ANSYS齿轮接触分析案例

合集下载

基于ANSYS_LS_DYNA的直齿锥齿轮动力学接触仿真分析

基于ANSYS_LS_DYNA的直齿锥齿轮动力学接触仿真分析

基于ANSYS/LS 2DY NA 的直齿锥齿轮动力学接触仿真分析高 翔,程建平(江苏大学汽车与交通工程学院,江苏镇江 212013)摘要:针对直齿锥齿轮疲劳破坏中出现儿率最高的齿面接触疲劳强度问题,在UG 中建立齿轮几何模型,利用ANSYS/LS 2DY NA 对齿轮进行动力学接触仿真分析,计算了齿轮副在啮合过程中齿面接触应力、应变的变化情况及两对轮齿同时接触过程中接触压力的分布情况。

关键词:直齿锥齿轮;AN S YS /LS 2D Y NA;动力学;接触仿真分析中图分类号:TH132.421 文献标识码:A 文章编号:1006-0006(2008)02-0050-02Dynam ic Contact Emulate Analysis of Bevel Gear with ANSYS/LS 2DY NAGAO X iang,CHEN G J ian 2ping(School of Aut omotive and Traffic Engineering,J iangsu University,Zhenjiang 212013,China )Ab s tra c t:Geometrical model of a bevel gear is established and bevel gear dyna m ic emulati on analysis is operatedwith ANSYS/LS 2DY NA s oft w are f or that the fatigue failure p r obability of bevel gear is the highest in t ooth surfaces contact fatigue resistance .The contact stress and def or mati on during the meshing p r ocess are calculated .And the distributi on of contact f orce is calculated when t w o pairs of teeth contact si m ultaneously .Key wo rd s:Bevel gear;ANSYS/LS 2DY NA;Dyna m ic;Contact si m ulati on analysis 由于车用齿轮的传动比和传递功率大,加工难度与成本都相当高,所以如何提高车用齿轮的传动性能与使用寿命,近年来一直深受社会各界的广泛关注。

基于ANSYS的Logix齿轮啮合接触分析

基于ANSYS的Logix齿轮啮合接触分析

0引言差速器作为汽车动力传动系统的重要组成部分,在汽车于凹凸不平的路面上行驶或转弯时,能够限制左右(或前后)驱动轮以不同的速度旋转,确保驱动轮以纯滚动状态行驶。

差速器齿轮的优化设计对保证差速器强度和耐久度,保证车辆安全可靠行驶,提高整车驾驶性,减少能源消耗等具有重要意义。

差速器的齿轮传动性能的影响因素之一是齿形;目前广泛应用于差速器的齿廓曲线齿轮有渐开线齿轮、圆弧齿轮和Logix 齿轮。

日本学者小守勉首次提出了名为Logix 齿轮(Logix Gear )的新型齿轮。

如图1所示,Logix 齿形由多条微段渐开线连接而成,其节圆内外为凹凸形式,在啮合时齿廓上分布着大量相对曲率为0的结合点[1]。

取任一点O 1作夹角为α0的两条射线O 1N 1和O 1n 0,分别与节线P.L 交于N 1和n 0两点,其中O 1N 1与节线P.L 垂直。

取O 1n 0=G 1,并作线段O 1O′1=2G 1,使其与O 1n 0夹角为δ(称为相对压力角[2])。

若以O 1和O′1为圆心,以G 1为半径分别作两个相切的基圆,和节线P.L 分别交于N 1和n 0两点。

取g 1s 1为两圆的发生线,则根据渐开线的形成原理,曲线m 0s 1和m 1s 1分别是发生线g 1s 1沿O 1和O′1的基圆滚过弧长g 1n 1和g 1n 0形成的渐开线。

1Logix 齿轮副有限元模型根据齿轮啮合理论,Logix 齿轮由于各微段渐开线的结合点在啮合时相对曲率为零,大量零点的啮合使得齿轮的滑动系数非常小,基本上能够实现滑动摩擦,从而增加齿轮表面的接触疲劳强度。

差速器是车辆驱动桥的核心部件,建立一套针对差速器Logix 齿轮的高精度、普适性仿真模型,对保证整车动力传递及疲劳耐久性能起着关键作用。

本文主要选用有限元软件ANSYS 进行Logix 齿轮接触应力和齿根弯曲应力的仿真分析,一方面充分利用ANSYS 接触分析功能强大和后处理操作简便,运算速度快,结果可靠性高等优点,另一方面考虑ANSYS 前处理与ProE 等建模软件的契合度高,建好的模型导入过程顺利,节省了模型导入过程中可能的数据错误,提高了解算的准确性,有利于提高产品设计的优化效率。

