勾股定理拓展与拔高

合集下载

勾股定理拔高-讲义

勾股定理拔高-讲义

勾股定理 拔高训练1.如图,P 是等边三角形ABC ∆内的一点,连结PA 、PB 、PC ,以BP 为边作60=∠PBQ ,且BQ=BP ,连结CQ 、PQ ,若PA :PB :PC=3:4:5,试判断PQC ∆的形状。

2.如图,ADC ∆和BCE ∆都是等边三角形,30=∠ABC ,试说明:222BC AB BD +=3.在等腰直角三角形中,AB=AC,点D 是斜边BC 的中点,点E 、F 分别为AB 、AC 边上的点,且DE ⊥DF 。

(1)说明:222EF CF BE =+ (2)若BE=12,CF=5,试求DEF ∆的面积。

4。

为了美化环境,计划在某小区用草地铺设一个等腰三角形,使它的面积为30平方米且有一边长为10米,求另外两条边。

勾股定理提高训练(一)1、在Rt △ABC 中,若直角边的长分别为1cm ,2cm ,则斜边长为_____________.2、已知直角三角形的两边长为3、2,则另一条边长是________________.3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 4、在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( ) A.2 B.4 C.6 D.85、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.6、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.CDB第7题FEDCBA第9题BA6cm3cm 1cm第10题图CBA715242520715202425157252024257202415(A)(B)(C)(D)7、如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是__. 8、把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.9.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与 A 点重合,则EB 的长是( ). A .3B .4 CD .510、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要__cm ; ②如果从点A 开始经过4个侧面缠绕3圈到达点B ,那么所用细线最短需要______cm .勾股定理提高训练(二)1、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°2、下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B 。

八年级数学勾股定理拓展提高(勾股定理)拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理)拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理)拔高练习试卷简介:本测试卷共有13道题,其中5道填空题,5道解答题,3道证明题,分四个板块,板块一为回顾练习,回顾暑期学到的关于勾股定理的主要知识,相关题目为教材1、2、3题;板块二为直角三角形六大性质,勾股定理只是直角三角形六大性质之一,将直角三角形的性质一网打尽,相关题目为教材4、5、6、8题;板块三为折叠专题,此类题为中考常考题,需熟练掌握,相关题目为教材9、10、12题;板块四为勾股定理实际应用,有典型的拱桥问题,台风问题,趣味性强,相关题目为教材14、16题。

学习建议:1.题目中有关于直角三角形边的关系,就要想到用勾股定理。

2.折叠专题要注意解题套路,第一步:找准折痕;第二步:找准相等线段,相等角度;第三步:找直角三角形。

3.勾股定理实际应用要能根据题意和生活经验抽象出数学模型,然后用勾股定理相关知识解答。

一、填空题(共5道,每道4分)1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______.答案:第一种情况:当高AD在三角形内部时,如图所示,利用勾股定理求出:BD=9,CD=5,BC=14,所以周长为13+14+15=42第二种情况:当高AD在三角形外部时,如图所示,同样由勾股定理求出周长为32所以,答案为42或32解题思路:此题没有给出图形,需要自己画图,所以要分类讨论:高在内部,高在外部。

易错点:只想到第一种情况,忽略了高在外部的情况,导致少一种情况。

试题难度:三颗星知识点:三角形2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.答案:解:由于△ABC≌△CDE,所以BC=DE∵S1是以AB为边长的正方形的面积,S2是以DE为边长的正方形的面积∴S1+S2=AB2+DE2=AB2+BC2=AC2=1,同理:S3+S4=3,故S1+S2+S3+S4=4.解题思路:要能从图形中看出那两个三角形是全等的,利用全等后对应边相等来运用勾股定理易错点:看不出哪两个三角形是全等的关系试题难度:二颗星知识点:勾股定理的应用3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____.答案:解:一边上的中线等于他的一半,则他一定是一个直角三角形。

