汽轮机的调节方式要点
汽轮机调节油走向的流程及注意事项

汽轮机调节油走向的流程及注意事项下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!汽轮机调节油是保证汽轮机正常运行的重要部分,主要负责调节汽轮机转子的温度和转速,以保证汽轮机的稳定运行。
汽轮发电机安装调试技术要点分析

汽轮发电机安装调试技术要点分析汽轮发电机在当前工业领域中的普及率相比过去几年大幅度增长,如此不仅能提升工厂的工作效率,而且能增加企业自身的经济利益。
因此,分析其安装以及调试的过程是当前工作的重点内容。
标签:汽轮发电机;安装调试;技术要点一、安装要求一般而言,汽轮发电机主要由转子、定子以及轴承所组成,实际工作时需要这些部件进行配合,以此完成发电的工作。
为了适应当前的工业环境,通常都会将汽轮机自身的转速调节到每分钟3000到3600转。
而且汽轮机在实际工作中往往会有极大的离心力产生,因此便需要尽可能调整转子本身的大小,以此减少安全事故的发生。
发电机在正式调试之前,工作人员必须提前熟悉整个安装过程的所有步骤和内容,从而对于工作现场能有更为清楚的把握,一旦有问题发生,可以及时采取措施进行处理。
最后还需要对设备进行全面检查,排除所有漏洞,以防由于质量问题影响了发电机的正常运转。
二、汽轮发电机运转特征发电机实质上将机械能转变为电能的一种电机,而汽轮发电机就是与汽轮机相配套使用的发电机,这种发电机在实际运转的过程中工作效率较好。
为保证持续较好的工作效率,汽轮机的运转大致保持在三千转每分钟或是三千六百转每分钟的速度。
因此高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风磨耗,常常会缩小其半径的大小并增加它的长度,尤其是在大容量的机组中,汽轮发电机转子的制作是十分重要的。
三、汽轮发电机的具体安装和调试(一)施工准备汽轮发电机在安装之前必须要对相关的安装步骤和施工验收规范有着详细的了解,在安装之前必须要充分的掌握相关的复查活动,除此之外,还要与相关的数据和信息相结合,了解基础高度和相关的大小,并且要对这些数据进行综合测试,观察是否满足实际的安装要求,了解和查看基础是否存在下沉的现象。
(二)基础划线复查首先要结合土建设置的驗收资料和设备相关的图纸等来分析探索。
第二,认真地分析基础。
用水准仪在厂房二根柱子处测量并标注基准标高点,返在汽轮机基础四周明显位置作为观测点。
汽轮机的调节方式及调节级变工况解析课件

背景介绍
某核电站汽轮机在运行过程中,需要应对多种复杂工况和运行条件,对调节方式和调节级变工况的要求较高。
调节方式及调节级变工况解析
该核电站采用了先进的蒸汽阀门控制系统(SVPC),对汽轮机的蒸汽阀门进行实时监测和精确控制,实现了多种复杂的调节方式和调节级变工况的应对策略。
应用效果
采用蒸汽阀门控制系统后,该核电站的汽轮机运行效率得到了显著提高,同时保证了机组的安全稳定运行。
优化方法
先对调节系统进行详细分析,确定需要优化的环节和关键参数;然后制定优化方案,进行实验验证;最后将优化成果应用于实际生产中。
实施步骤
积极引进新技术、新方法,如智能控制、自适应控制等,尝试突破现有技术的限制,实现汽轮机调节方式的技术创新。
技术创新
鼓励企业与科研机构合作,开展汽轮机调节方式的创新实践,积累经验,推动汽轮机调节技术的发展。
THANKS
感谢您的观看。
数字调节系统
早期汽轮机采用机械调节系统,随着技术的发展,电液调节系统和数字调节系统逐渐得到广泛应用。
数字调节系统的出现使得汽轮机控制策略更加复杂和精细化,为汽轮机高效稳定运行提供了有力支持。
02
CHAPTER
汽轮机调节级变工况概述
调节级变工况是指汽轮机在运行过程中,通过调节汽门开度来改变进入汽轮机的蒸汽流量和参数,以适应不同负荷需求和保证机组安全稳定运行的状态。
制定完善的应急处理预案,包括应急组织、通讯联络、现场处置等方面。在调节级变工况发生时,能够迅速启动应急预案,采取有效的处理措施,确保汽轮机的安全稳定运行。同时,加强应急演练和培训,提高操作人员的应急处理能力。
总结词
05
CHAPTER
汽轮机调节方式及调节级变工况的实际应用案例分析
《汽轮机》课件一、调节系统简介

