07 图形的分割与剪拼 课后习题
小学数学《图形的分割与拼接》练习题(含答案)

小学数学《图形的分割与拼接》练习题(含答案)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?→→分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图所示.[拓展]把如右图这样由五个正方形组成的图形,分成四块大小、形状都相同的图形→→分析:从面积考虑,把整个图形的面积分成四份,分割后的每一部分占一份.正方形,则可把每个正方形分成四个面积相等的小正方形,每块图形应有五个这样的小正方形,如右上图所示.[巩固]右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?分析:如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.【例2】(★★★★)把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.分析:根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左上图所示的三种分法.又因为4=l×4=2×2,所以,如果我们把每一个小三角形的面积看做1,那么1×4就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而2×2可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右上图的另两种分法.[前铺] 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出4种不同的分法.分析:根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如下图所示的三种分法.[拓展]怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→分析:(1)分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如左上图所示的图形.(2)分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例3】(★★★★)如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.→图1 图2分析:图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180°必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.[拓展] 如右图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?分析:首先在相同颜色的棋子之间划出切分线,以中心旋转90°、180°、270°之后,得一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是36÷4=9,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90°、180°、270°便得到其他三块,如右上图.(二)图形的拼合【例4】(★★★)将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种自身可以拼成面积是16的正方形?分析:面积是16的正方形,其边长等于4,用图形(5)和(7)显然能拼成边长是4的正方形(如左上图所示).用图形(1)、(2)和(6)也能拼成边长为4的正方形(如右上图所示).通过观察与试验,无法用所给图中的(3)和(4)拼成题目要求的正方形.因此,用所给图中的七种图形,共可以拼成5种面积是16的正方形.[巩固]下面哪些图形自身用4次就能拼成一个正方形?分析:用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见右上图.【例5】(★★★★)用6个完全一样的等腰直角三角形拼图,要求边与边完全重合.你能拼出几种图形?把它们画出来.分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图[前铺]用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析: 这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
【思维拓展】数学四年级思维拓展之图形的分割与剪拼(附答案)

四年级思维拓展之图形的分割与剪拼1.请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?2.图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?3.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?4.下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.5.下面哪些图形自身用4次就能拼成一个正方形?6.将右图分成4个形状、大小都相同的图形,然后拼成一个正方形.7.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.8.用两块大小一样的等腰直角三角形能拼成几种常见的图形?用下面左边的3个图形,拼成右边的大正方形.参考答案1.【解答】图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在它们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是6×4的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,对称分成如右上图.2.【解答】这道题的要点在于通过计算解决问题,要求把原来三个正三角分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如下图.3.【解答】先把图形分成20×40相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如下图所示.4.【解答】通过计算,18÷6=3,说明基本形状是有三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,是由6结合染色法,如下图.5.【解答】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.6.【解答】经过计数可以发现,图形是由16个完全一样的正方形组成,所以拼成的正方形每排都有4个这样的小正方形,共有4排把大图形分成完全一样的4个图形,每个图形的面积都是小正方形的4倍.现在来考虑形状.由于这个图形具有对称的特点,很容易想到先将它分成两个完全一样的图形,只要沿大图形中间的那条竖线剪开即可,其中的一个如图2,再想办法把已经分成的两个图形各分成两个形状、大小都相同的图形即可.下面以图2为例,继续探讨分割的办法.如果把上图中每个小正方形的边长看作1个单位,那么这个图形中的最长边有4个单位,其次为3;显然,要把它分成完全一样的两个图形,每个图形的最长边只能为3,如图3;用同样的方法,可以将与上面的图形完全一样的下面的一个图形分成两个形状、大小都相同的图形,如下图.图2:图3:7.【解答】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,所以将长为3的边分成两段,找到AD 的三等分点E,现在,CD=AE,DE=AB,EF=EF,所以还要找到BC 的中点F,连接EF,就把梯形ABCD 分成完全相同的两部分.如下图.8.【解答】最好拿起手中的等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,见下图【解答】首先数一数所有的空格数,一共只有16个,只能组成4×4的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,如下图:→→。
小学数学《图形的分割与拼接》练习题(含答案)