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。

接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。

ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。

本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。

二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。

解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。

数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。

ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。

接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。

三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。

用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。

2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。

接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。

3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。

可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。

四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。

基于ANSYS的直齿面齿轮的承载接触分析

基于ANSYS的直齿面齿轮的承载接触分析
3. 1 等效转矩为 300 N# m 时的齿面接触状况 图 7( a) ~ 图 7( e)给出了等效转矩为 300 N# m
时, 面齿轮轮齿在一个啮合周期内 5 个啮合位置的 接触情况。其中: 图 7( a)为初始啮合位置的接触情 况, 图 7( e)为啮合终了位置的接触情况。 (图中 U 为啮合点处面齿轮相对于 初始啮合位置的转角 )。 图 7( a)和图 7( b)为前一个啮合周期的状态, 从图 7 ( c) 开始齿 轮进入与 下一齿的 啮合位 置。图 中清 晰、直观地显示了不同啮合位置面齿轮轮齿接触区
表 3 接触区椭圆长轴 ( 300 N# m )
图7
右齿
中间齿
左齿
位置 1 位置 2
31 261 mm 21 832 mm
101 673 mm 91 327 mm
0 41 616 mm 61 720 mm
位置 4
0
51 787 mm 91 827 mm
位置 5
0
41 382 mm 111235 mm
域的位置和形状变化, 反映了 齿轮副的啮合性 能。 理论上讲, 面齿轮啮合时为点接触, 而在加载时齿面 形成椭圆状接触区, 接触区的大小用接触椭圆的长 轴来衡量。
93 4
机械科学与技术
第 28卷
表 2 齿面最大接触应力 ( 300 N# m)
图7
右齿
中间齿
左齿
位置 1 位置 2
4431 168 M Pa 4991108 MP a
3. 2 当等效转矩为 500 N# m时的齿面接触状况 从图 8的仿真结果和 表 4、表 5 显示的数据结
果可以看出: 面齿轮在加大载荷情况下的啮合状态 与 300 N# m 相比, 总体接触情况变化不大, 但随着 载荷的增加, 接触 椭圆长轴变长, 接触区域 相对变 大, 接触应力增加。在位置 2和位置 3也都发生了 边缘接触 (对应于面齿轮初始位置旋转 1b~ 2b), 最 大接触应力从 300 N# m时的 1150 MP a增加到 500 N# m 时的 1491 MPa, 由此可见, 载荷增大时, 会引 起在边缘接触时的接触应力急剧增加。

