一次函数表达式的确定
三法确定一次函数表达式

方法点击
三法确定一次函数表达式
◎邓同义
一、根据图象求表达式
例1在平面直角坐标系xOy中,直线l的图象如图所示.求直线
l的函数表达式.
解析:设直线l的表达式为y=kx+b(k≠0).
因为直线l经过点A(0,4),B(-2,0),将其代入y=kx+b得
b=4,①
-2k+b=0.②
把①代入②,得k=2.
所以直线l的函数表达式为y=2x+4.
二、根据性质求表达式
例2 某一次函数的图象过点(-1,2),且函数y的值随自变量x的增大而减小,请写出一个符合上述条件的函数表达式.
解析:本题答案不唯一,对于一次函数y=kx+b(k≠0),若y随x的增大而减小,则k<0.
所以可设y=-x+b,把x=-1,y=2代入,可求得b=1.所以所求函数表达式为y=-x+1.
三、根据平行线求表达式
例3 直线l与y=-2x-1平行且过点(1,3),求直线l的表达式.
解析:因为直线l与y=-2x-1平行,所以设所求直线l的表达式为y=-2x+b.
又因为直线l过点(1,3),所以3=-2×1+b,解得b=5.
所以所求直线l的表达式为y=-2x+5.。
确定一次函数的表达式

确定一次函数的表达式在数学的世界里,一次函数是一个非常基础且重要的概念。
它不仅在数学学科中有着广泛的应用,还在实际生活中的诸多领域发挥着重要作用,比如物理学中的运动问题、经济学中的成本收益分析等等。
而要解决与一次函数相关的问题,首先需要掌握如何确定一次函数的表达式。
一次函数的一般形式为 y = kx + b ,其中 k 是斜率,b 是截距。
确定一次函数的表达式,实际上就是要确定 k 和 b 的值。
那怎么才能确定这两个关键的值呢?最常见的方法是利用给定的条件来构建方程组,然后求解方程组得到 k 和 b 的值。
比如,如果已知函数图像经过两个点的坐标(x₁, y₁) 和(x₂, y₂) ,那么我们可以把这两个点的坐标分别代入函数表达式 y = kx + b 中,得到两个方程:y₁= kx₁+ b ①y₂= kx₂+ b ②接下来,用②①消去 b ,就可以求出 k 的值,再把 k 的值代入①或②中,就能求出 b 的值。
除了已知两个点的坐标这种情况,有时还会给出函数的图像特征。
比如,已知直线与 x 轴的交点坐标(a, 0) ,与 y 轴的交点坐标(0, b) ,那么就可以直接得到 b 的值,然后再把(a, 0) 代入表达式求出 k 。
另外,如果给出了函数的斜率 k 和一个点的坐标(x₀, y₀) ,那就把点的坐标代入表达式 y = kx + b 中,求出 b 的值。
再来说说实际应用中的例子。
假设我们要研究一辆汽车的行驶情况,已知汽车在开始计时后的 2 小时行驶了 100 千米,4 小时行驶了 200 千米。
我们设时间为 x 小时,行驶的路程为 y 千米,那么可以列出两个方程:100 = 2k + b ③200 = 4k + b ④用④③,得到 2k = 100 ,解得 k = 50 。
把 k = 50 代入③,得到 100 = 2×50 + b ,解得 b = 0 。
所以,汽车行驶的路程与时间的关系可以用一次函数 y = 50x 来表示。
确定一次函数解析式的五种方法