小学数学《图形的分割与拼接》练习题(含答案)本文介绍了图形的分割、拼合和剪拼的概念和方法。
在图形分割中,可以使用染色法来找到对称点,保持每个小方格的完整。
在图形拼合中,需要注意每条边的长度,先拼少的,再拼多的。
在剪拼图形时,要确保剪、拼前后图形的面积相等,通过分析推理和计算确定剪拼的方法。
例1中给出了一个3×4的方格纸,要求用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。
因为要分割成完全相同的两块,即大小、形状完全相同,所以可以使用染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号。
例2中给出了一个正三角形形状的土地上有四棵大树,要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树。
可以先将正三角形分成四个小三角形,然后在每个小三角形中心画一个小圆,这样每个小块中就有一棵大树了。
例4】下图是一个直角梯形,请画一条线段,把它分成两个形状相同并且面积相等的四边形。
要把这个直角梯形分成两个相同的四边形,首先需要保证它们的面积相等。
我们可以找到梯形中一条边可以分成上底和下底的长度之和,即AD边长为3.然后,我们在AD边上找到三等分点E,连接EF,再找到BC的中点F,这样就可以把梯形分成两个完全相同的部分,如右上图所示。
例5】用两块大小一样的等腰直角三角形能拼成几种常见的图形?我们可以使用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合。
或者,我们可以准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上。
如下图所示,可以拼成几种形状。
拓展]用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
一共可以拼成如下图的几种形状:例6】用下面左边的3个图形,拼成右边的大正方形。
首先数一数所有的空格数,一共只有16个,只能组成4×4的正方形。
使用目标倒推法,在右边的大正方形中拼图,使用染色法,把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图所示。
最新版07讲-图形的分割与剪拼-课后习题.pptx

主讲:五豆
..分割..
1
图形的分割与剪拼 答案:略 请在图中标出分割线,把图形沿格线分割成形状、大小都相同的四个 部分。(如果两个图形通过旋转或翻转后重合,就认为它们的形状、 大小是相同的)
..分割..
2
图形的分割与剪拼 答案:略
..分割..
3
图形的分割与剪拼 答案:略 将左图分割成四块,拼成右图的长方形。请在左图中画出分割线,在 右图中画出拼接线。
..分割..
4
图形的分割与剪拼 答案:略 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未 来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个 图形都含有“学习思考”这四个字.应怎样分?
思学思考
考学习习 习思考思 习 学考学
..图分割成两块,然后拼成一个正方形。(不一定沿网格线分割)
..分割..
6
七年级暑期提高讲义(图形的分割2与剪拼)

- 1 -图形的分割与剪拼(2)1.现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作)。
如图甲(虚线表示折痕)。
除图甲外,请你再给出三个不同的操作(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。
如图乙和图甲是相同的操作)。
(甲)(乙)2.已知:如图(1),在ABC∆中,︒=∠=36,A AC AB ,直线BD 平分ABC ∠交AC 于点D 。
求证:ABD ∆与DBC ∆都是等腰三角形。
(1) (2) (3)(2)在证明了该命题后,小颖发现:下列两个等腰三角形如图(2)、(3)也具有这种特性。
请你在图(2)、(3)中分别画出一条直线,把他们分成两个小等腰三角形并在图中标出所画等腰三角形两个底角的度数;3.(1)已知ABC ∆中,︒=∠︒=∠5.67,90B A ,请画一条直线,把这个三角形分割成两个等腰三角形。
ABC- 2 -(2)已知ABC ∆中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系。
4.操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,使点A 与点C 重合,DE 为折痕.试证明△CBE 等腰三角形;(2)再将图①中的△CBE 沿对称轴EF 折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC 折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?ABCBBCC F图①图②图③图④- 3 -5.在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,M 为射线CA 上一点,ME ⊥BC 于点E ,∠AME 的平分线MF 交AB 于点F(1)如图1,若∠ABC =40°,M 为边CA 上一点,试探究BD 与FM 的位置关系,并说明理由 (2)如图2,若∠ABC =α, M 为边CA 延长线上一点,①图2中∠ABC 的平分线BD 未画,请补画出来(“尺规作图”,不写作法,但要保留作图痕迹).②试探究BD 与FM 的位置关系,并说明理由.A BC图1 图2- 4 -6.如图,A 、E 、F 、C 四点在同一直线l 上,AC =8,AE =CF =1,过E 、F 分别作DE ⊥AC ,BF ⊥AC ,且DE =BF ,连接AD 、BC ,连接BD 交AC 于点O , (1)请直接判断AD 、BC 的关系.(2)试说明O 为AC 的中点.(3)若△BFC 固定不动,将△ADE 沿直线l 平移到△A ’D ’E ’(A 、D 、E 的对应点分别为A ’、D ’、E ’),连接BD ’交直线l 于点O ’,试探究如何平移△ADE ,使得OO ’=1.2?请直接写出△ADE 的平移方向和距离.备用图备All。
小学数学《图形的分割与拼接》练习题(含答案)

小学数学《图形的分割与拼接》练习题(含答案)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)下图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有3×4=12(个)小格,所以分成的两块每块有12÷2=6(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如右上图所示.[拓展] 下图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.分析:因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4×4=16(个)小格,所以分成的两块每块有16÷2=8(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的4×4格图,不同的变化在不同的图上同时呈现)如下图:【例2】(★★★★)一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?分析:由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.[总结]本题若死守三角形面积等于底×高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.[拓展] 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?分析:图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是6×4的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如右上图所示.【例3】(★★★)图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?分析:这道题的要点在于通过计算解决问题,要求把原来三个正三角分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.[拓展]如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图.[巩固]如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).分析:要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见右上图.【例4】(★★★)下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.分析:直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD边长正好为3,所以AD边分成两段,找到AD的三等分点E,现在,CD=AE,DE=AB,EF=EF,所以还要找到BC的中点F,连接EF,就把梯形ABCD分成完全相同的两部分.如右上图.(二)图形的拼合【例5】(★★★)用两块大小一样的等腰直角三角形能拼成几种常见的图形?分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:[拓展] 用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析:这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
图形的分割和简拼