ANSYS齿轮接触应力分析案例

ANSYS齿轮接触应力分析案例

ANSYS齿轮接触应力分析案例齿轮是机械传动系统中常用的零部件,用于传递动力和转速。

在齿轮的工作过程中,由于受力情况复杂,容易发生接触应力过大导致齿轮损坏的情况。

为了确保齿轮的工作性能和寿命,需要进行接触应力的分析和优化设计。

ANSYS作为常用的有限元分析软件,可以用于进行齿轮接触应力的模拟和分析。

本文将以一个齿轮接触应力分析案例为例,介绍如何使用ANSYS软件进行接触应力的分析。

本案例以一对齿轮为例,通过对齿轮的建模、加载和分析过程,展示如何通过ANSYS软件进行齿轮接触应力的分析。

1.齿轮建模首先,在ANSYS软件中建立齿轮的几何模型。

可以通过CAD软件绘制齿轮的几何形状,然后导入到ANSYS中进行网格划分。

在建模过程中,需要考虑齿轮的齿形、齿数、模数等参数,并根据实际情况设置合适的几何形状。

2.设置加载在建模完成后,需要设置加载条件。

在本案例中,以齿轮传递动力时的载荷为例,可以通过施加力或扭矩来模拟齿轮的工作情况。

根据实际情况设置载荷大小和方向,以便进行接触应力的仿真分析。

3.网格划分接着对齿轮的几何模型进行网格划分,生成有限元网格。

在ANSYS中,可以通过自动网格划分功能或手动划分网格,确保模型的几何形状与加载条件得到合理的分析精度。

4.设置材料属性在进行齿轮接触应力分析前,需要设置材料的力学性质。

根据齿轮的实际材料属性,设置材料的弹性模量、泊松比等参数,以便进行接触应力的仿真分析。

5.运行分析设置完加载和材料属性后,可以进行齿轮接触应力的仿真分析。

在ANSYS中选择适当的分析模型和求解器,进行接触应力的计算和分布分析。

通过分析结果可以得到齿轮接触区域的应力分布情况,确定是否存在应力集中的问题。

6.结果分析最后,分析计算结果并进行结果的分析和优化。

根据接触应力的分布情况,确定齿轮的工作性能是否满足要求,是否存在应力过大导致损坏的风险。

如果需要,可以对齿轮的设计参数进行调整和优化,以提高齿轮的工作性能和寿命。

ansys齿轮接触分析案例

ansys齿轮接触分析案例

加载与求解
01
施加约束
根据实际情况,对齿轮的轴孔、 端面等部位施加适当的约束,如 固定约束、旋转约束等。
02
03
施加接触力
求解设置
根据齿轮的工作状态,在齿面之 间施加接触力,模拟实际工作情 况。
设置合适的求解器、迭代次数、 收敛准则等,确保求解的准确性 和稳定性。
后处理
结果查看
查看齿轮接触分析的应力分布、应变分布、接触压力分布等 结果。
02
分析接触区域的大小、应力分布情况,评估齿轮的传动性能和
寿命。
根据分析结果,优化齿轮的设计和制造工艺,提高其传动性能
03
和寿命。
06
CATALOGUE
ansys齿轮接触分析案例四:蜗轮蜗杆
问题描述
蜗轮蜗杆传动是一种常见的减速传动 方式,具有传动比大、传动平稳、噪 音低等优点。但在实际应用中,蜗轮 蜗杆的接触问题常常成为影响其性能 和寿命的关键因素。
属性。
边界条件和载荷
01
约束蜗杆的轴向位移,固定蜗轮的底面。
02 在蜗杆的输入端施加扭矩,模拟实际工作状态。
03 考虑温度场的影响,在模型中设置初始温度和环 境温度,并考虑热传导和热对流。
求解和结果分析
进行静力分析和瞬态动力学分析,求解接触应力 分布、摩擦力变化以及温度场分布等。
对求解结果进行后处理,提取关键数据,进行可 视化展示。
通过齿轮接触分析,可以发现潜在的 应力集中区域和齿面磨损问题,提高 齿轮的可靠性和寿命。
齿轮接触分析的应用领域
汽车工业
用于研究汽车变速器、发动机和传动系统中的齿轮接触行为,优 化齿轮设计以提高燃油经济性和可靠性。
风电领域
用于研究风力发电机组中齿轮箱的齿轮接触行为,提高风力发电设 备的效率和可靠性。

基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析

基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析

课程论文(2015-2016学年第二学期)基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析摘要:空间曲线啮合齿轮是近几年来华南理工大学教授陈扬枝提出的新型齿轮,对该齿轮的弯曲应力和强度设计准则都有了一定的研究。

因此,本文主要是利用ANSYS WORKBENCH软件来对该齿轮来进行接触分析的进行探讨,介绍了接触分析的方法,为空间曲线啮合齿轮提供了一种新的分析方法。

用两个初始参数几乎完全一样的两个齿轮对来进行比较分析,得到交错轴齿轮比交叉轴齿轮的等效应力更大;安装位置对分析的结果的影响也很大;等效应变和变形都能够满足我们实际的需求等这些结论。

关键词:ANSYS WORKBENCH 空间曲线啮合齿轮接触分析1.引言传统的齿轮的形式多种多样,用有限元对传统齿轮的机构进行分析是目前研究采用得最多的一种方法。

而齿轮啮合过程作为一种接触行为,因涉及接触状态的改变而成为一个复杂的非线性问题。

因此近年来,国内外学者开始采用接触有限元法对齿轮进行分析。

接触有限元法来分析齿轮结构,为齿轮的快速设计和进一步的优化设计提供条件。

空间曲线啮合齿轮(Space Curve Meshing Wheel, SCMW) [1~3]是近几年来由华南理工大学教授陈扬枝提出的新型齿轮,而空间曲线啮合交错轴齿轮则是可以运用于空间交错轴上的啮合齿轮。

不同于基于齿面啮合理论的传统齿轮机构[4、5],它们是基于一对空间共轭曲线的点啮合理论。

它的特点是:传动比大、小尺寸、质量轻等。

课题组前期已经研究了适用于该空间曲线啮合轮机构的空间曲线啮合方程[6],重合度计算公式[7],强度设计准则[8]以及制造技术[9]等,并设计出微小减速器[10]。

同时,对于该齿轮的等强度设计等方面正在进行研究。

ANSYS WORKBENCH是用ANSYS 求解实际问题的产品,它是专门从事于模型分析的有限元软件,能很好地和现有的CAD三维软件无缝接口,来对模型进行静力学、动力学和非线性分析等功能。

