b确定一次函数表达式(图像)

合集下载

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

《用二元一次方程组确定一次函数表达式》优秀ppt课件

《用二元一次方程组确定一次函数表达式》优秀ppt课件

间的关系,观察图象,回答下列问题: L2
(1)途中乙发生了什么事? s
(2)他们几时相遇?
L1
P
D
12
E
10
AB
8
0 0.5 1 1.2
t
10
例:某长途汽车客运站规定,乘客可以免费携带一定 质量的行李,但超过该质量则需购买行李票,且行 李费y(元)是行李质量x(千克)的一次函数,现 知李明带了60千克的行李,交了行李费5元,王华 带了90千克的行李,交了行李费10元 (1)写出y与x之间的函数表达式 (2)旅客最多可免费携带多少千克的行李?
s 与t 之间的关系图象, 20 找出交点的横坐标就行了!
0
11 22(A)33 4 t
7
用方程 解 行程问题
A、B 两地相距150千米,
1 时后乙距A地
甲、乙两人骑自行车分别从A、
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数. 1 时后乙距A地120千米, 2 时后甲距A地 40千米.
12
2、仿例题,做习题, 完成P127的随堂练习1-2题。
13
课堂检测
1.已知一次函数 y kx 5与y 3x b的图象 交点为 P(2,3), 则k _1__, b -_9__ . 2.已知一次函数 y 2x a与y x b的图象都 经过点 A(2,0), 且与 y轴分别交于 B, C两点,则
5.7 用二元一次方程组确 定一次函数表达式
1
任意一个二元一次方程都可以转 化成y=kx+b的形式,所以每个二 元一次方程都对应一个一次函数.

初中数学知识点精讲精析 确定一次函数的表达式

初中数学知识点精讲精析 确定一次函数的表达式

4 确定一次函数的表达式学习目标1. 了解两个条件确定一次函数。

2. 能根据所给信息(图像、表格、实际问题等)确定一次函数的表达式。

知识详解1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式。

(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx(k≠0)中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式。

②一次函数y=kx+b(k≠0)有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值。

用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式。

2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数。

(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式。

【典型例题】例1:一次函数图象如图所示,求其解析式.【答案】设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【解析】利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式。

一次函数的图像和性质

一次函数的图像和性质

图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×

|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0

确定一次函数的表达式

确定一次函数的表达式

确定一次函数的表达式
求出一次函数的表达式是数学练习题中常见的提问方式,下面介绍一下确定一次函数的表达式的三种方法。

用待定系数法确定一次函数解析式
待定系数法是确定一次函数的表达式最常用的方法,解题步骤包括“一设、二列、三解、四写”,具体内容如下:
1、根据题中所给的已知条件写出含有待定系数的函数关系式;
2、将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
3、解方程得出未知系数的值;
4、将得到的待定系数代回所求的函数关系式中就可以得到该函数的解析式。

用图像平移法确定一次函数表达式
一次函数的图像在平移时的规律为:直线在平移的倾斜率不变,即k的值保持不变。

当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k≠0)的图像;当b<0时,把正比例函数y=kx(k≠0)的图像向下平移∣b∣个单位,就得到一次函数:y=kx+b(k≠0)的图像。

根据直线的对称性确定一次函数表达式
关于y轴对称的两条直线为y=kx+b(k≠0)和y=-kx+b
(k≠0);关于x轴对称的两条直线为y=kx+b(k≠0)和y=-kx-b (k≠0);关于原点对称的两条直线为y=kx+b(k≠0)和y=kx-b (k≠0)。

以上为同学们介绍了确定一次函数的表达式的三种方法,同学们都掌握了吗?其中待定系数法的应用是较为广泛的,同学们一定要学好,利用图像来确定一次函数的表达式属于较为灵活的方法,可以用在选择填空中快速确定答案。