一、分割、剪拼的原则☆ 前后总面积保持不变二、基础图形的常见分法1.2.3.三、不规则图形分割(要求大小形状都一样)的技巧☆ 单位化1. 把不规则图形分成小正方形或小正三角形;2. 根据题目要求合并几个小块为一大块;3. 合理排布. 四、图形剪拼口诀(阶梯状剪法)☆ 长多少,减多少;高几分,挖多深.下图是由完全一样的五个小正方形组成的图形,请你将它分成大小形状完全一样的四部分.;第1题 例题精讲知识GPS解析:图形不规则,尝试先分成小正方形,直到分到5的倍数块,如下图一共20个小正方形,每4块合并成一大块,进行合理排布可以得到将一个49⨯的长方形剪成两部分,再拼成一个正方形.解析:直着剪,发现毫无头绪,那么就阶梯状剪.要知道我们最后要完成的目标是什么.根据剪拼前后总面积不变:4966⨯=⨯,长是9变为6,横着剪掉3格:第2题宽是4变为6,竖着剪掉2格上台阶就可以拼成下图第3题介绍一种别致的正六边形分完全相同4份的方法.当我们把图形分成很小的单元后,会找到一些新的分法,伙伴们可以多多尝试,培养对图形的感知力.比较图中两个阴影部分①和②的面积,他们的大小关系是什么?① ②解析:这道题是一道杯赛原题,它用到了面积割补的办法,也将会是寒假班“格点与割补”一讲学习的内容.① 的面积133=⨯=② 的面积3223=⨯÷=它们的面积相等。
第4题杯赛展示不得不说,这一讲的内容杯赛不会直接考,但分割图形的技巧,尤其是“面积不变”的原则对于我们高年级的几何问题来说至关重要,几乎每一道几何难题都会跟面积联系起来,也需要我们去分割.。
小学数学 图形的剪拼 课件+作业(带答案)

先把每一个正方形分割成四个小 正方形。
20÷4=5(个) 5个小正方形组成的图形,可以选择
一种剪法如右图所示:
答案不唯一。
总结:对于不好直接剪切的图形,我们可以先画网格线,再进行剪切。
练习2:下图是由18个小正方形组成的图形,请将它沿格线分割成 6 个完全相同的图形。
春夏 夏 秋冬春 春冬秋夏 秋冬夏春冬秋
总结:要先求出分割出来的图形所占的方格数量,最后剪切时要注意限制条件。
练习6:请将下图沿格线分割成形状相同、大小相等的四个图形,并使每个图形中都有“学习思考”这
四个字。 16÷4=4(个)
4个小正方形可以拼成的形状有:
一种剪法如右图所示:
知识点三:复杂分割
8、下图是由五个相同的正方形组成的图形,要把它分成形状相同、大小相等的四个图形,应该怎样分?
先把每一个正方形分割成四个小 正方形。
20÷4=5(个) 5个小正方形组成的图形,可以选择
一种剪法如右图所示:
9、把下图沿哪条格线剪开后,可以拼成一个正方形? 如下图所示 拼成
10、请将下图沿格线分割成大小相等、形状相同的四块,并拼成一个正方形。
经过尝试,一种剪法 如右图所示:
知识点三:复杂分割
例题6:请将下面的图形沿格线分割成形状相同、大小相等的四块,并使每一块中都有“春夏秋冬”四
个字。
分析:
16÷4=4(个)
先计算出,分割成的四块, 每块中有几个小正方形。
4个小正方形可以拼成的形状有:
注意限制条件,每一块中都 有“春夏秋冬”四个字。
一种剪法如右图所示:
长方形纸条的面积:5×3=15(平方厘米) 大正方形的面积:11×11=121(平方厘米) 121÷15=8(个)……1(平方厘米) 理论上,最多能裁出8个长5厘米,宽3厘米的 长方形纸条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的分割与剪拼
主讲:五豆
答案:略
请在图中标出分割线,把图形沿格线分割成形状、大小都相同的四个部分。
(如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)
答案:略
从一张边长是10厘米的正方形纸片中,最多能裁出多少个长4厘米、宽2厘米的长方形纸条?请画图说明裁剪方法。
将左图分割成四块,拼成右图的长方形。
请在左图中画出分割线,在右图中画出拼接线。
答案:略
56
433
2
11
学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?答案:略学
习思考
学习思考学习思考考思
习
学
答案:略
将下图分割成两块,然后拼成一个正方形。
(不一定沿网格线分割)。