勾股定理怎么算_勾股定理常用11个公式_勾股定理拓展提高之动态几何(勾股定理)拔高练习

勾股定理怎么算_勾股定理常用11个公式_勾股定理拓展提高之动态几何(勾股定理)拔高练习

八年级数学勾股定理拓展提高之动态几何(勾股定理)拔高练习一. 计算题(本大题共8小题,共40分)1.(本小题5分)如图,某人在B处通过平面镜看见在B正上方3米处的A物体,已知物体A到平面镜的距离为2米,问B点到物体A的像A′的距离是多少?核心考点:勾股定理则 =_____.核心考点:勾股定理3.(本小题5分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?核心考点:勾股定理轴对称的性质的最小值是?核心考点:勾股定理轴对称的性质5.(本小题5分)如图:正方形ABCD中有一点P,且PA=1,PB=2,PC=3,求∠APB的度数.核心考点:勾股定理旋转的性质梯形ABCD的面积.核心考点:勾股定理旋转的性质7.(本小题5分)如图,P是等边三角形ABC内一点,AP=3,BP=4,CP=5,求∠APB的度数.核心考点:勾股定理旋转的性质CE=4 ,求DE 的长.(2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论.核心考点:等腰三角形的性质勾股定理线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长核心考点:三角形三边关系勾股定理11.(本小题10分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.核心考点:勾股定理旋转的性质12.(本小题10分)如图,在Rt13.(本小题10分)(2008天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACE的内部旋转时,如图①,求证:MN²=AM²+BN²(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN²=AM²+BN²是否仍然成立?若成立,请证明;若不成立,请说明理由核心考点:旋转的性质运动变化型问题2AD=BD+CD核心考点:勾股定理旋转的性质勾股定理试题一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣52.(2016•台州)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.3.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.44.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5C.3,4,6 D.3,4,75.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.6.(2016•哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里7.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+18.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条9.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.510.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4参考答案与试题解析一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长【解答】解:如图,延长BG交CH于点E在△ABG和△CDH中∴△ABG≌△CDH(SSS)AG2+BG2=AB2∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°∴∠1+∠2=90°,∠5+∠6=90°又∵∠2+∠3=90°,∠4+∠5=90°∴∠1=∠3=∠5,∠2=∠4=∠6在△ABG和△BCE中∴△ABG≌△BCE(ASA)∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°∴GE=BE﹣BG=8﹣6=2同理可得HE=2在RT△GHE中,GH===2故选:B【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键。