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
确定一次函数的表达式 —— 初中数学第三册教案

确定一次函数的表达式——初中数学第三册教案一、教学目标1.让学生理解一次函数的定义和性质。
2.培养学生通过已知条件确定一次函数表达式的能力。
3.培养学生运用一次函数解决实际问题的能力。
二、教学内容1.一次函数的定义与性质2.通过已知条件确定一次函数表达式3.一次函数的实际应用三、教学重点与难点1.教学重点:一次函数的定义与性质,通过已知条件确定一次函数表达式。
2.教学难点:运用一次函数解决实际问题。
四、教学过程(一)导入1.通过复习一次函数的定义和性质,引导学生回顾相关知识。
2.提问:一次函数的一般形式是什么?一次函数的图像有何特点?(二)新课讲解1.讲解一次函数的定义与性质。
(1)一次函数的定义:形如y=kx+b(k≠0,k、b为常数)的函数称为一次函数。
(2)一次函数的性质:一次函数的图像是一条直线,且直线经过一、三象限(k>0)或二、四象限(k<0),与y轴的交点为(0,b)。
2.通过已知条件确定一次函数表达式。
(1)讲解方法:给定两个点,求解一次函数的解析式。
(2)示例:已知点A(1,2)和点B(3,4),求过这两点的一次函数表达式。
(3)引导学生运用待定系数法求解。
3.一次函数的实际应用。
(1)讲解方法:根据实际问题,列出一次函数表达式,求解实际问题。
(2)示例:某商品的原价为10元,售价为x元,若每增加1元,销售量减少2件。
求销售量y与售价x的函数关系式。
(3)引导学生分析实际问题,列出一次函数表达式,并求解。
(三)课堂练习1.已知点A(2,3)和点B(4,5),求过这两点的一次函数表达式。
2.某商品的原价为20元,售价为x元,若每增加1元,销售量减少3件。
求销售量y与售价x的函数关系式。
(四)课堂小结(五)课后作业(课后自主完成)1.已知点C(-1,-2)和点D(3,6),求过这两点的一次函数表达式。
2.某商品的原价为30元,售价为x元,若每增加1元,销售量减少4件。
求销售量y与售价x的函数关系式。
初中数学知识点精讲精析 确定一次函数的表达式

4 确定一次函数的表达式学习目标1. 了解两个条件确定一次函数。
2. 能根据所给信息(图像、表格、实际问题等)确定一次函数的表达式。
知识详解1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式。
(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx(k≠0)中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式。
②一次函数y=kx+b(k≠0)有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值。
用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式。
2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数。
(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式。
【典型例题】例1:一次函数图象如图所示,求其解析式.【答案】设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【解析】利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式。
确定一次函数的表达式

确定一次函数的表达式
求出一次函数的表达式是数学练习题中常见的提问方式,下面介绍一下确定一次函数的表达式的三种方法。
用待定系数法确定一次函数解析式
待定系数法是确定一次函数的表达式最常用的方法,解题步骤包括“一设、二列、三解、四写”,具体内容如下:
1、根据题中所给的已知条件写出含有待定系数的函数关系式;
2、将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
3、解方程得出未知系数的值;
4、将得到的待定系数代回所求的函数关系式中就可以得到该函数的解析式。
用图像平移法确定一次函数表达式
一次函数的图像在平移时的规律为:直线在平移的倾斜率不变,即k的值保持不变。
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k≠0)的图像;当b<0时,把正比例函数y=kx(k≠0)的图像向下平移∣b∣个单位,就得到一次函数:y=kx+b(k≠0)的图像。
根据直线的对称性确定一次函数表达式
关于y轴对称的两条直线为y=kx+b(k≠0)和y=-kx+b
(k≠0);关于x轴对称的两条直线为y=kx+b(k≠0)和y=-kx-b (k≠0);关于原点对称的两条直线为y=kx+b(k≠0)和y=kx-b (k≠0)。
以上为同学们介绍了确定一次函数的表达式的三种方法,同学们都掌握了吗?其中待定系数法的应用是较为广泛的,同学们一定要学好,利用图像来确定一次函数的表达式属于较为灵活的方法,可以用在选择填空中快速确定答案。
一次函数解析式,直线位置关系---第二讲

