PB,∠APB=2∠ACBAC与PB交于点D,且PB=4,PD=3,则AD•DC=.A.6B.7C.12D.16解:以P为圆心,PB长为半径作圆.∵PA=PB,∠APB=2∠ACB.∴点A、点C都在圆上,延长BP交⊙P于点E,则BE=8.∵PD=3∴BD=1,DE=7,由相交弦定理知:AD•DC=7.。
割补法解三角形的精髓,就是使题目便于解答.doc

割补法解三角形的精髓,就是使题目便于解
答
一般题目涉及到几何图形,都会先画一个图,从图中更直观的感觉题目所给已知条件之间的关系,再选择方法和解题技巧。
割补法是数学中重要的思想方法之一,主要分为“割形”与“补形”,是将复杂的、不规则的、不易认识的几何体或几何图形,切割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的. 割补法重在割与补,巧妙地对几何体或几何图形实施割与补,变整体为局部,化不规则为规则,化陌生为熟悉,化抽象为直观.
割补法在解几何问题中还是非常巧妙的,补法就是把图形补成一个规则图形,使题目便于解答;割补法就是同样把图形割成几个规则图形,使题目便于解答,此题中的四边形补成一个等腰三角形,等腰三角形的性质就可以使用来解题了。
初中数学常见的思想方法

初中数学常见的思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。
常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。
整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。
将一个数学问题根据题设分为有限的假设干种情况,在每一种情况中分别求解,最后再将各种情况下得到的【答案】进行归纳综合。
分类讨论是根据问题的不同情况分类求解,它表达了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原那么是:〔1〕完全性原那么,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;〔2〕互斥性原那么,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;〔3〕统一性原那么,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。
割补法在高中立体几何解题中的应用_方清

锥.故只 要 求 出 其 中 一 个 三 棱 锥 的 体 积 即 可.由
图 可 知 ,VA′-BED′ =VD′-A′BE = 13·SΔA′BE·A′D′=
1 3
·12·a2·a·a=112a3
.故VA′-EBFD′
=2VA′-BED′
=
1a3. 6
以上各例 说 明,在 解 决 某 些 几 何 问 题 时,若
利用部分与整体的关系来解题.
例6 已知三棱锥 P-ABC,其中 PA =4, PB = PC =2,
∠APB = ∠APC = ∠BPC =60°求:
三棱锥 P-ABC 的
体积.
分析1 作 BC
分析 如图4,将一个完全相同的几何体与 已知的几何体拼在一起组成一个高为5的圆柱,
那么所 求 几 何 体 的 体 积 就 是 这 个 圆 柱 体 积 的
例8 如图 10,已
知正方体 ABCD - A′B′C′D′ 的 棱 长 为a,
E、F 分 别 是 棱 AA′ 和
CC′ 的 中 点,求 四 棱 锥
A′-EBFD′ 的体积.
分析 本题要想直接求出四棱锥的高还是 比较困难的.但 是 四 棱 锥 的 底 面 是 菱 形,所 以 连
结对角线把四棱Leabharlann 分割成体积相等的两个三棱A.3π B.4π C.3 槡3π D.6π
分析1 设ΔACD 的重心 为 E,则球心在线段 BE 上,可 在直角 三 角 形 中 求 解,但 计 算 较麻烦.
分 析 2 将 正 四 面 体 ABCD 补成正方体,则 正 四 面 体、正 方 体 的 外 接
球为同一 个 球.因 为 正 四 面 体 的 棱 长 为槡2,所 以
(收 稿 日 期 :2013-08-16)
勾股定理三种证明方法割补法