初中数学知识归纳勾股定理的推广与应用

初中数学知识归纳勾股定理的推广与应用

初中数学知识归纳勾股定理的推广与应用勾股定理是数学中的重要定理之一,它描述了直角三角形中各边长度之间的关系。

在初中数学学习中,勾股定理是一个重要的基础知识点。

本文将对勾股定理进行推广与应用的知识进行归纳总结。

一、勾股定理的基本概念勾股定理又称毕达哥拉斯定理,指的是直角三角形中,直角边的平方等于另外两条边平方和。

它的数学表达式为:a² + b² = c²,其中a、b 为直角边,c为斜边。

二、勾股定理的推广1. 勾股定理的逆定理逆定理指的是如果一个三角形三边的平方符合a² + b² = c²的关系,那么这个三角形就是直角三角形。

这是勾股定理的逆定理,通过此定理可以判断一个三角形是否为直角三角形。

2. 勾股定理的推广形式勾股定理还可以推广到更多的几何图形中,如四边形、五边形等。

根据勾股定理,我们可以得出四边形的对角线之间的关系以及五边形中对角线的关系,从而解决一些几何问题。

三、勾股定理的应用1. 解决直角三角形的边长问题利用勾股定理,我们可以通过已知两边求第三边的长度,或者已知两边和斜边,求其中一边的长度等。

这种应用是勾股定理最基础的应用之一。

2. 应用于解决几何图形问题除了解决三角形的边长问题外,勾股定理还可以应用于解决一些几何图形的面积、周长等问题。

例如,利用勾股定理可以求得直角三角形的面积,或者利用勾股定理的推广形式,求得四边形的面积等。

3. 应用于解决实际生活问题勾股定理在实际生活中也有很多应用,例如测量房屋的对角线长度、测量地图上两个地点之间的距离、解决船、飞机航行中的导航问题等。

勾股定理的应用帮助我们更好地理解和解决实际问题。

四、勾股定理在高中数学的拓展在高中数学中,勾股定理还有很多拓展应用,例如三角函数的推导与证明、向量和坐标系的运用等。

这些内容超出了初中的范围,在高中学习时会进一步加深对勾股定理的理解。

综上所述,初中数学中的勾股定理是一个重要的基础知识点,它的推广与应用帮助我们解决了很多几何问题。

初中数学拔高辅导(勾股定理拓展提高之动态几何)

初中数学拔高辅导(勾股定理拓展提高之动态几何)

初中数学拔高辅导(勾股定理拓展提高之动态几何)板块一:通过位置变换找勾股关系(对称变换) 教材1题:如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.教材2题:如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?教材3题:如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是?教材4题:(2010宁德市)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.(1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.解:⑴∵△ABE 是等边三角形, ∴BA =BE ,∠ABE =60°. ∵∠MBN =60°,∴∠MBN -∠ABN =∠ABE -∠ABN. 即∠BMA =∠NBE. 又∵MB =NB ,∴△AMB ≌△ENB (SAS )⑵①当M 点落在BD 的中点时,AM +CM 的值最小ABPCB小河D CCBA②连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM根据“两点之间线段最短”,得EN +MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.设正方形的边长为x,则BF=√3/2x,EF=x/2在Rt△EFC中,∵EF²+FC²=EC²,(x/2)²+(√3/2x+x)²=(√3+1)²解得x=√2板块二:通过位置变换找勾股关系(旋转变换)教材5题:如图:正方形ABCD中有一点P,且PA=1,PB=2,PC=3,求∠APB的度数.(2012•盐城二模)阅读下列材料:问题:如图1,P为正方形ABCD内一点,且PA:PB:PC=1:2:3,求∠APB的度数.小娜同学的想法是:不妨设PA=1,PB=2,PC=3,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连接PE,问题得以解决.请你回答:图2中∠APB的度数为135°.请你参考小娜同学的思路,解决下列问题:如图3,P是等边三角形ABC内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA、PB、PC的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于60°、65°、55°.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质;作图—复杂作图.分析:图2中,根据旋转的性质知△BCP≌△BAE.由全等三角形的对应边相等、等腰三角形的判定推知△BPE是等腰三角形,则∠BPE=∠BEP=45°;然后由全等三角形的对应边相等、勾股定理证得∠APE=90°;最后根据图中角与角间的数量关系求得∠APB=135°;(1)设法把PA、PB、PC相对集中,将△BCP绕点B顺时针旋转60°得到△ACM,然后连接PM,问题得以解决.(2)根据旋转的性质知∠PCM=60°,△BCP≌△ACM.然后根据全等三角形的对应边、对应角相等,周角的定义以及三角形内角和定理来求以PA、PB、PC的长度为三边长的三角形的各内角的度数.解答:解:如图2.∵根据旋转的性质知∠PBE=90°,△BCP≌△BAE.∴BP=BE,PC=AE,∴∠BPE=∠BEP=45°.又PA:PB:PC=1:2:3,∴AE2=AP2+PE2,∴∠APE=90°,∴∠APB=∠APE+∠BPE=90°+45°=135°,即图2中∠APB的度数为135°.故答案是:135°;(1)如图3,将△BCP绕点C顺时针旋转60°得到△ACM,然后连接PM,△APM即为所求,即以PA、PB、PC的长度为三边长的一个三角形是△APM.以PA、PB、PC的长度为三边长的一个三角形是△APM.(2)如图3.∵根据旋转的性质知∠PCM=60°,△BCP≌△ACM.∴PC=CM,∠AMC=∠BPC=125°,∴△PCM是等边三角形,∴∠MPC=∠PMC=60°,∠AMP=∠AMC-∠PMC=65°.∵∠APB=115°,∠BPC=125°,∠APB+∠BPC+∠MPC+∠APM=360°,∴∠APM=60°,∴∠PAM=180°-∠APM-∠AMP=55°.∴以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于60°、65°、55°.故答案是:60°、65°、55°.在正方形ABCD中 PA=1 PB=2 PC=3 P在正方形内部试求角APB的度数三角形旋转问题:在正方形ABCD中,PA=1,PB=2,PC=3,P在正方形内部试求∠APB的度数.解:将△ABP旋转至△CBP',△BPP'是等腰直角三角形,∠BPP'=45.△PP'C中,PP'=2√2,P'C=AP=1,PC=3,所以△PP'C是直角三角形,∠APB=∠BP'C=∠BP'P+∠PP'C=45+90=135教材6题:如图,四边形ABCD是直角梯形,且AB=BC,PA=1,PB=2,PC=3,求梯形ABCD的面积.DCABEFMN 图①教材7题:如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,E 、F 分别是BC 上两点,若∠EAF =45°,试推断BE 、CF 、EF 之间的数量关系,并说明理由.教材8题:如图,P 是等边三角形ABC 内一点,AP =3,BP =4,CP =5,求∠APB 的度数.教材9题:如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:EF 2=BE 2+CF 2.教材10题:(2008天津)已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.CABE MN 图②CBBCA。