外界负荷减小时,阻力矩减 小,主力矩如不变,则转速 升高
当外界负载条件一定时,电 磁阻力矩是随转速的增加而 迅速增加。
➢ 在平衡状态下,Mt1=Me1,
d 0
dt
➢ 则角速度ω=常数,转速n=常数,机组稳定在某一转 速下运行。
Mt1与Me1两曲线交点A, 即为平衡工况点。 转速为na
随着转速的升 高,主力矩逐 渐减小。
电磁阻力矩与转速关系取决于外界负载的特 性,电网中的负载大致可分为三类
➢ 频率变化对有功功率没有直接影响的负载, 如照明、电热设备等;
➢ 有功功率与频率成正比变化的负载,如金 属切削机床、磨煤机等;
➢ 有功功率与频率成三次方或高次方变化的 负载,如鼓风机、水泵等。
转 速 变
化
Δn
油动机
错油门
Δx
感受机构 (调速器)
传动放大机构
负反馈 (杠杆)
机械液压调节系统 (MHC ) (mechanical hydraulic control)
汽轮机的调节系统采用机械元件作为控制器,转速 作为控制信号,而执行器采用液压元件。
1.机械液压调节系统的调节功能比较单一,只能根据转速 变化信号进行调节----外扰
汽轮机的主力矩可用下式表示
Mt
1000PT
1000PT
2 n
60
9549 PT n
PT——汽轮机内功率(kW);
➢ 若将 PT=G△Htηri代入上式则得
Mt
9549tri
G n
△Ht——汽轮机理想焓降(kJ/kg); ηri——汽轮机的内效率;
G——汽轮机的蒸汽流量(kg/s)。
3.3汽轮机的调节方式及调节级变工况

调节级为例
简化假设:
(1)调节级后的压力p2∝G
(2) 设 m 0 ,则 p 1 1p 21 (3)四个调节汽门依次开启,没有重叠度; (4)凡全开调节汽门后的喷嘴组前压力均为
p 不0' 变。
调节阀后即各喷嘴组前的压力p01 、p02是 变动的,其值取决于各调节阀的开度大小,喷 嘴后压力p1各喷嘴都相同。
应用: 滑压运行——承担基本负荷,还可用于调峰; 定压运行——承担基本负荷。
★旁通调节 1、旁通调节有外旁通调节和内旁通调节
外旁通调节
内旁通调节
2、旁通调节的工作原理: (1)当经济功率时,调节阀2全开,旁通 阀3、4关闭。相当于节流调节; (2)当过负荷时,调节阀2全开,旁通阀 部分开启。由于后几级有较大的通流面积,可 以多进汽、多作功;
点n之后, < p 2,流p c量r 为临界。
(4)通过喷嘴组的流量:如ILMN所示。
3ቤተ መጻሕፍቲ ባይዱ第三阀开启过程:
(1)阀后(喷嘴组前)压力:
p
0
,如
“4-5-
7”所示;
(2)临界压力为: ’d-e-g’ 线,(整个
级从 ’H’ 点后p,2
>p c
);
(3)喷嘴组后的压力:p 2 > p cr ; (4)亚临界流动。
01 线 , 终 焓 为h 1 , 有 效 焓 降
为 h i1 h 0 ; h 1 为通D过x 旁通阀进入 旁通室的流量,压力为 ,终焓
为 p x,而混合后的h 0 焓值为 。
hx
h x D 1 D h 1 1 D D x x h 0 D 1 (h 0 D h i1 ) D x h 0 h 0 D D 1 h i1
汽轮机(汽机)运行负荷调节与暖机技术方法