勾股定理三种证明方法割补法嘿,朋友们!今天咱来聊聊勾股定理的三种证明方法之割补法。
你说这勾股定理啊,那可真是数学里的大宝贝呀!就好像是一把神奇的钥匙,能打开好多难题的大门呢。
咱先来说说第一种割补法。
想象一下,有一个直角三角形,就像一个稳固的小凳子。
我们把它这儿切一刀,那儿补一块,嘿,神奇的事情发生了!通过巧妙的切割和填补,就能发现那些边与边之间隐藏的关系。
这就好比是在玩拼图游戏,把那些碎片拼到一起,答案就呼之欲出啦!你说这妙不妙?再看看第二种割补法。
就像是在给这个直角三角形变魔术一样,通过不同的割补方式,又能得出同样神奇的结论。
这不是一般人能想到的呀,得是那些聪明的脑袋瓜子才能琢磨出来的呢!你难道不想试试自己能不能像那些数学家一样聪明?还有第三种割补法呢!哇哦,这一种更是让人惊叹不已。
就好像是给这个直角三角形穿上了一件特别的衣服,一下子就让它的秘密都暴露出来了。
你不觉得这很神奇吗?其实啊,勾股定理的割补法证明就像是一场奇妙的冒险。
每一次尝试都是一次探索,每一个新的发现都让人兴奋不已。
这可不仅仅是数学知识,更是一种智慧的体现呀!我们在这个过程中,可以尽情地发挥自己的想象力和创造力,就像在自己的小天地里自由翱翔一样。
想想看,几百年前的数学家们是怎么发现这些方法的呢?他们是不是也像我们现在这样,充满好奇地去尝试、去探索?他们的智慧真的让人佩服得五体投地呀!而我们现在有这么好的条件,更应该好好去研究、去体会这些神奇的证明方法呀。
所以啊,朋友们,不要小看了这勾股定理的割补法。
它就像是隐藏在数学世界里的宝藏,等待着我们去挖掘、去发现。
让我们一起投入到这个奇妙的数学之旅中吧,去感受那无尽的乐趣和惊喜!我相信,只要我们用心去体会,一定能领略到勾股定理割补法的独特魅力!这就是我想说的,你们觉得呢?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E D
F
C
A
B
图3-1
由前面的知识我们不难发现既可以用“补形法”,如图
3-2所示,也可以用“分割法”如图3-3所示来求解.
E
E
D
G
D
F
C
A
B
图3-2
H
G
F
C
A
B
图3-3
解:由几何体的三视图还原成直观图如图3-1,可知
DA 平面 ABC , AD//CE//BF , AC AB ,AD CE 5 ,BF 2
Q AA 底面ABC
AA 底面DBE
AA BF
A'
C'
F
D
E
又Q AA DE D BF 平面DECA
B'
A
C
B
V
= B DEC A
1 3 SDECA
BF
1 3
1 2
( AD
CE)
DE
BF
12
图1-4
所以所求几何体的体积为 V V BDECA ABCDBE 24
评析:本题解法一采取的解题方法为补形法,解法二所采取 的解题方法为分割法.两种方法都比较自然,由于题目所给条 件,本题采用解法一较为简捷.
例2 如图2-1, AA 底面ABC,AA//BB//CC//DD, 四边形 ABCD为正方形, AB AA CC 2,
BB 1,DD 3 ,求几何体 ABCD-ABCD 的体积.
BC
AD
48
所以原几何体的体积为24 .
D
F
A'
E
C'
A
B'
C
B
图1-2
解法二: 在 AA 上取一点 D 使 AD BB 2 ,在 CC上取
一点 E 使 CE BB 2 ,连结 DB,BE,DE ,如图1-3所示,
Q AA 底面ABC,AA//BB//CC
D'
C' A'
D
CБайду номын сангаас
A
B
图2-1
分析 本题所给几何体可以看成用一个平面截长方体而成.
由于 AA CC 因此可以考虑补成如图5-14所示的一个正方 体 ABCD AECF .
D'
E A'
C' F
D
B' C
A
B
图2-2
新几何体由一个正方体和一个三棱锥组成.新几 D'
何体与原几何体相比,多了一个三棱锥 F ABC E
四边形 ABCD 为正方形,且
AB AA CC 2
ABCD AECF是正方体
D' E A'
C' F
D
B' C
A
B
图2-2
S S ACE
ACF
Q BB 1,DD 3
BF DE 1
所以所求几何体的体积为
V V V V ABCDAECF
F
所以新几何体 ABC DEF 为直三棱柱, A' E
C'
Q AA 6,BB 2,CC 4
所以新几何体底面的高AD 8
A
B'
C
B
Q AB 3,BC 4,AC 5
AB2 BC2 AC2
图1-2
ABC 90
V
新
=SABC
AD
1 2
AB
具体如下:一个几何体的三视图如图所示,求该几何体的 体积.
1
1
1
2
2
2 2
例3 某几何体的三视图如图所示,则该几何体的体积为 ________.
分析 由几何体的三视图还原成直观图如图3-1,可知
DA 平面 ABC , AD//CE//BF , AC AB ,AD CE 5 ,BF 2
也可以采用“分割法”,把所给几何体分割成直三棱柱和 四棱锥,如图1-3所示来解决 .
D
F
A'
A'
E
C'
A
B'
C
B
图1-2
C'
D
E
B'
A
C
B
图1-3
解法一: 补上一个相同的几何体如图1-2所示,
则新几何体的体积等于两个原几何体的体积.即 V 新 =2V原
因为 AA 底面ABC ,AA//BB//CC , D
E
D
G
AC 3,AB 4 . F
延长 BF 至 G, 使 BG AD ,连结 DG, EG A C
B
如图3-2所示.
图3-2
A'
ABC DBE 为直三棱柱
Q AB 3,BC 4,AC 5
AB2 BC2 AC2
ABC 90
C'
D
E
B'
A
C
B
图1-3
1 V =S ABCDBE ABC AD 2 AB BC AD 12
过点 B作 BF DE于F,如图1-4所示.
例1 如图1-1,AA 底面ABC , AB 3,BC 4,AC 5 , AA 6,BB 2,CC 4 ,且 AA//BB//CC ,求几何体 ABC-ABC 的体积.
A'
C'
B'
A
C
B
图1-1
分析 本题所给几何体不是一个规则的几何体,可以看成一个直 三棱柱被一个平面所截而成的.根据题目特点我们既可以选择 “补形法”补成直三棱柱,如图1-2所示,计算出直三棱柱的体 积,再利用直三棱柱和已知几何体的关系求解.
F ABC
D ACE
AB3
1 3
SACE
DE
1 3
SACF
BF
AB3
8
D' E A'
C' F
D
B' C
A
B
图2-2
评析:本题灵活运用“割补思想”采用“补形法”与“分 割法”相结合的解题策略化难为易.近几年高考中求几何体 体积经常以三视图的形式呈现,这样既考察三视图同时又 考察空间几何体的体积计算.本题可以用三视图的形式呈现, 这样更符合近几年高考趋势.
高中数学核心素养、核心思想专题汇编(附详解)
中学数学解题思想方法--割补法
第二讲:割补法的灵活运用 与专题总结
立体几何中运用割补思想在求不规则的几何体的体积 时,有些题目采用“补形法”比较容易;有些题目采用 “分割法”更为恰当;还有些题目既能采用“补形法”解 决,也能采用“分割法”解决;还有些题目既要采用“补 形法”,同时采用“分割法”才易解决.
A'
C' F
容易得三棱锥 D ACE 与三棱锥 F ABC 体积相等,这样本题所给几何体的体积就 是一个正方体的体积.
D
B' C
A
B
图2-2
解: 在 DD 上截取 DE AA CC,延长 BB 至 F 使 BB CC.
Q AA 底面ABC, AA//BB//CC//DD