勾股定理的推广解析几何中的扩展应用

勾股定理的推广解析几何中的扩展应用

勾股定理的推广解析几何中的扩展应用勾股定理的推广与解析几何中的扩展应用勾股定理是初中数学中常见且重要的定理,它表明在一个直角三角形中,直角边的平方等于另外两边平方和。

然而,勾股定理不仅仅局限于直角三角形,它在解析几何中有着更广泛的应用。

本文将探讨勾股定理的推广以及在解析几何中的扩展应用。

一、勾股定理的推广勾股定理最初是应用于直角三角形,即已知一个直角和两个直角边,计算另外一个直角边的长度。

然而,在实际问题中,我们常常需要求解的不仅仅是直角三角形,而是一般的三角形。

为了满足这个需求,数学家们推广了勾股定理。

1. 倒角定理倒角定理是勾股定理的一种推广,它适用于任意三角形。

倒角定理指出,在一个三角形中,任意一条边的平方等于另外两条边平方的和减去这两条边乘积的两倍。

假设一个三角形的三边分别为a、b、c,倒角定理可以表示为:c² = a² + b² - 2abcos(C)其中,C为三角形的夹角C的度数。

2. 正弦定理正弦定理是勾股定理的另一种推广,它同样适用于任意三角形。

正弦定理指出,在一个三角形中,任意一条边的长度与它所对应的角度的正弦值成正比。

对于一个三角形的三边分别为a、b、c,对应的角度分别为A、B、C,正弦定理可以表示为:a/sin(A) = b/sin(B) = c/sin(C)通过倒角定理和正弦定理,我们可以推广勾股定理在一般三角形中的应用,从而解决更多的实际问题。

二、解析几何中的扩展应用除了在普通三角形中的应用,勾股定理还可以在解析几何中得到扩展应用。

1. 空间几何中的勾股定理勾股定理不仅仅适用于平面几何,还可以推广到空间几何。

在空间几何中,我们可以将三角形的顶点坐标表示为三维空间中的三个点,利用欧几里得距离公式来推导勾股定理。

设一个三角形的三个顶点坐标分别为A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),那么根据欧几里得距离公式有:AB² = (x2 - x1)² + (y2 - y1)² + (z2 - z1)²AC² = (x3 - x1)² + (y3 - y1)² + (z3 - z1)²BC² = (x3 - x2)² + (y3 - y2)² + (z3 - z2)²如果三个顶点组成的三条边满足AB² + BC² = AC²,那么这个三角形就是一个直角三角形。