汽轮机(汽机)运行负荷调节与暖机技术方法一、汽轮机负荷的调节1、汽轮机负荷调节的方式:(1)节流调节:主蒸汽通过一个或几个同时开闭的阀门然后进入汽轮机。
(2)喷嘴调节:负荷变化时,依次开启或关闭若干个调节阀,改变调节级的通流面积控制进入汽轮机的蒸汽流量。
(3)滑压调节:汽轮机的调门开度保持不变,通过调节主蒸汽的压力以调节进入汽轮机的蒸汽流量和汽轮机的负荷。
2、各调节的方式的优缺点:(1)节流调节:调节装置的结构比较简单,没有调节级结构简单,制造成本低,但在部分负荷下因有节流损失,效率较低。
(2)喷嘴调节:喷嘴调节的调门控制机构比较复杂,不利于维修,但在部分负荷下只有部分调门存在节流损失,其他调门全开,因此经济效率较高。
(3)滑压调节:一般滑压运行时,调门开度为全开位置,不存在节流损失,但由于主蒸汽压力下降,使蒸汽的做功能力下降,降低了汽轮机的效率,但有利于汽轮机的快速加减负荷。
3、汽轮机负荷低于30%时为什么不得投入协调控制:由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。
当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。
这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。
4、汽轮机负荷低于30%时为什么不得投入协调控制:由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。
当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。
这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。
汽轮机-调节系统

定转速所需的时间 中间容积时间常数:以额定工况进汽量向中间容积充汽,
使其空间中的蒸汽比容达到额定状态比容所需的时间 调节系统特性对动态特性的影响: 速度变动率: δ增大,则波动时间缩短,波动幅度减
小,但飞升转速提高。 滞缓率:越小越好 油动机时间常数:增大,则抗内扰能力提高,但飞升转速
摩擦阻力矩
随转子转速的增加而增大
同步发电机特性
同步发电机的端电压决定于无功功率,频率决 定于有功功率。
无功功率决定于励磁,有功功率决定于原动机 的功率。
故电网的电压调节归励磁系统,频率调节归汽 轮机的功率控制系统。
汽轮机的主蒸汽系统简化结构
S
电
自
动
动
主
主
汽
汽
门
Байду номын сангаас
门
汽轮机
调 节 汽 门
力小 满负荷防止过载,静态特性曲 n2
线也较陡
带基本负荷的机组,在额定负
荷下陡一些,调峰机组特性曲
P
线较平
同步器的作用
同启 控动步制时器汽:外轮界机负进荷汽不量变,,能够改变调节nn阀1 开度的机构
控制升速过程中转速,
n2
创造并网条件。
并网带负荷后
当外界负荷大幅度波动时,调整同步器位置能 P 改变调节系统静态特性曲线(平移),使机组
一、设置调节系统的原因:
供电品质:电压,频率,相位 频率的稳定取决于原动机出力和电网负载
的平衡。 维持频率的稳定要求:原动机出力=负载 汽轮机出力在运行中必须能根据负载要求
进行调整。
3.3汽轮机的调节方式及调节级变工况解读