基于ANSYSWorkbench的直齿轮接触分析_周钊

基于ANSYSWorkbench的直齿轮接触分析_周钊
将本文各物理量数据代入式(1),计算得直齿轮 副的最大接触应力为 736.8 MPa,最大切应力表达式
为 max 为 0.3 σH, 最大切应力的理论解为 221 MPa。 最大接触应力和最大切应力的理论解与有限元解 误差很大。 一般来说,小的接触刚度会导致大的穿 透深度,会产生较大的误差。 增大接触刚度来抵抗 穿透,使有限元仿真结果更可靠。
图 1 齿轮分割几何模型 齿轮接触处应力变化急剧, 需要设定较密网 格,而远离关注部位的非接触区域,改用较大尺寸
收 稿 日 期 :2011-10-06 基 金 项 目 :湖 北 省 教 育 厅 优 秀 中 青 年 课 题 (Q20082301);湖 北 汽 车 工 业 学 院 学 生 科 研 项 目 (S201003018)
Abstract: Taking a pair of meshing involute spur gears as the research object, the finite element model is established for spur gears contact by ANSYS Workbench. The gears are simulated based on nonlinear contact method and finite element analysis. The corresponding calculation results of different contact stiffness values are listed and the convergence is analyzed. The simulation results are compared with the traditional theory. The results show it is feasible to analyze gear contact by using finite element method. Key words: finite element; spur gear; contact stress; contact stiffness
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮的接触分析实例
(16)在柱面坐标系中创建圆弧线。 a.从主菜单选择Preprocessor>Modeling>Create>Lines> Straight Line +。 b.分别选择关键点10和1,1和2,2和3,3和4,4和5,5和6, 6和7,7和8,8和9,完毕点击【OK】。 (17)把齿轮边上的线加起来,使其成为一条线。 a.从主菜单选择 Preprocessor>Modeling>Operate>Booleans>Add>Lines。 b.在图形窗口选择方才建立的齿轮边上的线,在对话框中点 击【OK】。
齿轮的接触分析实例
(8)将当前坐标系设置为总体柱坐标系。从实用菜单中选 择WorkPlane>Change Actives CS to>Global Cylindrical。 (9)建立其余的辅助点。 按照与(3)同样的步骤建立其余的辅助点,设置编 号一次为120,130,140,150,160,其坐标依次为 (16,43)、(16,46)、(16,49)、(16,52)、 (16,55)。
齿轮的接触分析实例
(3)定义一个点作为辅助点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立辅助点110。如下图,完毕点击【OK】。
齿轮的接触分析实例
(4)偏移工作平面到给定位置。 a.从实用菜单中选择 WorkPlane>Offset WP to>Keypoints + 。 b.在ANSYS图形窗口选择110号辅 助点,点击【OK】。 (5)旋转工作平面 a.从实用菜单中选择 WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX,ZXAngles”文本 框中输入-50,0,0,点击【OK】.
齿轮的接触分析实例
(15)建立编号为8,9,10的关键点。 a.将当前坐标系设置为总体柱坐标系。从实用菜单中选择 WorkPlane>Change Actives CS to>Global Cylindrical。
齿轮的接触分析实例
b.从主菜单选择 Preprocessor>Modeling>C reate>Keypoints>In Active CS。 c.建立关键点8。 X=24,Y=9.857。完毕点击 【Apply】。 d.建立关键点9。X=24,Y=13。 完毕点击【 Apply 】。 g.建立关键点10。X=20,Y=-5。 完毕点击【OK】。 建立完毕后的结果如右图所示:
齿轮的接触分析实例
(20)将工作平面旋转13°。 a.从实用菜单中选择WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX Angles”文本框中输入13,0,0,点击【OK】。 (21)将激活的坐标系设置为工作平面坐标系: WorkPlane>Change Actives CS to>Working Plane。 (22)将所有线沿着X-Z面进行镜像(在Y方向)。 a.从主菜单中选择Preprocessor>Modeling>Reflect>Lines。 b.在对话框中选【Pick All】。 c.在弹出的对话框选择X-Z面,在增量中输入1000单击【OK】, 选择”Copied”,如下图。镜像结果。
齿轮的接触分析实例