勾股定理拓展提高

勾股定理拓展提高

勾股定理拓展与提高一、基础要点回顾:1、直角三角形中,两锐角______。

反过来,在三角形中,有两个锐角______,那么这个三角形是直角三角形。

如图1,Rt △ABC 中,∠A+∠B=_____。

反过来,△ABC 中,如果∠A+∠B=______,那么△ABC 是Rt △。

2、直角三角形中,300的锐角所对的直角边等于斜边的______。

反过来,直角三角形中,有一直角边等于斜边的______,那么这条直角边所对的锐角是300。

如图1,Rt △ABC 中,∠C=900,∠A=300,则AB BC _____=。

反过来,Rt △ABC 中,∠C=900,AB BC _____=,则∠A=300。

3、直角三角形中,斜边上的中线等于斜边的______。

反过来,在三角形中,如果一边上的中线等于这边的_______,那么这边所对的角是直角。

如图,Rt △ABC 中,CD 是AB 边的中线,则AB CD _____= 反过来,如果△ABC 中,CD 是AB 边的中线,且,AB CD _____=那么△ABC 是Rt △。

4、勾股定理:直角三角形中,两直角边的平方和等于___________。

如图3,Rt △ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c , 那么,____________________。

5、勾股定理的逆定理:三角形中,如果两边的平方和等于 第三边的平方,那么这个三角形是直角三角形。

如图3,△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,如果22c b a =+, 那么,____________________ 二、应用举例:例1、如图,在直角△ABC 中,∠ACB =90°,∠A =15°,CD ⊥AB 于D ,AC 边的垂直平分线交AB 于E ,那么AE ∶ED 等于( ) A .1∶1 B .1∶2 C .3∶2 D .2∶3变式练习1:A图1A图2A图3ABEDAC1、如下图,一块直角三角形的纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm2、如图,折叠长方形的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长3、如图矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,将其折叠,使点D 与B 重合,那么折叠后DE 的长和CF 的长分别是多少?例2、如图,C 是AB 上一点,BC =2AC =2 cm ,以AC ,BC 为边在AB 的同侧作等边△ACD 与等边△BCE ,则DE 长为( )变式练习2:1、如图,四边形ABCD ,已知∠A=90°,AB=3,BC=12,CD=13,DA=4。

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版
第一章 勾股定理 培优拔高练 勾股定理的应用
1. [2024襄阳襄州区阶段练习]我国古代数学家赵爽为了证明
勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦
图”.如图是由弦图变化得到的,它是由八个全等的直角三
角形拼接而成的,记图中正方形 ABCD ,正方形 EFGH ,
正方形 MNKT 的面积分别为 S1, S2, S3, 若EF =6,则 S1+ S2+ S3的值是( D )
123
因为在△ ABC 中,∠ BAC =90°, AB =6, BC =10, 所以 AC =8, CQ = AB = AD =6. 所以 PB = AC = AI =8. 所以 IP =8+6+8=22, DQ =6+8+6=20. 所以长方形 KLMJ 的面积=22×20=440.
123
3. 【问题探究】(1)如图①,在锐角三角形 ABC 中,分别以 AB , AC 为边向外作等腰直角三角形 ABE 和等腰直角三 角形 ACD ,使 AE = AB , AD = AC ,∠ BAE =∠ CAD =90°,连接 BD , CE ,请判断 BD 与 CE 的数量关系,并说明理由;
( B) A.拨:如图,延长 AB 交 KL 于 P ,延长 AC 交 LM 于 Q , 由题意得,∠ BAC =∠ BPF =∠ FBC =90°, BC =BF , 所以∠ ABC +∠ ACB =90°=∠ PBF +∠ ABC . 所以∠ ACB =∠ PBF . 所以△ ABC ≌△ PFB (AAS).所以 PB = AC . 同理可得△ ABC ≌△ QCG . 所以 CQ = AB .
123
解: BD = CE . 理由如下: 因为∠ CAD =∠ BAE =90°, 所以∠ BAD =∠ EAC =90°+∠ BAC . 因为 AB = AE , AD = AC , 所以△ ABD ≌△ AEC (SAS). 所以 BD = CE .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理拓展与拔尖二. 知识点回顾1、 勾股定理的应用: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。

