4离子晶体结构

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti最后填入能级为3d故为d 区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F>N>O>C

例4、某元素的全部电离能(电子伏特)如下: I1I2 I3I4 I5 I6 I7 I8 23.6 35.1 54.977.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________(2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O>N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN--C22-互为等电子体 CO2 CS2N2O SCN-- CNO-- N3-互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。 9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

晶体结构解析

晶体结构解析 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群 等信息; hkl文件:包含的是衍射点的强度 数据; pcf文件:记录了晶体物理特征, 分子式,空间群,衍射数据收集的条 件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法 (TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原 子,那就要用PATT法;如果晶体中 没有原子量差异特别大的原子,就用 TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内 容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的 指认,付利叶加氢或理论加氢,画图 等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16), goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol 出现一系列的Q峰信息。每次打开 xp后都要先输入此命令。 输入pick 进入Q峰之间连接的结构体系中。 根据化学经验(键长,键角以及连接 方式)和自己晶体的预测的结构,对 Q 峰进行取舍。 取舍完毕后,进行原子的命名。当闪 点在某个原子上时,从键盘上输入要 命名的原子的符号,然后回车;闪点 就会跳到下一个要命名的Q峰上。当 闪点在某个Q峰上时,如果直接回 车,会删掉此原子,用backspace可 以复原;如果直接敲空格键,闪点会 跳到下一个Q峰上。 敲“/”键,保存命名结果,退出;敲 “esc”键,不保存结果,退出。 输入pers 可以看棍球图,如果有错误的原子命 名,可以继续用pick命令进行修改。 输入proj 可以看到结构图,并可以旋转观看 输入grow 可以长出对称的单元。如果没有对称 的单元,则此命令无效。 输入fuse 删除grow出来的原子和其他操作长 出的原子,这些原子不能带入精修的 过程中。 输入sort /n 对原子进行排序,按照原子名称的 序号;如果输入sort $C $N则按照原 子种类进行排序。 输入file name.ins 保存所作的命名信息。会有提示询 问是否从name.res中拷贝信息,直接 回车。 注意:name指用xs解析时命名的作 业名,不能更改。 输入quit 退出程序,敲esc退出程序 5.5.2 用xl进行精修 点击xl 出现精修过程,看是否符合5.5中 的标准(可以关闭xl后,通过增加 ins中的ls的次数或者copy name.res to name.ins 命令进行反复精修,切记 每次xl精修后生成的是res文件,因 此要将res拷贝成ins再次进行精修 才有效)。 如果其他的条件不符合,则要修改 ins文件:加入 anis(对所有指令后的非氢原子进 行各向异性精修,anis n对指令后的 前n个原子进行各向异性精修,anis C对指令后的指定原子进行各向异 性精修) omit(忽略指定的衍射点,一般都 要用到omit 0 52)

1-2 常见的晶体结构及其原胞、晶胞

§1-2 常见的晶体结构及其原胞、晶胞 1) 简单晶体的简单立方(simple cubic, sc) 它所构成的晶格为布喇菲格子。例如氧、硫固体。基元为单一原子结构的晶体叫简单晶体。 其特点有: 三个基矢互相垂直(),重复间距相等,为a, 亦称晶格常数。其晶胞=原胞;体积= ;配位数(第一近邻数) =6。(见图1-7) 图1-7简单立方堆积与简单立方结构单元 2) 简单晶体的体心立方( body-centered cubic, bcc ) , 例如,Li,K, Na,Rb,Cs,αFe,Cr,Mo,W,Ta,Ba等。其特点有:晶胞基矢, 并且,其惯用原胞基矢由从一顶点指向另外三个体心点的矢量构成:(见图1-9 b) (1-2) 其体积为;配位数=8;(见图1-8)

图1-8体心立方堆积与体心立方结构单元 图1-9简单立方晶胞(a)与体心立方晶胞、惯用原胞(b) 3) 简单晶体的面心立方( face-centered cubic, fcc ) , 例如,Cu,Ag, Au,Ni,Pd,Pt,Ne, Ar, Xe, Rn, Ca, Sr, Al等。晶胞基矢, 并且每面中心有一格点, 其原胞基矢由从一顶点指向另外三个面心点的矢量构成(见图1-10 b): (1-3)

