数学解题思想方法
数学中的五大主要解题思路

数学中的五大主要解题思路数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
今天小编给大家讲讲数学中的五大主要解题思路,希望可以帮助到大家。
函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
(某些选择题的最佳方法) 极限思想解题步骤极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论思想我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
在分类讨论解题时,要做到标准统一,不重不漏。
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法
数学解题涉及到多种基本思想和方法,以下是高考数学中常见的七大基本思想方法:
1. 分析思想:对问题进行分析,了解问题的背景和条件,理清问题的主要要求和关键点。
通过理性思考,找出问题的关键信息和解题的具体思路。
2. 归纳思想:在解题过程中,通过观察和分析一系列具体问题的特点和规律,总结出普遍规律和定理。
通过推理和归纳,用普遍的结论解决具体的问题。
3. 定义思想:利用定义和性质,将一个复杂的问题转化成一个或多个简单的问题,从而得到解题的线索和方法。
通过准确的定义和原理,避免解题过程中的模糊和混乱。
4. 逆向思维:通过逆向思考,将问题的推理过程倒转,从后往前寻找解题的线索和方法。
当直接求解困难时,可以通过反向思考,先假设结论成立,然后倒推出问题的可能解。
5. 近似思想:在实际解题中,可能遇到问题过于复杂或计算困难的情况。
可以通过近似思想,将问题简化成近似问题,从而得到解题的方法和结果。
通过适当的近似和简化,可以减少计算量和复杂度。
6. 映射思维:通过建立不同对象之间的映射关系,将原问题转化成已知问题或同类问题。
通过找出问题之间的联系和相似性,来解决具体的问题。
7. 模型思想:将实际问题抽象成数学模型,通过建立数学模型和方程式来求解问题。
通过对实际问题的抽象和建模,可以将问题转化成更容易解决的数学问题。
这些思想方法在解决高考数学问题中都很有用,需要根据具体问题的特点和要求选择合适的思想方法。
解答数学问题的七种思想方法

数学解题思想方法透视一、配方思想配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x=(x+1x)2-2=(x-1x)2+2 ;…… 等等。
Ⅰ、再现性题组:1. 在正项等比数列{an }中,a1·a5+2a3·a5+a3a7=25,则a3+a5=_______。
2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。
A. 14<k<1B. k<14或k>1C. k∈RD. k=14或k=13. 已知sin4α+cos4α=1,则sinα+cosα的值为______。
A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x2+5x+3)的单调递增区间是_____。
A. (-∞, 5]B. [5,+∞)C. (-1,5]D. [5,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____。
小学数学常用的16种解题方法

小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。
高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。
第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法
1,首先也是最重要的是转化思想。
无论是求解还是证明题,最核心的方法就是转化法。
例如要证明a=b,又已知a=c就设法证明b=c即可。
已知MN垂直平分线段AB,则MA=MB。
这样转化就用到了已知条件得到了新的条件,无形中离答案近了一步!
2.按类别讨论想法。
几何题如果没有图形,往往会有两个答案甚至更多。
最常见的是等腰三角形问题。
3,方程思想。
很多几何题需要利用勾股定理和相似作为等量关系列方程求出来。
还有些题则需要设x,但不需要列方程,最后x可以抵消。
4、整体思路。
需要用到一些复杂的求导过程,几何代数就是用这个思路来解题的。
比如郭的数学公益课,我们可以用整体论的思维去解一元二次方程。
5,数形结合思想。
解各类函数问题经常用到,数缺形时少直观,形少数时难入微,数形结合百般好,数形结合百般好,隔离分家万事休。
如果不能体会数形结合的妙处,不可能学好函数!
6、临界值思想。
经常用到求取值范围的问题。
郭老师,有十几年的初中数学教学经验,是数学教研组成员,辅导全国各地的学生。
开设公益教学课程:郭数学公益课系列,每天发布初中数学各章节考点及解题方法。
欢迎关注,免费学习。
数学解题中的思想方法——整体思维和发散思维