求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形(1) 先确定最大边(如c)(2) 验证2c 与22b a +是否具有相等关系(3) 若2c =22b a +,则△ABC 是以∠C为直角的直角三角形;若2c ≠22b a + 则△AB C不是直角三角形。

3. 勾股数: 满足22b a +=2c 的三个正整数,称为勾股数如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41三.典型题剖析:针对训练、延伸训练考点一 证明三角形是直角三角形1、 在正方形AB CD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC,求证:ÐEFA=90°。

针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C的对边分别是a 、b、c,满足a 2+b 2+c 2+338=10a +24b+26c.试判断△A BC 的形状.考点二 运用勾股定理的逆定理进行计算例、如图,等腰△A BC中,底边BC =20,D 为AB 上一点,CD =16,BD =12,求△AB C的周长.针对训练:1、.已知:如图,四边形ABCD ,AD ∥BC ,AB =4,BC=6,CD=5,AD=3.求:四边形A BCD 的面积.考点三 勾股定理的折叠问题例、如图,在矩形AB CD 中,AB=3,BC=5,在CD 上任取一点E ,连接B E,将△BC E沿BE 折叠,使点E 恰好落在AD 边上的点F处,则CE 的长为 .AB DCFE针对训练:1、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )A.3B.C.5 D.考点四勾股定理的卡车通过大门问题例、某工厂的大门如图所示,其中四边形ABCD为长方形,上部是以AB为直径的半圆,其中AD=2。

3 m,AB=2 m,现有一辆装满货物的大卡车,高2.5m,宽1。

6m,试猜想这辆大卡车能否通过厂门?请说明理由.考点五勾股定理的探究和应用问题例、如图所示,有一块塑料模板ABCD,长为10㎝,宽为4㎝,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合)并在AD上平行移动:ﻫ①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由。

②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与D C的延ﻫ长线交于点Q,与BC交于点E,能否使CE=2㎝?若能,请你求出这时AP的长;若不能,请说明理由。

ﻫﻫ针对训练:1观察下列图形,回答问题:问题(1):若图①中的△DEF为直角三角形,正方形P的面积为9,正方形Q的面积为15,则正方形M的面积为。

问题(2):如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,这三个半圆的面积之间的关系是;(用图中字母表示)ﻫ问题(3):如图③,如果直角三角形两直角边的长分别为3和4,以直角三角形的三边为直径作半圆,请你利用上面中的结论求出阴影部分的面积.ﻫ考点六勾股定理的设计问题例、国家电力总公司为了改善农村用电费用过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A,B,C,D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.针对训练:1如图所示,铁路上有A、B两点(看做直线上两点)相距40千米,C、D为两村庄(看做两个点),AD⊥AB,BC垂直AB,垂足分别为A、B,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈,使得C、D两村到煤栈的距离相等,问煤栈应建在距A点多少千米处?ﻫ考点七勾股定理的最短路径问题例、在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)针对训练:1如图,是一块长、宽、高分别是4cm,2cm和1cm的长方体木块、一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是( )A.5cm B.5。