3 、旁通调节汽轮机的变 工况曲线压力与流量的关系。
OA为调节阀后(第一级前)
的压力随流量的变化情况。 全开时,流量为 G0 ,压力
为
' p0 ;
OB为旁通室的压力变化情 况。当流量为 为
p x0 ;
p x 升高
G0 , 压 力
过负荷时,流量增加,压
力
。
图b为流量的变化曲线: 当流量从0- G0 时,
主汽门,依次开启和关闭调节阀以调节汽轮机的
进汽量。
在部分负荷下,只有一个调节阀部分开启,其 它全开阀门节流减到最小,效率较高。
喷嘴调节的特点: 优点:定压运行时,喷嘴配汽比节流配汽节 流损失小,效率较高。 缺点:喷嘴组间存在间壁,使调节级总是部
分进汽的,带有部分进汽损失且调节级的余速不
能被利用(调节级后为汽室,蒸汽速度为0),
阀3、4关闭。相当于节流调节; ( 2 )当过负荷时,调节阀 2 全开,旁通阀 部分开启。由于后几级有较大的通流面积,可 以多进汽、多作功;
(3)过负荷时,通过旁通阀部分的蒸汽有
节流损失,旁通阀不能全开,效率有所降低;
(4)当开旁通阀时,旁通室压力升高,旁
通级焓降减小,速度比增大,功率减小,效率 降低。
在一工况下,第一、二阀全
开 p0 ,阀后压力为 p 0 ' ; p0
第三阀部分开启,阀后压力
' 为 p0 (因有节流) p"0 p0
• 两全开阀的调节级热力过程曲线如 0’2’ ,理想焓
降
ht ht ht ,有效焓降
' h2
hi ,终焓为 hi
一、节流配汽
1、节流调节:这种调节方式就是用一个或几
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、喷嘴调节及调节级变工况
喷嘴调节:将汽轮机的第一级喷嘴分成若干组,每 组各有一个调节阀控制,当汽轮机的负荷改变时, 依次开启或关闭各调节阀,以调节汽轮机的进汽。
调节级:采用喷嘴调节的汽轮机第一级,其通流面 积随负荷的改变而改变,故称该级为调节级假设: a、调节级的反动度m=0,且工况变动时反动 度保持不变。 b、各阀门之间无重叠度。 此外各组喷嘴后压力p1均相等,凝汽式汽轮机 调节级后p2与流量成正比。 全开阀后的压力不随流量的增加而降低
DH trim g
图3-13
节流调节示意图
节流调节的调节过程: 结论:节流调节第一级的变工况特性与中间级 完全相同。 节流调节的热力过程:
节流后汽轮机的相对内效率:
H i H i H t th ri ri Ht H t H t
H t th-节流效率 th H t
第三节
汽轮机的调节方式及调 节级变工况
汽轮机的功率方程 Pel 3600 汽轮机常用的调节方式: 由上式可知,要改变汽轮机的功率,可改变 流量D或焓降Ht,与此对应的调节方式从结构上 看有:喷嘴调节、节流调节,从运行方式上看有: 定压调节和滑压调节。 一、节流调节 定义:所有进入汽轮机的蒸汽都经过一个或几个 同时启闭的调节阀,然后进入第一级喷嘴。
D D D h0 hi hi D D
h0 h2 D D hi D hi D D D ri ri ri D D ht D ht D ht
从图中可见,调节级效率曲线具有明显 的波折状。这是因为阀全开时,节流损失小, 效率较高。在其它工况下,通过部分开启阀 的汽流受到较大的节流,使效率下降。
3.喷嘴调节的特点: (1)喷嘴调节的结构较复杂、制造成本 高; (2)工况变动时,调节级汽室温度变化 大,从而增加了由温度变化而引起的热变 形与热应力,限制了机组的运行可靠性和 机动性; (3)在部分负荷下的效率高于节流调 节。 喷嘴调节的应用:大容量机组和背压机组
节流效率的大小取决于流量 和蒸汽参数,如图3-15。
节流调节的特点: (1)节流调节的结构较简单、制造成本低; (2)工况变动时,各级焓降(除最末级外)变化 不大,故各级前的温度变化很小,从而减小了由 温度变化而引起的热变形与热应力,提高了机组 的运行可靠性和机动性; (3)在部分负荷下由于节流损失,机组经济 性下降。 节流调节的应用:节流调节一般用在小机组 以及承担基本负荷的大型机组上。
图3--17
调节级变工况曲线
第三调节阀开启过程中: 第三组喷嘴中一直达不到临界状态;喷嘴压力比随 流量的增大而减小。 第四调节阀开启过程中: 第四调节阀为过负荷阀,第四组喷嘴的变工况特 性与第三组喷嘴相同。 综上所述,调节级焓降是随汽轮机流量的变化而改 变的。 流量增加时,部分开启阀门所控制的喷嘴组焓降增 大,全开阀门所控制的喷嘴组焓降减小。 在第一调节阀全开而第二调节阀尚未开启时,①调 节级焓降达最大值;②级前后的压差最大,③流过该喷 嘴的流量亦最大;④级的部分进汽度则最小,致使调节 级叶片处于最大的应力状态。所以当进行调节级强度核 算时,最危险工况不是汽轮机的最大负荷,而是第一调 节阀刚全开时的运行工况。
2.调节级的热力过程及效率曲线
D h2 ( D D D )h2 ( D D )h2
D h2 ( D D )h2 D
h2
( D D )(h0 hi ) D (h0 hi ) D
1.调节级的变工况分析 第一调节阀开启过程中: 阀后压力(即喷嘴前压力)与流量成正比,当阀 门全开时, 达最大。 焓降的变化:由于压力比保持不变,所以焓降 也保持不变。但随着第二、第三调节阀的开启,焓 降将逐渐减小。 调节级后压力一直小于临界压力,故通过该组 喷嘴的流量为临界流量。 第二调节阀开启过程中: 第二组喷嘴将从非临界状态过渡到临界状态。 在喷嘴达临界之前,喷嘴压力比随流量的增 加而减小,喷嘴达临界后压力比则保持不变。