数学解题中的思想方法——整体思维和发散思维知识技能梳理:1、整体思维:整体思维方法在解题中,不是着限于问题的各个组成部分,而是将要解决的问题看作为一个整体。
具体方法:(1)整体代入,直奔终点;(2)整体把握,各个击破;(3)整体补形,变换角度。
2、发散思维:发散思维具有多向性、变异性、独特性的特点。
在内容上具有变通性和开放性,形式多样。
解题中涉及的主要发散思维模式,其涵义概括如下:题型发散——保持原命题发散的特点,变换题型和命题形式;解法发散——从不同角度、不同侧面解答问题;综合发散——将分析、归纳、综合等多种思维方法进行综合应用,解决较复杂的问题,使知识系统化,强调灵活应用。
发散思维还有逆向思维、迁移思维、分解思维、构造思维等等。
典型例题剖析:例1、设{ EMBED Equation.KSEE3 \* MERGEFORMAT |{}n a 是由正数组成的等比数列,是其前项和,证明:答案:略例2、如图,是直三棱柱,过点的平面和平面的交线记作。
(1)判定直线和的位置关系,并证明;(2)若,求顶点到直线的距离。
答案:(1);(2)例3、过抛物线顶点,任作互相垂直的两条弦交此抛物线于两点,求证:此两点连线的中点轨迹仍为一抛物线。
答案:略例4、已知复数,若是常数,,求满足的点的轨迹方程。
答案:当时,轨迹为椭圆,方程为;当时,轨迹为线段,方程是例5、如果正实数满足,求的最大值。
答案:A 1B 1C 1 A BC例6、对于函数,若存在,使成立,则称为的不动点。
已知函数(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围。
答案:(1);(2)例7、如图,且有一般地,求:(1)向量对应的复数,;(2)向量对应的复数;(3) 答案:(1)(2)(3)自我测试作业:1、设复数满足等式,且,又已知复数使得为实数,问复数在复平面上的对应的点的集合是什么图形?并说明理由。
答案:以为圆心,1为半径的圆,除两点。
(完整版)初中数学解题必备10大思想方法