其体积=;配位数=12。,(见图1-10) 图1-10面心立方结构(晶胞)(a)与面心立方惯用原胞(b) 4) NaCl结构(Sodium Chloride structure),复式面心立方(互为fcc),配位数=6(图1-11 a)。 表1-1 NaCl结构晶体的常数 5) CsCl结构(Cesuim Chloride structure),复式简单立方(互为sc),配位数=8(图1-11 b)。 表1-2 CsCl结构晶体的常数

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于 SHELXL97 结构解析程序和 DOS 版 SHELXTL 画图软件。在 DOS 下操作) 注意: 1. 每一个晶体数据必须在 D:/STRUCT 下建立一子目录(如 D:\STRUCT\AAA),并将最初的数据备份一份于 AAA 目录下的子目录 ORG; 2.此处用了 STRUCT.BA T 批文件,它存在于根目录下,内有 path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct 为工作目录, exe 为 SHELXL97 程序, nix 为 SHELXTL 画图) 3.在了解 DOS 下操作之后,可在 WIN 的 WINGX 界面下进行结构解析工作,画图可用 XP 或 DIAMOND 软件进行。 一. 准备 1.检查是否有inf、dat和f2(设为sss.f2)文件 2.用 EDIT 或记事本打开 dat 或 inf 文件 , 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ?从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ? 从 R merge 项中,记下 Rint = ?.???? %; ? 从total reflections项中,记下总点数; ?从unique reflections项中,记下独立点数 3.双击桌面的 DOS 图标(或 Win2000 与 WinNT 的“命令提示符”) 4.键入 STRUCT(属于命令,大小写均可。下同) 5.进入欲处理的数据所在的文件夹(上面的 1~2 工作也可在这之后进行) 6.键入 XPREP sss.f2 (屏幕显示 DOS 的选择菜单) 7.选择 [4],回车(下记为) 8.输入晶胞参数(建议在一行内将 6 个参数输入,核对后) 9.一系列运行(对应的操作动作均为按)之后,输入分子式(如,Cu2SO4N2C4H12。此分子式 仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10.退出 XPREP 运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入 aaa 11.检查是否产生有 PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12.更名: REN aaa.f2 aaa.hkl 13.用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其 偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14.键入 SHELXS aaa 或 XS aaa,(INS 文件中, TREF 为直接法, PATT 为 Pattersion 法) 15.XP,(进入 XP 程序)(可能产生计算内址冲突问题,注意选择处理) 16.READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如 aaa.ins) 17.FMOL ,(不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H,)(读取各参数,屏幕上显示各原子的键合情况) 18.MPLN/N, (机器认为最好取向) 19.PROJ, (随意转动,直至你认为最理想取向) 20.PICK,(认为合理的位置投相应原子,如C原子键入C8,注意序号不能重复;不合理 的用剔除,暂时不确定用空格键放弃,完成或不再投原子时键入 "/")

(完整版)常见晶胞模型

氯化钠晶体 (1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。 CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。

Si O 金刚石 金刚石晶胞 金刚石晶胞分位置注释 (1)金刚石晶体 a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。键角109°28’ b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的C 原子全部换成Si 原子,健长稍长些便可得到晶体硅的晶胞。 (3)某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互不相邻的立方体体心的为C 原子,反之亦可) a 、每个SiC 晶胞中含有 4 个硅原子,含有 4 个碳原子 b 、1mol SiC 晶体中有4 mol Si —C 共价键 (4)SiO 2 晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可得到SiO 2晶胞。 a 、每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为__正四面体_型,S iO 2晶体中最小的环为 12 元环 b 、每个Si 原子被 12 个十二元环共用,每个O 原子被 6 个 十二元环共用 c 、每个SiO 2晶胞中含有 8 个Si 原子,含有 16 个O 原子 d 、1mol Si O 2晶体中有 4 mol 共价键 (5)晶体硼 已知晶体硼的基本结构单元是由B 原子构成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点各有一个B 原子。通过观察图形及推算,可知此结构单元是由__12_个B 原子构成,其中B —B 键间的夹角是__60°__。假设将晶体硼结构单元中每个顶角均削去,余下部分的结构与C 60相同,则C 60由_12_个正五边形和_20个正六边形构成。

晶体结构解析基本步骤

晶体结构解析基本步骤-CAL-FENGHAI.-(YICAI)-Company One1

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP 收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除

晶体结构解析步骤

晶体结构解析步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PA TT为Pattersion法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况)

晶体结构解析的过程

晶体结构解析的过程 (2010-06-10 16:49:31) 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。 得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息;

hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol 出现一系列的Q峰信息。每次打开xp后都要先输入此命令。

相关文档
最新文档