(10)按照步骤(4),将工作平面平移到第二个辅助点。 (11)旋转工作平面。 a.从实用菜单中选择WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX,ZX Angles”文本框中输入3,0,0,点击 【OK】。 (12)将激活的坐标系设置为工作平面坐标系: WorkPlane>Change Actives CS to>Working Plane。 (13)建立第三个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点3。如下图,完毕点击【OK】。
齿轮的接触分析实例
(3)从实用菜单中选择File>Change Title,打开“Change Title”命令,可以自定义修改文件标题。新的文件标题为 “contact analysis of two gears”,为本实例的标题名。
单击【OK】按钮确定。
齿轮的接触分析实例 (4) 从实用菜单中选择Plot>Replot命令,自定 义的标题”contact analysis of two gears” 将显示在窗口左下角。 (5)从主菜单中选择Preference命令,在对 话框中选择“Structural”复选框,单击 【OK】按钮。
齿轮的接触分析实例
2. 2 定义单元类型 (1)从主菜单中选择Preprocessor>Element Type>Add/Edit/Delete,打开“Element Type”对话 框,单击【Add】。 (2)在下图的列表框中选择“Solid”, “4node 182”, 2 Solid”, 单击【OK】。
齿轮的接触分析实例
b.从主菜单选择Preprocessor>Modeling>Copy>Lines。 c.点击【Pick All】。 d.在弹出的提示框中按下图输入,点击【OK】。(Fit view)
齿轮的接触分析实例
(26)把齿底上的所有线粘起来。 a.从主菜单选择 Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.分别选择齿底上的两条线,点击【OK】。 (27)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择 Preprocessor>Modeling>Operate>Booleans>Add>Lines。 b.分别选择齿底上的两条线,点击【OK】。 c.把齿底上的所有线加起来。 (28)把所有线粘起来。 a.从主菜单选择 Preprocessor>Modeling>Operate>Booleans>Glue>Lines。
齿轮的接触分析实例
b.点击【Pick All】。结果如下图:
齿轮的接触分析实例
(29)用当前定义的所有线生成一个面。 a.从主菜单选择Preprocessor>Modeling>Create>Areas> Arbitrary>By Lines。 b.选取所有的线,点击【OK】,结果如下图:
齿轮的接触分析实例
齿轮的接触分析实例
(14)重复以上步骤,建立其余的辅助点和关键点:按照 (10)-(13)步,分别把工作平面平移到编号为130, 140,150,160的辅助点,然后旋转工作平面,旋转角度 均为3,0,0,再讲工作平面设为当前坐标系,在工作平面中 分别建立编号为4,5,6,7的关键点,其坐标依次为 (14.513,0)、(15.351,0)、(16.189,0)、 (17.027,0)。建立完毕后的结果如下图所示:
毕点击【OK】,并退出材料属性设 置对话框。
齿轮的接触分析实例
2.5 建立齿轮面模型
(1)将当前坐标系设置为总体柱坐标系。从实用菜单中选择 WorkPlane>Change Actives CS to>Global Cylindrical。 (2)定义一个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点1。如下图,完毕点击【OK】。
齿轮的接触分析实例 分析问题:一对啮合的齿轮在工作时产生接触,分析其接触 的位置、面积和接触力的大小。
齿轮的接触分析实例
1. 相关系数 • • • • • • • • 齿顶直径:24 齿底直径:20 齿数:10 厚度:4 密度:7.8E3 弹性模量:2.06E11 摩擦系数:0.1 中心距:44
齿轮的接触分析实例
齿轮的接触分析实例
在弹出的对话框中设置材料的弹性模量 EX=2.06E11,泊松比PRXY=0.3。如下图所示。设 置完毕后点击【OK】,回到材料属性对话框界面。
齿轮的接触分析实例 (2)依次双击Structural>Density,设置材料密
度为7.8E3。完毕点击【OK】退出。
齿轮的接触分析实例 (3)依次双击Structural>Friction Coefficient,
齿轮的接触分析实例
(6)将激活的坐标系设置为工作平面坐标系: WorkPlane>Change Actives CS to>Working Plane。 (7)建立第二个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点2。如下图,完毕点击【OK】。
2. 建立模型
2.1 设定分析作业名和标题 (1)从菜单中选择File>Change Jobname,打开“Change Jobname”命令,修改文件名。自定义新的文件名为 “gearscontact”,单击【OK】按钮,完成文件名的修改。
齿轮的接触分析实例
(2)从实用菜单中选择File>Change Directory,打开 “Change Directory”命令,可以自定义该文件的目标文件 夹,单击【确定】按钮。
齿轮的接触分析实例
c. ANSYS提示是否删除原来的线,选择【Delete】,点击 【OK】。
(18)偏移工作平面到总坐标系的原点: WorkPlane>Offset WP to>Global Origin。 (19)将工作平面与总体坐标系对齐: WorkPlane>Align WP with>Global Cartesian。
相关文档
最新文档