初中数学解题必备10大思想方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1数学问题
数学教学中的问题一般分为练习型 与研究型两类。
练习型的问题具有教学性,它的结 论为数学接或教师所已知,其之所以成 为问题仅相对于教学或学生而言。
研究型问题具有学术性,它的结构 对于数学家或教师都是未知的,其中既 有数学自身理论发展的认知题,又有应 用数学理论解决实际问题的应用题。
第10页
§1.2数学问题的解决
1)数学问题解决的涵义
数学领域中的问题解决,有三个层次: 一般性解决:即基本逻辑水平上的解决,它力求
明确解题的大体方向; 功能性解决:即基本数学方法水平上的解决,它
力求明确解题所用的基本思想方法; 特殊性解决:即具体的解决,它力求明确解题的
具体方法、技巧和程序。 (一般性和功能性是特殊性解决的基础)
第页
§1.1数学问题
问题是指那些对于解答者来说还没 有具备直接的解决办法,对于解答者构 成认知上的挑战这样一种局面。
第4页
§1.1数学问题
“一个(数学)问题是一个对人具 有智力挑战特征的,没有现成的直接方 法、程序或算法的未解决的情景”。
这是1988年第一届国际数学教育大 会的一份报告中提出的。
第11页
§1.2数学问题的解决
2)数学问题解决的方法涵义
所谓的方法,就是找到一个解决问 题的途径,且能够预见甚至能够证明, 照这个途径做下去就一定可以取得成功。
第12页
§1.2数学问题的解决
2)数学问题解决的方法涵义
问题的一个解法应包括如下四个部分: ①对已知条件的完整认识,即给出问题的唯一初
始状态,从这一状态出发经过一系列运算可以 推导出目标; ②说明所用的运算,即公式、法则、定义、公理、 定理等理论依据; ③从初始状态到目标状态为止的按顺序排好的一 个问题状态序列,使得序列中的每一个状态都 能在对前面的状态应用适当运算以后得到; ④完整说明目标,既对问题结论的完整描述。
第13页
§1.3.1数学解题的意义
从数学学科的教育与学习来看,也 就是说从掌握数学来看,著名的美国数 学家和教育家G.波利亚指出:“掌握数 学意味着什么?这就是说善于解一些标 准的题,而且善于解一些要求独立思考、 思路合理、见解独到和有发现创造的 题。”
第14页
§1.3.1数学解题的意义
波利亚认为,任何学问都包括知识 和能力这两个方面。
第6页
§1.1数学问题
数学问题可按照多种不同的标准进行分类。 本讲所说的分类仅是面对教学方面而言.如
按知识内容分类(算术题、代数题、平面几何 题、立体几何题、解析几何题和三角题等);
按解题形式分类(常见求解题、证明题或说明 题、变换题或求作题、填空题等四类);
按评判解答的客观性分类(客观性问题常分为 判断题、选择题、填充题和简短问答题;主观 性问题如证明题、计算题等);
第9页
§1.2数学问题的解决
1)数学问题解决的涵义
问题解决都是以思考为内涵,以问 题目标定向的心理活动或心理过程,即 指人们在日常生活和社会实践中,面临 新情境、新课题,发现它与主客观需要 矛盾而自己却没有现成对策时,所引起 的寻求处理办法的一种活动,这是一个 发现的过程、探索的过程、创新的过程, 具有某种程度的创造性。
对于数学,能力比起仅仅具有一些 知识来,要重要得多,那么在数学学科 中,能力指的是什么?波利亚说:“这 就是解决问题的才智——我们这里所指 的问题,不仅仅是寻常的,它们要求人 们具有某种程度的独到见解、判断力、 能动性和创造精神。”
第15页
§1.3.1数学解题的意义
波利亚把“解题”作为培养学生的 数学才能和教会他们思考的一种手段和 途径,这种思想得到了国际数学教育界 的广泛赞同,1976年国际数学管理委员 会把解题能力列为十项基本技能的首位。
第16页
§1.3.1数学解题的意义
通过解题可以使学习者独立地、积极地进 行认知活动,深入地理解数学概念,全面系统 地掌握数学基础知识,实际地学习数学的本质、 精神、思想,切实地掌握解数学题的方法的基 本技能和技巧,(例如善于运用某种方法、手 段改变数学问题的情况;善于构想新的解题手 段和解题思路;善于区分和积累可能有益的资 料;善于在原有题目和解法的基础上,联想构 造出新的题目和解题方法;善于自我测验以及 对解题进行讨论,等等),
数学解题学研究
广西师范大学数学科学学院 龙开奋
第1页
§1 数学问题
什么是数学中的问题? 波利亚在《数学的发现》中将问题
理解为:有意识地寻求某一适当的行动, 以便达到一个被清楚地意识到但又不能 立即达到的目的。 解决问题指的是寻找这种活动。
第2页
§1.1数学问题
波利亚在《怎样解题》中说:我们 考虑的所有形式的问题都可以认为由三 类信息组成:关于已知条件的信息(已 知表达式);关于运算的信息,这些运 算从一个或多个表达式推导出一个或多 个新的表达式;以及关于目标的信息 (目标表达式)。
第17页
§1.3.1数学解题的意义
从而有效地培养运算能力,逻辑思 维能力和空间想象能力,以形成运用数 学知识来分析和解决社会生活、经济建 设和科学技术中的实际问题的能力,以 便适应现代化生产的多样性和变化性, 从事创造性劳动。
第18页
§1.3.2数学解题研究观
数学解题研究的中心内容是什么 1.从科学研究的方法论来看 2.从数学解题实践来看
按思维程度分类(常分为规范程度和发展程度 等,而规范程度可分为常规与非常规题;发展 程度可分为封闭型题与开放型题)。
第7页
§1.1数学问题
在数学解题教学中,封闭型题与开 放型题具有解题训练的互补作用,两者 均不可偏废,封闭型题一般用于巩固知 识,主要引起“同化”作用;而开放型 题则使主体容易暴露知识的缺陷,主要 引起“顺应”作用,促进解题能力的提 高。
第5页
§1.1数学问题
无论怎么提法,都具有同样的本质:问题 反映了现有水平与客观需要的矛盾。问题就是 矛盾,对于学生而言,问题主要具有如下三个 特点: 1、可接受性:给出的问题学生具有解决它的 知识基础和能力基础,即课本习题。 2、障碍性:学生不能直接将问题解答,必须 通过思考或多次尝试,才能解决的问题。 3、探究性:学生不能按照常规的套路来解决, 必须进一步发掘、探索和研究,寻找出解决问 题的新途径。