北师版八年级数学上册精品教学课件 第四章 一次函数 第1课时 确定一次函数的表达式

北师版八年级数学上册精品教学课件 第四章 一次函数 第1课时 确定一次函数的表达式

练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2.
又∵直线过点(0,2), ∴2=-2×0+b, ∴b=2, ∴直线l的表达式为y=-2x+2.
例3:正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的 表达式.
解:设y=kx+b(k≠0) 由题意得:14.5=b, 16=3k+b, 解得:b=14.5 ; k=0.5. 所以在弹性限度内,y=0.5x+14.5. 当x=4时,y=0.5×4+14.5=16.5(厘米).
故当所挂物体的质量为4千克时弹簧的长度为16.5厘米.
归纳总结
解此类题要根据所给的条件建立数学模型,得出变化关系, 并求出函数的表达式,根据函数的表达式作答.
又∵点B在一次函数y2=k2x+b2的图象上,
∴- =5 b,
代入3=24k2+b中,得k2= . ∴一次函数的表达式为y2= x-
11
8
.
11
8
5 2
做一做
某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的剩余 油量y(L)与工作时间x(h) 之间为一次函数关系,函数图象如图 所示. (1)求y关于x的函数表达式;
解:设正比例函数的表达式为y1=k1x,一次函数的 表达式为y2=k2x+b. ∵点A(4,3)是它们的交点,
∴代入上述表达式中,
得∴k31==4k1,,43 3=4k2+b. 即正比例函数的表达式为y= x.
3
4
∵OA=

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

一次函数概念、图象与性质

一次函数概念、图象与性质
制。
描点法步骤:首先确定两个点, 然后通过这两点绘制直线。通常 选择函数与坐标轴的交点作为描
点。
一次函数与x轴交点为(-b/k, 0), 与y轴交点为(0, b),其中k为斜
率,b为截距。
斜率对图象影响
斜率k决定了直线的倾斜程度。当k>0时,直线向右上方倾斜;当k<0时,直线向右 下方倾斜。
|k|的大小决定了直线的倾斜角。|k|越大,倾斜角越大,直线越陡峭;|k|越小,倾斜 角越小,直线越平缓。
边际收益分析
利用一次函数描述收益与 销量之间的关系,分析边 际收益。
边际利润决策
根据边际成本和边际收益, 确定最优产量和价格策略。
物理学中运动规律描述
匀速直线运动
通过一次函数表示位移与时间的 关系,描述匀速直线运动规律。
匀变速直线运动
利用一次函数表示速度与时间的关 系,分析匀变速直线运动过程。
自由落体运动
线性关系判断
判断方法
通过观察数据点是否大致分布在一条直线上来判断两个变量之间是否存在线性 关系。
线性关系特点
若两个变量之间存在线性关系,则它们的变化趋势是一致的,即当一个变量增 加时,另一个变量也相应地增加或减少。
02 一次函数图象绘制
直角坐标系中通过在直角坐标系中描点法绘
截距和斜率共同决定了直线的 位置和方向。不同的截距和斜 率组合可以得到不同的直线方 程和图象。
03 一次函数性质分析
单调性
一次函数在其定义域内具有单调性。具体来说,当一次函数的斜率k>0时,函数 在整个定义域内单调递增;当k<0时,函数在整个定义域内单调递减。
一次函数的单调性可以通过其图象直观地反映出来。在平面直角坐标系中,当 k>0时,函数的图象是一条从左下方到右上方的直线,表示函数值随x的增大而 增大;当k<0时,函数的图象是一条从左上方到右下方的直线,表示函数值随x 的增大而减小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空
1、正比例函数y=kx 的图象过点(3,-2),则k= 该函数的表达式为:
2、若一次函数y=5x+m 的图象过点(-1,0),则m=
3、一次函数图象如图1所示,则函数关系式是
4、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。

二、选择题:
5、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )
A 、y=2x-14
B 、y=-x-6
C 、y=-x+10
D 、y=4x
6、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )
A 、(-1,-1)
B 、(-1, 1)
C 、(1, -1)
D 、(1, 1)
三、综合题:
7、已知一次函数的图象过点M(3,2),N(-1,-6)两点.
(1)求函数的表达式;
(2)画出该函数的图象.
(3)求出该直线与x 轴y 轴所构成三角形的面积
8、已知y+2与x-1成正比例,且x=3时y=4。

(1) 求y 与x 之间的函数关系式;
(2) 当y=1时,求x 的值。

9、在直角坐标系中,判断A(2,0),B(0,2),C (-1,3)是否在一次函数y=kx+b 这条直线上。

-2 0 -1y
x (图1)
10、已知一次函数的图像经过点P(0,2),且与两条坐标轴截得的直角三角形的面积为3,求一次函数的表达式。

11.已知直线m经过点(0,3)和(-2,6)
(1)试确定m的函数解析式并画出图象
(2)求直线m与两坐标轴围成的图形的面积
(3)现有直线n与m平行,且点(4,12)在直线n上,求直线n与x、y轴的交点坐标(4)试问:在直线n上是否存在着这样的一点P,使得它到x轴的距离与它到y轴的距离之比为3:2,若存在,请写出P的坐标;若不存在,简洁说明理由.。

相关文档
最新文档