一次函数(2)--解析式、直线位置关系【考点聚焦】1、一次函数表达式的确定确定一次函数表达式:用 求解析式通常分四步:设、代、求、写.(1)对于正比例函数:将一个已知点的横、纵坐标代入 中,解一元一次方程,求出 ,从而确定此表达式;(2)对于一次函数:将两个已知点的横、纵坐标分别代入 中,建立关于,k b 的二元一次方程组,求出 的值,从而确定此表达式. 2、两条直线的位置关系及函数图象的平移 (1)两条直线的位置关系:设直线1l 和2l 的解析式为111b x k y +=和222b x k y +=,则 它们的位置关系可由其系数确定: ※①⎩⎨⎧≠=2121b b k k ⇔1l 与2l 互相 ; ②121-=⋅k k ⇔1l 与2l 互相 .(2)函数图象的平移:左加右减:(针对自变量而言) 上加下减:针对b 而言 (3)特殊角度①当一次函数图象与x 轴成°30:=k ②当一次函数图象与x 轴成°45:=k ③当一次函数图象与x 轴成°60:=k 3、确定两个函数图象的交点坐标确定两个函数图象的交点坐标:就是这两个函数解析式所组成的方程组的解. 4、一次函数中的面积问题【典例剖析】知识点一:一次函数表达式的确定【例1】(1)已知一次函数的图象经过)(2,1-和)(4,3-,求这个一次函数的解析式 。
(2)(嘉祥外国语)如果一次函数b kx y +=中自变量x 的取值范围是31≤≤-x 时,函数值y 的取值范围是62≤≤-y ,求这个一次函数解析式。
【变式1】已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是)4,0(0,2-)、(,则这个函数的解析式为_____________。
【变式2】已知一次函数b kx y +=,当13-≤≤x 时,对应y 的值为91≤≤y ,则这个函数的解析式为_____________。
【例2】如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的'B 处,则直线AM 的解析式为 .【变式1】已知一次函数)1)(1(2)1(≠-+-=a a x a y 的图象如图所示,已知OB OA 23=,求一次函数的解析式.【变式2】如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰ABC Rt ∆,︒=∠90BAC .求过B 、C 两点直线的解析式.知识点二:两条直线的位置关系【例3】已知一次函数b kx y +=的图象经过点()31,A 且和32-=x y 平行,则函数解析式为 .【变式1】(嘉祥外国语)若直线b kx y +=与直线x y 2-=平行,且过点()31,,则=k ________,=b _________.【例4】(湖南湘潭中考)已知两直线,,,222:b x k y l +=111:b x k y l +=,若21l l ⊥,则1·21-=k k .①应用:已知12+=x y 与1-=kx y 垂直,求k ;②直线经过()3,2A ,且与3+=x y 垂直,求该直线解析式.【例5】(武汉中考)(1)点()1,0向下平移2个单位后的坐标是_________,直线12+=x y 向下平移2个单位后的解析式是___________;直线12+=x y 向右平移2个单位后的解析式是_____________;【变式】将一次函数13-=x y 的图象沿y 轴向上平移3个单位,再沿x 轴向左平移4个单位后,得到的图象对应的函数关系式为【例6】已知直线b kx y l +=:过点()32,, (1)当l 与x 轴的夹角为30°时,求直线解析式; (2)当l 与x 轴的夹角为45°时,求直线解析式; (3)当l 与x 轴的夹角为60°时,求直线解析式.【变式】如图,已知A 点坐标为()05,,直线)>0(b b x y +=与y 轴交于点B ,连接AB ,︒=∠75α,则b 的值为( ) 、A 3 B 、335 C 、4 D 、435知识点三:确定两个函数图象的交点坐标【例7】在同一平面直角坐标系中,若一次函数2-=x y 与12+-=x y 的图象交于点M ,则点M 的坐标为 .【变式1】无论m 为何值,直线m x y +=2和5+-=x y 图象的交点不可能在第 象限.【变式2】如图,在平面直角坐标系中,直线32+=x y 与y 轴交于点A ,直线1-=kx y 与y 轴交于点B ,与直线32+=x y 交于点()n C ,1-.(1)求k n 、的值; (2)求ABC ∆的面积.**挑战题1.(2017双流)已知在平面直角坐标系中,直线l 分别与x 轴,y 轴交于A ,B 两点,其中,点A 在x 轴的负半轴上,点B 在y 轴的正半轴上.(1)如图1,若点A 的坐标是(2m -1,0),点B 的坐标是(0,3-m ),OA =34OB , AD平分∠BAO 交y 轴于D ;①求直线l 的函数表达式以及点D 的坐标;②点C 是第二象限内一点,且∠BCA =∠BAC ,当AC ⊥AD 时,求点C 的坐标; (2)如图2,点E 在x 轴的正半轴上,OA =OB =OE ,P 为线段AB 上一动点(不与端点重合),OQ ⊥OP 交BE 于Q ,OR ⊥AQ 交AB 于R .当P 点运动时,PRQE的值是否发生变化?如果不变,求出其值;如果发生变化,请说明理由.(图1)(图2)随堂练习: 一、选择题1、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(,)a b ,且26a b +=,则直线AB 的解析式是( ).A 26y x =-+ .B 26y x =--.C 23y x =-+.D 23y x =--二、填空题 2、如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC PD +值最小时点P 的坐标为 .3、如图, 在平面直角坐标系中, 平行四边形OABC 的顶点A 在x 轴上, 顶点B 的坐标为(6,4). 若直线l 经过点(1,0),且将平行四边形OABC 分割成面积相等的两部分, 则直线l 的函数解析式是 .4、已知一次函数y kx b =+过点()4,0和()2,2两点,则该函数的解析式为 .5、一次函数y kx b =+,当41≤≤x 时,63≤≤y ,则bk的值是 .6、在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、⋯、正方形1n n n n A B C C -,使得点1A 、2A 、3A ⋯在直线l 上,点1C 、2C 、3C ⋯在y 轴正半轴上,则点n B 的坐标是 .7、已知一次函数的图象经过点(0,2)P -,且与两条坐标轴截得的直角三角形的面积为 3 ,则此一次函数的解析式为 .三、解答题8、已知点0(P x ,0)y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d =计算.例如:求点(1,2)P -到直线37y x =+的距离. 解:因为直线37y x =+,其中3k =,7b =.所以点(1,2)P -到直线37y x =+的距离为d ===. 根据以上材料,解答下列问题: (1)点(1,1)P -到直线1y x =+的距离;(2)已知直线21y x =-+与26y x =-+平行,求这两条直线之间的距离。
三法确定一次函数表达式