4cmC.6。

1cm D.7cmﻫ考点八勾股定理的勾股数问题常见的勾股数及几种通式有:(1)(3,4, 5), (6, 8,10) ……3n,4n,5n (n是正整数)(2)(5,12,13),(7,24,25),( 9,40,41)……(3)(8,15,17),(12,35,37)……(4)m2-n2,2mn,m2+n2 (m、n均是正整数,m〉n) 简单列出一些:课堂小测试(8分钟)1. 一个直角三角形,有两边长分别为6和8,下列说法中正确的是( )A。

第三边一定为10 B.三角形的周长为24 C。

三角形的面积为24 D.第三边有可能为102.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 ﻩﻩB 、14ﻩﻩ C 、7ﻩﻩD 、7或253.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( )A 、a=1。

5,b=2, c=3ﻩﻩB、a =7,b=24,c=25 C、a=6, b=8, c=10 D 、a =3,b =4,c=53.三角形的三边长为(a+b )2=c 2+2ab ,则这个三角形是( )A. 等边三角形; B. 钝角三角形; C 。

直角三角形; D 。

锐角三角形。

4、一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是( ) A.4B.310 C 。

25D.512 5.已知R t△AB C中,∠C =90°,若a+b=14cm ,c=10cm,则Rt △ABC 的面积是( ) A 、24cm 2B 、36cm 2ﻩﻩC 、48cm 2 ﻩD 、60cm 26、直角三角形中,斜边长为5c m,周长为12cm,则它的面积为( )。

A.122cm B .62cm C.82cm D .92cm7.等腰三角形底边上的高为6,周长为36,则三角形的面积为( )A、56ﻩﻩB、48 ﻩC、40ﻩﻩD、328.Rt△一直角边的长为9,另两边为连续自然数,则Rt△的周长为()A、121B、120 ﻩC、90 D、不能确定9.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A、25海里ﻩB、30海里ﻩC、35海里D、40海里10。

放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ).A、600米B、800米C、1000米D、不能确定勾股定理独立作业(20分钟)1.下列各组数据中,可以构成直角三角形的是( )A.13、16、19 B.17、21、23 C.18、24、36 D.12、35、372.有长度为9cm、12cm、15cm、36cm、39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为( )A.1个 B.2个C.3个D.4个3.在△ABC中,AB=12cm,BC=16cm,AC=20cm,则S△ABC为( )A.96cm2 B.120cm2 C.160 cm2 D.200 cm24.若线段a、b、c能组成直角三角形,则它们的比可以是( )A.1︰2︰4 B.1︰3︰5 C.3︰4︰7D.5︰12︰135.若直角三角形的两直角边的长分别是10cm、24cm,则斜边上的高为( )A.6cm B.17cm C.24013cm D.12013cm6.有下面的判断:①△ABC中,222a b c+≠,则△ABC不是直角三角形。

②△ABC是直角三角形,∠C=90°,则222a b c+=。

③若△ABC中,222a b c-=,则△ABC是直角三角形。

④若△ABC是直角三角形,则2a b a b c(+)(-)=。

以上判断正确的有( )A.4个 B.3个 C.2个 D .1个7.Rt△ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是( )A.25B.7C.12 D.25或7 8.一个三角形的三边之比是3︰4︰5,则这个三角形三边上的高之比是( ) A .20︰15︰12 B .3︰4︰5 C.5︰4︰3D.10︰8︰2 9.在△ABC 中,如AB=2BC,且∠B =2∠A ,则△AB C是( )A .锐角三角形B .直角三角形C .钝角三角形 D.不能确定10.如图是一个边长为60cm的立方体A BC D-EFGH ,一只甲虫在菱EF 上且距F 点10cm 的P处,它要爬到顶点D ,需要爬行的最近距离是( )A.130 B.10157C.97D.不确定11.若△ABC 中,∠A=2∠B =3∠C ,则此三角形的形状为( ) A .锐角三角形 B.直角三角形 C .钝角三角形 D.无法确定12.如图,△A BC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E,下面等式错误的是( )A.222AC +DC =ADB.222AD DE AE -=C.222AD =DE +ACD .2221BD BE BC 4-=。

相关文档
最新文档