三法确定一次函数表达式确定一次函数表达式的方法有三种,分别是点斜式、截距式和一般式。
一、点斜式:点斜式是通过已知直线上一点的坐标和该直线的斜率来确定一次函数表达式的方法。
已知直线上一点的坐标为(x1,y1),斜率为m,则该直线的点斜式表达式为:y-y1=m(x-x1)其中,m为直线的斜率,定义为直线上任意两点的纵坐标之差与横坐标之差的比值。
例如,已知直线上一点的坐标为(2,3),斜率为2,则直线的点斜式为:y-3=2(x-2)二、截距式:截距式是通过已知直线在坐标轴上的截距来确定一次函数表达式的方法。
已知直线与x轴的交点为(a,0),与y轴的交点为(0,b),则该直线的截距式表达式为:x/a+y/b=1其中,a为直线与x轴的截距,b为直线与y轴的截距。
例如,已知直线与x轴的截距为3,与y轴的截距为4,则直线的截距式为:x/3+y/4=1三、一般式:一般式是通过已知直线上两点的坐标来确定一次函数表达式的方法。
已知直线上两点的坐标为(x1,y1)和(x2,y2),则该直线的一般式表达式为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)其中,(x1,y1)和(x2,y2)为直线上的两个点的坐标。
例如,已知直线上两点的坐标分别为(2,3)和(4,7),则直线的一般式为:(y-3)/(x-2)=(7-3)/(4-2)以上三种方法都可以用来确定一次函数表达式,选择使用哪种方法取决于已知的条件。
点斜式适用于已知斜率和一点的情况,截距式适用于已知与坐标轴的截距的情况,一般式适用于已知两点的情况。
根据实际情况选择合适的方法,可以快速准确地确定一次函数表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数表达式的确定
吴育弟
【一】利用两点坐标确定
例1 直线l 过A 〔0,-1〕,B 〔1,0〕两点,求直线l 的表达式.
解:设函数表达式为y=kx+b ,将〔1,0〕,〔0,-1〕分别代入表达式,得⎩⎨⎧-==+,1,0b b k 解得⎩⎨⎧-==.1,1b k 所以直线l 的表达式为y=x -1.
【二】利用直线平行确定
例2 直线l 与y=-2x -1平行,且过点〔1,3〕,求直线l 的表达式.
解:因为直线l 与y=-2x -1平行,所以设所求直线l 的表达式为y=-2x+b. 又直线l 过点〔1,3〕,所以3=-2×1+b ,解得b=5.
所以直线l 的表达式为y=-2x+5.
【三】利用表格确定
例3 某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答以下问题:
设加工甲种配件的人数为x ,加工乙种配件的人数为y ,求y 与x 之间的函数表达式.
解:因为加工甲种配件的人数为x ,加工乙种配件的人数为y ,所以加工丙种配件的人数为〔20-x -y 〕人.
因为厂方计划由20个工人一天内加工完成,所以16x+12y+10〔20-x -y 〕=240,那么y=-3x+20.
【四】利用性质确定
例4 一次函数的图象经过点〔0,1〕,且满足y 随x 的增大而增大,那么该一次函数的表达式可以为 .
解析:设一次函数的表达式为y=kx+b 〔k ≠0〕.
因为一次函数的图象经过点〔0,1〕,所以b=1.
因为y 随x 的增大而增大,所以k >0.
当k=1时,该一次函数表达式为y=x+1〔答案不唯一,可以是形如y= kx+1,k>0的一次函数〕.。